
3>& 

LABORATORY EVALUATION AND MODELLING OF 

SHEAR STRENGTH OF INFILLED JOINTS UNDER 

CONSTANT NORMAL STIFFNESS (CNS) CONDITIONS 

A thesis submitted 

in fulfillment of the requirements for the award of the degree 

— — • 'XwdSfiZSisS^-— —— 
Of MORATUVa^gaBfTjiil 

DOCTOR OF PHILOSOPHY 

From 

UNIVERSITY OF W O L L O N G O N G 

by 

University of Moratuvva 

11 

H. S E N A K A W E L I D E N I Y A 
M.Sc. (Eng.), M.Sc. (Eng. Geology), Pg. Cert. 

83035 

Department of Civil, Mining and Environmental Engineering 
University of WoIIongong, Australia. 

January 2005 

8 3 0 25" 

83035 

7 



THESIS CERTIFICATION 

I, H.Senaka Welideniya, declare that this thesis, submitted in fulfilment of the requirements 

for the award of Doctor of Philosophy, in the Department of Civil, Mining and 

Environmental Engineering, Faculty of Engineering, University of Wollongong, is wholly 

my own work unless otherwise referenced or acknowledged. The document has not been 

submitted for qualification at any other academic institution. 

2 5 t h January 2005 

ii 



RELATED PUBLICATIONS 

Indraratna, B., Welideniya, H.S. and Brown, E.T. (2004).A Shear Strength Model for 

Idealised Infilled Joints under Constant Normal Stiffness (CNS), Geotechniqite 

(accepted for publication in 2005 issue of Geotechnique). 

Welideniya H.S. & Buddhima Indraratna (2004). The impact of joint orientation and the 

confining stress on the shear behaviour of graphite infilled joints. The &h Australia New 

Zealand Conference on Geomechanics, Auckland, New Zealand, pp. 253-259. 

Indraratna, B. and Welideniya, H.S. (20Q3). Shear behaviour of graphite infilled joints 

based on Constant Normal Stiffness (CNS) test conditions. Proc. 10th Congr., Int. Soc. 

Rock Mech. - Technology roadmap for rock mechanics, Johannesburg, Vol. 1, pp. 569-

574. 

iii 



ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to people who are very closely associated 

with me during the last few years whilst keeping in my mind others who have 

knowingly or unknowingly helped me in pursuing this goal. Firstly I would like to 

express my sincere gratitude to Professor Buddhima Indraratna who has been much 

more than an academic supervisor helping, encouraging and supporting me in whatever 

possible way and keeping me on track until I reached the end. The interest shown and 

the scrutiny of my work by him have immensely helped me in achieving the objectives. 

I also wish to mention the support given by my local supervisor, Professor P.G.R. 

Dharmaratna of University of Moratuwa, Sri Lanka during my study period in Sri 

Lanka. 

I would like to greatly acknowledge the dedicated efforts of Allan Grant who always 

had time to solve the problems I had in the laboratories. I also wish to mention with 

gratitude Technical Officers Ian Laird, Bob Roland, Ian Bridge, Peter, Des, Leonie and 

the EEC staff. I thank Prof. Ted Brown (Uni. of Queensland) for feedback and 

comments on the research findings and interpretations. I would also like to thank my 

fellow postgraduate companions Satha for strong support, Jeff for true friendship, 

Kalyani for compassion, Sharbaree for hospitality, Mathias, Jaya, and Ashok. 

I gratefully acknowledge University of Moratuwa (UoM), Sri Lanka for awarding me 

this opportunity and also the encouragement given by Prof. L.L. Ratnayaka and Prof. 

Mrs. N.Ratnayaka. I express my gratitude to Ministry of Science & Technology for 

providing financial assistance through ADB grants. My appreciation also goes to 

Dr.Udaya Senarath who encouraged me to take this opportunity and Dr. Hadi Khabbazi 

for his suggestions. 

Finally my warm appreciation goes to my loving wife Kesika who shouldered huge 

burdens and immeasurable troubles alone, my two sons Vikum and Harin, and daughter 

Senali who grew up in my absence only to achieve my goal. It would have been 

impossible to continue this work if I didn't have the warm support and love that my 

wife Kesika gave me throughout my candidature. 

I V 



ABSTRACT 

Infill materials found in natural rock joints may cause a reduction in joint shear 

strength, influencing rock mass stability. The shear strength of rock mass, already 

reduced by these discontinuities, will further diminish if they are filled with sediments, 

thereby posing significant concerns for any construction or excavation carried out in 

rock. These concerns invite accurate quantification of the shear strength of infilled 

joints and proper understanding of the basic mechanics of discontinua and the principles 

involved in their shear deformation. The practical application of any models developed 

through such studies will be of immense help to mining, tunnelling, and all other 

underground construction works. The geotechnical research work carried out by the 

University of Wollongong in the late 90's included infilled joint modelling using 

hyperbolic techniques. A new shear strength model was developed in these studies for 

predicting unfilled and infilled joint strength based on the Fourier transform method, 

energy balance principle and the hyperbolic stress-strain simulation. 

Taking into account the field conditions frequently encountered, the diversity 

observed in joint shear response and the occasional inadequacy of data (for the 

estimation of Fourier coefficients and the hyperbolic constants), this study was 

undertaken to develop a semi-empirical methodology for predicting the shear strength 

of infilled joints. In this research study joint shear behaviour was studied under CNS 

and CNL conditions and also the effect of joint orientation and confinement. The study 

aimed to develop a methodology which includes joint surface characteristics, joint 

properties, and infill materials. A new model for predicting the shear strength of infilled 

joints based on a series of tests carried out on two types of model joint surfaces (with 
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asperity angles of 9.5° and 18.5°) is presented. Graphite, bentonite and clayey sand were 

used as infill materials. All tests were carried out in a large-scale shear apparatus under 

constant normal stiffness (CNS) conditions. The results indicate that at low infill 

thickness to asperity height ratio (t/a), the combined effect of the basic friction angle 

(cpb) and the joint asperity angle (i) is pronounced, but diminishes with increasing t/a 

ratio so that the shear strength converges towards the infill alone. This decrease in shear 

strength with increasing t/a ratio is represented in a normalised manner by dividing the 

peak shear stress by the corresponding normal stress. Summation of two algebraic 

functions (A and B) that represent the joint and infill characteristics, correctly model the 

decay of normalised shear strength with increasing t/a ratio. The new model 

successfully describes the shear strength of the graphite, clay (bentonite) and clayey 

sand filled model joints. 
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