LABORATORY EVALUATION AND MODELLING OF SHEAR STRENGTH OF INFILLED JOINTS UNDER **CONSTANT NORMAL STIFFNESS (CNS) CONDITIONS**

A thesis submitted

in fulfillment of the requirements for the award of the degree

Rinsoliw TGE DITY OF MORATUWA, EN ON " MORATUWA

DOCTOR OF PHILOSOPHY

From

UNIVERSITY OF WOLLONGONG

624°05″ 624(043)

LB/DON/42/05

by

H. SENAKA WELIDENIYA M.Sc. (Eng.), M.Sc. (Eng. Geology), Pg. Cert.

University of Moratuwa

83035

Department of Civil, Mining and Environmental Engineering University of Wollongong, Australia. **January 2005**

THESIS CERTIFICATION

I, H.Senaka Welideniya, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Civil, Mining and Environmental Engineering, Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualification at any other academic institution.

I.Senaka Wetideniya

25th January 2005

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

RELATED PUBLICATIONS

Indraratna, B., Welideniya, H.S. and Brown, E.T. (2004). A Shear Strength Model for Idealised Infilled Joints under Constant Normal Stiffness (CNS), *Geotechnique* (accepted for publication in 2005 issue of *Geotechnique*).

Welideniya H.S. & Buddhima Indraratna (2004). The impact of joint orientation and the confining stress on the shear behaviour of graphite infilled joints. *The 9th Australia New Zealand Conference on Geomechanics, Auckland, New Zealand*, pp. 253-259.

Indraratna, B. and Welideniya, H.S. (2003). Shear behaviour of graphite infilled joints based on Constant Normal Stiffness (CNS) test conditions. *Proc.* 10th Congr., Int. Soc. Rock Mech. – Technology roadmap for rock mechanics, Johannesburg, Vol. 1, pp. 569-574.

Â.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to people who are very closely associated with me during the last few years whilst keeping in my mind others who have knowingly or unknowingly helped me in pursuing this goal. Firstly I would like to express my sincere gratitude to Professor Buddhima Indraratna who has been much more than an academic supervisor helping, encouraging and supporting me in whatever possible way and keeping me on track until I reached the end. The interest shown and the scrutiny of my work by him have immensely helped me in achieving the objectives. I also wish to mention the support given by my local supervisor, Professor P.G.R. Dharmaratna of University of Moratuwa, Sri Lanka during my study period in Sri Lanka.

I would like to greatly acknowledge the dedicated efforts of Allan Grant who always had time to solve the problems I had in the laboratories. I also wish to mention with gratitude Technical Officers Ian Laird, Bob Roland, Ian Bridge, Peter, Des, Leonie and the EEC staff. I thank Prof. Ted Brown (Uni. of Queensland) for feedback and comments on the research findings and interpretations. I would also like to thank my fellow postgraduate companions Satha for strong support, Jeff for true friendship, Kalyani for compassion, Sharbaree for hospitality, Mathias, Jaya, and Ashok.

I gratefully acknowledge University of Moratuwa (UoM), Sri Lanka for awarding me this opportunity and also the encouragement given by Prof. L.L. Ratnayaka and Prof. Mrs. N.Ratnayaka. I express my gratitude to Ministry of Science & Technology for providing financial assistance through ADB grants. My appreciation also goes to Dr.Udaya Senarath who encouraged me to take this opportunity and Dr. Hadi Khabbazi for his suggestions.

ХŞ

Finally my warm appreciation goes to my loving wife Kesika who shouldered huge burdens and immeasurable troubles alone, my two sons Vikum and Harin, and daughter Senali who grew up in my absence only to achieve my goal. It would have been impossible to continue this work if I didn't have the warm support and love that my wife Kesika gave me throughout my candidature.

ABSTRACT

Infill materials found in natural rock joints may cause a reduction in joint shear strength, influencing rock mass stability. The shear strength of rock mass, already reduced by these discontinuities, will further diminish if they are filled with sediments, thereby posing significant concerns for any construction or excavation carried out in rock. These concerns invite accurate quantification of the shear strength of infilled joints and proper understanding of the basic mechanics of discontinua and the principles involved in their shear deformation. The practical application of any models developed through such studies will be of immense help to mining, tunnelling, and all other underground construction works. The geotechnical research work carried out by the University of Wollongong in the late 90's included infilled joint modelling using hyperbolic techniques A new shear strength model was developed in these studies for predicting unfilled and infilled joint strength based on the Fourier transform method, energy balance principle and the hyperbolic stress-strain simulation.

Taking into account the field conditions frequently encountered, the diversity observed in joint shear response and the occasional inadequacy of data (for the estimation of Fourier coefficients and the hyperbolic constants), this study was undertaken to develop a semi-empirical methodology for predicting the shear strength of infilled joints. In this research study joint shear behaviour was studied under CNS and CNL conditions and also the effect of joint orientation and confinement. The study aimed to develop a methodology which includes joint surface characteristics, joint properties, and infill materials. A new model for predicting the shear strength of infilled joints based on a series of tests carried out on two types of model joint surfaces (with asperity angles of 9.5[°] and 18.5[°]) is presented. Graphite, bentonite and clayey sand were used as infill materials. All tests were carried out in a large-scale shear apparatus under constant normal stiffness (CNS) conditions. The results indicate that at low infill thickness to asperity height ratio (t/a), the combined effect of the basic friction angle (ϕ_b) and the joint asperity angle (i) is pronounced, but diminishes with increasing t/a ratio so that the shear strength converges towards the infill alone. This decrease in shear strength with increasing t/a ratio is represented in a normalised manner by dividing the peak shear stress by the corresponding normal stress. Summation of two algebraic functions (A and B) that represent the joint and infill characteristics, correctly model the decay of normalised shear strength with increasing t/a ratio. The new model successfully describes the shear strength of the graphite, clay (bentonite) and clayey sand filled model joints.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

THESIS CERTIFICATION ii
RELATED PUBLICATIONSiii
ACKNOWLEDGEMENTS iv
ABSTRACTv
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
NOTATION
CHAPTER 1
1 INTRODUCTION
1.1 GENERAL INTRODUCTION1
1.2 BACKGROUND TO THE STUDY
1.3 OBJECTIVES OF THE STUDY
1.4 GEOLOGY OF SAMPLING SITES AND INTRODUCTION TO INFILL
MATERIALS
1.4.1 Geological environment and lithology of graphite mines
1.4.2 Geology of Kangaroo valley rock slide (NSW, Australia) 14
1.5 ORGANISATION OF THE THESIS
CHAPTER 2
2 REVIEW OF UNFILLED JOINT BEHAVIOUR UNDER CONSTANT
NORMAL LOAD (CNL) AND CONSTANT NORMAL STIFFNESS (CNS)
CONDITIONS AND JOINT ROUGHNESS
2.1 INTRODUCTION
2. 2 SHEAR STRENGTH OF ROCK JOINTS UNDER CNL CONDITIONS 19
2.2.1 Development of shear strength models for rough clean joints under
CNL condition
2.2.2 Constitutive models developed to quantify shear behaviour of rough
clean joints
2.2.2.1 Mechanistically based model
2.2.2.2 Coupled thermo-hydro-mechanical models
2. 3 SHEAR STRENGTH OF ROCK JOINTS UNDER CNS CONDITIONS 29
2.3.1 The role of stiffness on shear behaviour
2.3.2 The role of shear rate on the strength of joints

TABLE OF CONTENTS

2.3.3	Shear strength models under CNS conditions
2.3.3.1	Model based on energy balance principles
2.3.3.2	2 Analytical methods based on shearing mechanisms
2.3.3.3	Graphical model
2.3.3.4	Mathematical and analytical models
2.4 JOE	NT ROUGHNESS
2.4.1	Introduction to joint roughness
2.4.2	Estimation of JRC using Z ₂
2.4.3	Characterization of JRC using JRC-JCS concept and tilt testing 61
2.4.4	Joint roughness estimation using variogram method
2.4.5	Fractal characterization of natural rock joint profiles
2.5 CO	NCLUSIONS AND THE RELEVANCE OF CNS STUDY OF CLEAN
JOINTS TO	O CURRENT STUDY
CHAPTER 3.	
3 SHEAR	BEHAVIOUR OF INFILLED ROCK JOINTS UNDER CONSTANT
NORMAL LO	DAD (CNL) AND CONSTANT NORMAL STIFFNESS (CNS)
CONDITION	S
3.1 INT	RODUCTION 68
3.2 INF	ILL MATERIAL
3.2.1	Infill types and their characteristics
3.2.2	The role of infill on the determination of joint shear strength73
3.2.3	Boundary conditions controlling infilled joint shear behaviour77
3.3 SHI	EAR BEHAVIOUR OF NATURAL AND MODEL JOINTS
3.3.1	The effect of type and thickness of infill on the shear behaviour 79
3.3.2	Affect of infill type and grain size on failure plane development 87
3.3.3	The affect of joint roughness on the development of failure plane 89
3.4 EFF	FECT OF DRAINAGE CONDITION ON STRENGTH
3.5 AFI	FECT OF DEGREE OF CONSOLIDATION OF FILLING MATERIAL
ON THE S	HEAR BEHAVIOUR OF JOINTS
3.6 SHI	EAR STRENGTH MODELS FOR INFILLED JOINTS
3.6.1	Shear strength models under CNL conditions
3.6.2	Shear strength models under CNS conditions 102
3.7 CO	NCLUSIONS

		•	
CHAPTI	ER 4.		3
4 LA	BORA	ATORY INVESTIGATIONS 112	3
4.1	INT	RODUCTION	3
4.2	COl	NSTANT NORMAL STIFFNESS (CNS) DIRECT SHEAI	R
APPA	RAT	US	4
4.2.	1 -	Large scale shear boxes 11	5
4.2.	2	Driving mechanism	5
4.2.	3	Displacement measurement11	6
4.2.	4	Loading device 11	6
4.3	LAE	BORATORY TESTING PROGRAMME ON UNFILLED JOINTS 11	7
4.3.	1	Selection of model material for joint11	7
4.3.	2	Preparation of saw-tooth and natural specimens 11	9
4.3.	3	Test series of unfilled joints 12	0
4.4	TES	STING PROGRAMME FOR IDEALISED INFILLED JOINTS	1
4.4.	1	Selection of infill material	1
4.4.	2	Placing of infill on the joint surface	3
4.4.	3	Test series of infilled joint	3
4.5	DIR	ECT SHEAR TEST PROCEDURES	5
4.5.	1	Setting-up of specimens in the shear boxes	5
4.5.	2	Application of normal load12	7
4.5.	.3	Shearing the specimens 12	7
4.6	PRO	DCESSING OF TEST DATA 12	8
4. 7	CH	ARACTERIZATION OF JOINT ROUGHNESS 13	4
4.7.	1	Joint sampling	4
4.7.	2	Digital coordinate measuring machine 13	6
4.7.	.3	Fourier analysis of joint roughness13	6
4.8	PRO	DPERTIES OF INFILL MATERIAL 13	9
4.8	.1	Testing of graphite core samples13	9
4.8	.2	Testing of graphite, bentonite and clayey sand in direct shear 14	3
4.9	CO	NCLUSIONS14	7
CHAPT	ER 5.		0
5 SH	EAR	BEHAVIOUR OF GRAPHITE INFILLED JOINTS UNDER	
CONST	ANT	NORMAL LOAD (CNL) CONDITIONS 15	0
5.1	GEI	NERAL OVERVIEW 15	0
		ix	N 03
			5 100 F
			A LEAN
			LADINA

.

4

ø

•		
5.2	SHE	EAR STRESS RESPONSE AND RATE OF SHEAR 151
5.3	NO	RMAL STRESS AND DILATION 152
5.4	RES	SULTS AND DISCUSSION 153
5.4	.1	Type 1 joints
5.4	.2	Type 2 joints
5.4	.3	Strength envelope
5.5	SUN	MMARY 161
CHAPT	ER 6.	
6 SH	EAR	BEHAVIOUR OF GRAPHITE INFILLED JOINTS UNDER
CONST	ANT	NORMAL STIFFNESSS (CNS) CONDITIONS 164
6. 1	INT	RODUCTION
6.2	EXI	PERIMENTAL RESULTS 165
6.2	.1	Shear behaviour of Type 1 joints ($i = 9.5^{\circ}$) with graphite infill 165
6.2	.2	Shear behaviour of Type 2 joints ($i = 18.5^{\circ}$) with graphite infill 174
6.2	.3	Shear behaviour of bentonite and clayey sand infilled joints 182
6.2	.4	General effects of the t/a ratio and the initial normal stress (σ_{no}) . 189
6.3	TH	E EFFECT OF INFILL THICKNESS AND CRITICAL (t/a) RATIO ON
SHEA	AR BE	EHAVIOUR
6.4	STF	RENGTH ENVELOPE
6.4	.1	Strength envelope of Type 1 joints $(i = 9.5^{\circ})$
6.4	.2	Strength envelope of Type 2 joints $(i = 18.5^{\circ})$
6.5	SUI	MMARY
7 TR	IAXL	AL TESTING OF JOINTED SPECIMENS
7.1	INT	TRODUCTION
7.2	TH	EORETICAL BACKGROUND
7.3	RES	SEARCH METHODOLOGY 208
7.4	RES	SULTS AND DISCUSSION
7.5	CO	NCLUSIONS
CHAPT	ER 8.	
8 TH	ie de	VELOPMENT OF NEW SHEAR STRENGTH MODEL FOR INFILLED
JOINTS	S UNE	DER CONSTANT NORMAL STIFFNESS CONDITIONS (CNS) 220
8.1	TH	EORETICAL BACKGROUND
8.2	DE	VELOPMENT OF A NEW SHEAR STRENGTH MODEL 225
8.2	2.1	Normalised shear strength model 226

x

8.2.2	Experimental verification of the normalised shear strength model230
8.2.3	Calibration of new model with experimental results
8.2.4	Change in normal stress during CNS shearing
8.3 PR	ACTICAL IMPLICATIONS
8.4 SL	JMMARY
CHAPTER 9	9
9 CONCI	LUSIONS AND RECOMMENDATIONS
9.1 SY	NTHESIS OF THE STUDY
9.2 SH	IEAR BEHAVIOUR OF INFILLED JOINTS UNDER TRIAXIAL, CNL
AND CNS	S CONDITIONS
9.2.1	Behaviour of joints with graphite under triaxial conditions
9.2.2	Shear behaviour of graphite infilled joints under CNL conditions 252
9.2.3	Shear behaviour of graphite infilled joints under CNS conditions 253
9.2.4	The new shear strength model254
9.3 FL	JTURE RECOMMENDATIONS
REFERENC	ES
APPENDIX	A
JOINT ROU	GHNESS MEASUREMENT
APPENDIX	В
CNS TESTI	NG OF INFILLED JOINTS
APPENDIX	C
TRIAXIAL	TESTING OF JOINTED CORE SPECIMENS
APPENDIX	D

ī

LIST OF FIGURES

ŀ

4

٢

*

Figure 1.1Geology of Sri Lanka and major graphite mining sites
Figure 1.2 Minable steeply dipping graphite vein in an open stope of a graphite mine,
Sri Lanka
Figure 1.3 A tunnel driven in a graphite mine showing the steeply dipping split veins
which cause unstable rock blocks
Figure 1.4 Graphite split veins encountered in a tunnel excavation de-stabilizing roof
and walls13
Figure 1.5 Rock slide at Kangaroo valley, New South Wales, Australia
Figure 1.6 Rock joint sampling sites in Australia; (a) Kangaroo valley with reference to
the map of Australia; (b) Kangaroo valley rock slide location map 17
Figure 2.1 A diagram for explaining the ratio of contact area (Kimura and Esaki,
1995)
Figure 2.2 Shear behaviour of joints in an underground environment, where both CNS
and CNL conditions could be observed
Figure 2.3 Idealised displacement behaviour of a rock socketed pile (after Johnstone &
Lam, 1989)
Figure 2.4 Deformation due to inelasticity (Seidel & Haberfield, 1995)
Figure 2.5 Joint response curves for normal stresses σ_n ranging between 0 and 20A
(Saeb and Amadei, 1992)
Figure 2.6 Normal stress vs normal displacement curves at different shear displacement
levels (Saeb & Amadei, 1990 and 1992) 42
Figure 2.7(a) Typical results of direct shear tests on a tension fracture (Barton (1976),
(b) & (c) Idealized shear stress vs shear displacement and dilatancy curves (Saeb
and Amadei, 1992) 47
Figure 2.8 Calculation proceedure for modelling dilation behaviour under CNS (after
Skinas et al., 1990) 50
Figure 2.9 Shear stress and Normal stress vs Shear displacement under constant normal
stress and CNS for JRC 8,10 and 12 (Ohinishi & Dharmaratna, 1990) 53
Figure 2.10 Conceptual model of a dilatant joint undergoing shear (Heuze & Barbour,
1982)
Figure 2.11 Joint roughness profiles and corresponding JRC values (Barton and
Choubey, 1977)

Figure 2.12 Plots of JRC values with SF; (a) Correlation	on between the original JRC and
new SF, (b) Comparison of calculated JRC using	g different formulae (Yang et al.,
2001)	

Figure 3.1 Blocky mass failure in an area consisting of orthoclase rich granitic rocks. The effective friction angle is around 60° . The joint filled with weathering products resulting from freezing and thawing, which drastically reduces the shear strength. direction of of The arrow indicates the movement the block Figure 3.3 Shear strength of mica infilled joint under a normal stress of 746 kPa for various t/a ratio (after Goodman, 1970)...... 80 Figure3.4 Effect of infill thickness on peak shear strength. Joint A/.PFA (corrected) **Figure 3.5** Effect of thickness of clay filling on the strength of joints in direct shear: $\sigma =$ 2.9 MPa (Ladanyi & Archambault, 1977)...... 83 Figure 3.6 Application of proposed empirical relation on published data (Lama, 1978). Figure 3.7 Effect of variatio on normalized shear strength and dilation/compression of Figure 3.8 Strength of clay infilled sandstone joint tested under CNL in a ring shear Figure 3.10 Rock joint-sand filler contact: (a) rough surface with no influence in the joint strength, and (b) smooth surface with weakening of the joint (de Toledo & de Figure 3.11 Calculated shear speed required for no pore pressure development in the filler of a permeable rock (de Toledo and de Freitas, 1993) draining joints with Figure 3.12 Influence of the rate of shear on the strength of joints for t>a (non-Figure 3.13 Time for 95% pore pressure dissipation of an infilled joint interpreted by free-draining joints with difference spacings to take place (de Toledo and de

Figure 3.14 Origin and strength effects of normally and over-consolidated clay
(Skempton, 1964)96
Figure 3.15 Cross section of the Rock Rotary Shear Machine (RRS) developed by Xu
et al., (1988) (de Toledo and de Freitas, 1995)97
Figure 3.16 Proposed empirical relationship between shear strength of infilled joints
and t/a ratio (Papalingas et al., 1990)
Figure 3.17 Empirical model for peak shear strength of infilled joint (Phien-wej, 1990).
Figure 3.18 Strength model for infilled joints (de Toledo & de Freitas, 1993) 102
Figure 3.19 Formulation of hyperbolic model for the prediction of drop in peak shear
stress due to infill (Indraratna et. al., 1999)105
Figure 3.20 Normalised drop in peak shear stress (NSD) for Type I and II infilled
joints, based on hyperbolic model predictions (Indraratna et. al., 1999) 106
Figure 3.21 Graphical representation of prediction of unfilled joint shear strength
(Indraratna et. al., 1999)
Figure 4.1 Schematic diagram of the CNS shear apparatus
Figure 4.2 Large-scale CNS direct shear apparatus at University of Wollongong with an
inset showing a close view of the stiffness elements
Figure 4.3 Preparation of infill joint surface 126
Figure 4.4 A close view of the prepared infilled joint surface
Figure 4.5 Flowchart showing the summary of laboratory investigations of graphite
infilled joints
Figure 4.6 Flowchart showing the summary of laboratory investigations of bentonite
clay infilled joints
Figure 4.7 Flowchart showing the summary of laboratory investigations of clayey sand
infilled joints
Figure 4.8 Surface profile of a graphite joint after the careful removal of one joint wall.
Figure 4.0 Supplier of intest graphits joint collected from a graphite mine 125
Figure 4.9 Specimen of intact graphite joint confected from a graphite mine
Figure 4.10 Digital coordinate measuring machine (CMM)
Figure 4.11 Fourier simulation of asperity neights at 25 narmonic frequency
rigure 4.12 Surface profiles of joints: (a) graphite infilied joint sampled from a
production stope; (b) joint of a graphite split vein intersected by diamond core

, M

Ý

drilling; (c) natural (tension) joint and (d) a field specimen obtained from
Kangaroo valley rock slide as simulated by SURFER 7 140
Figure 4.13 Testing graphite core samples: (a) Instrumented graphite core specimen
before testing; (b) Graphite core specimen after testing showing the plane of
failure
Figure 4.14 Graphite core specimen following triaxial testing
Figure 4.15 Axial stress vs axial strain for 50 mm diameter graphite core specimens 142
Figure 4.16 Mohr-Coulomb strength envelope in terms of shear and normal stresses for
graphite core specimens 143
Figure 4.17 Results of direct shear tests on graphite infill material at a range of normal
stress levels144
Figure 4.18 Bi-linear peak strength envelope of graphite infill obtained from direct
shear tests
Figure 4.19 Peak strength envelope of bentonite infill obtained from direct shear tests
Figure 4.20 Peak strength envelope of clayey sand infill obtained from direct shear
tests
Figure 4.21 Particle size distribution of clayey sand used as infill material 147
Figure 4.22 Development of internal layers within graphite under high normal stress.
Figure 5.1 Shear stress vs. horizontal displacement for Type 2 joints (Haque, 1999). 151
Figure 5.2 Shear response of Type 1 joints with 3 mm thick graphite infill $(t/a=1.2)$ for
first and second cycles of shearing 155
Figure 5.3 Shear response of Type 1 joints with 6 mm thick graphite infill $(t/a=2.4)$ for
first and second cycles of shearing 155
Figure 5.4 Shear response of Type 1 joints with 9 mm thick graphite infill ($t/a=3.6$) for
first and second cycles of shearing 158
Figure 5.5 Shear response of Type 2 joints with 3 mm thick graphite infill ($t/a=0.6$) for
first and second cycles of shearing 158
Figure 5.6 Shear response of Type 2 joints with 6 mm thick graphite infill $(t/a=1.2)$ for
first and second cycles of shearing 159
Figure 5.7 Shear response of Type 2 joints with 9 mm thick graphite infill $(t/a=1.8)$ for

xv

Figure 5.8 Shear strength envelope for Type 1 joints with graphite infill for first and
second cycles of shearing
Figure 5.9 Shear strength envelope for Type 2 joints with graphite infill for first and
second cycles of shearing 162
Figure 6.1 Shear behaviour of Type 1 joint with 1.5 mm graphite infill $(t/a=0.6)$ for
first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c)
Dilation168
Figure 6.2 Shear behaviour of Type 1 joint with 3 mm graphite infill $(t/a=1.2)$ for first
and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation.
Figure 6.3 Shear behaviour of Type 1 joint with 6 mm graphite infill $(t/a=2.4)$ for first
and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation.
Figure 6.4 Shear behaviour of Type 1 joint with 9 mm graphite infill ($t/a=3.6$) for first
and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation.
Figure 6.5 Shear behaviour of Type 2 joint with 1.5 mm graphite infill $(t/a=0.3)$ for
first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c)
Dilation
Figure 6.6 Shear behaviour of Type 2 joint with 3 mm graphite infill $(t/a=0.6)$ for first
and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation.
Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill $(t/a=1.2)$ for first
Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill $(t/a=1.2)$ for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation.
Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 180
 Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. Figure 6.8 Shear behaviour of Type 2 joint with 9 mm graphite infill (t/a=1.8) for first
 Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. Figure 6.8 Shear behaviour of Type 2 joint with 9 mm graphite infill (t/a=1.8) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation.
 Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 180 Figure 6.8 Shear behaviour of Type 2 joint with 9 mm graphite infill (t/a=1.8) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 181
 Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 180 Figure 6.8 Shear behaviour of Type 2 joint with 9 mm graphite infill (t/a=1.8) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 181 Figure 6.9 Shear behaviour of Type 1 joint with 3 mm thick bentonite infill (t/a=0.6):
 Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 180 Figure 6.8 Shear behaviour of Type 2 joint with 9 mm graphite infill (t/a=1.8) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 181 Figure 6.9 Shear behaviour of Type 1 joint with 3 mm thick bentonite infill (t/a=0.6): (a) Shear stress, (b) Normal stress and (c) Dilation.
 Figure 6.7 Shear behaviour of Type 2 joint with 6 mm graphite infill (t/a=1.2) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 180 Figure 6.8 Shear behaviour of Type 2 joint with 9 mm graphite infill (t/a=1.8) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and (c) Dilation. 181 Figure 6.9 Shear behaviour of Type 1 joint with 3 mm thick bentonite infill (t/a=0.6): (a) Shear stress, (b) Normal stress and (c) Dilation. Figure 6.10 Shear behaviour of Type 2 joint with 6 mm thick bentonite infill (t/a=1.2):

Ŀ

Figure 6.11 Shear behaviour of Type 1 joint with 1.5-6 mm clayey sand infill $(t/a=0.3-$
2.4) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and
(c) Dilation
Figure 6.12 Shear behaviour of Type 2 joint with 1.5-9 mm clayey sand infill ($t/a=0.3$ -
1.8) for first and second cycles of shearing: (a) Shear stress, (b) Normal stress and
(c) Dilation
Figure 6.13 Variation of peak shear stress vs. t/a ratio for Type 1 joints with bentonite
infill
Figure 6.14 Variation of peak shear stress vs. t/a ratio for Type 2 joints with bentonite
infill
Figure 6.15 Variation of peak shear stress vs. t/a ratio for Type 1 joints with graphite
infill
Figure 6.16 Variation of peak shear stress vs. t/a ratio for Type 2 joints with graphite
infill
Figure 6.17 Variation of peak shear stress of clayey sand infilled joints with t/a ratio:
(a) Type 1 joint and (b) Type 2 joint
Figure 6.18 Bi-linear strength envelope for Type 1 joint with graphite infill showing
apparent friction angles, strange, Theres, 6, Disertations
Figure 6.19 Peak shear stress vs. mobilised normal stress of Type 1 joints with graphite
infill showing strength envelope and mobilised friction angles
Figure 6.20 Bi-linear strength envelope for Type 1 joint with bentonite infill showing
apparent friction angles
Figure 6.21 Strength envelope for Type 1 joint with clayev sand infill showing apparent
friction angles.
Figure 6.22 Bi-linear strength envelope for Type 2 joint with graphite infill showing
annarent friction angles 199
Figure 6.23 Peak shear stress vs. mobilised normal stress of Type 2 joints with graphite
infill showing strength envelope and mobilised friction angles
Figure 6.24 Strength envelope for Type 2 joint with bentonite infill showing apparent
Figure 0.24 Strength envelope for Type 2 joint with benchme min showing apparent
$\mathbf{Fiction} \mathbf{angles} \mathbf{zoo}$
rigure 0.25 Strength envelope for Type 2 joint with clayey sand infill showing apparent
Triction angles
Figure 7.1 Rock joint with a plane of weakness β with the minor principal stress 208

Figure 7.2 Roughened joint specimens; (a) & (b) joint dip with minor principal stress
60° and 15° respectively; (c) joint specimen with infill
Figure 7.3 Sample holder designed at University of Wollongong for the application of
infill to jointed core specimens: (a) Front elevation and plan view of the apparatus
and (b) an image of the sample holder
Figure 7.4 Preparation of samples for testing; (a) a jointed core specimen fixed to the
sample holder before application of infill and (b) sample after application of infill
wrapped by tape ready for testing
Figure 7.5 Axial stress vs axial strain for a joint with β =30 ⁰ , infill thickness 6mm and
σ_3 = 2, 4 and 6 MPa
Figure 7.6 Axial stress vs axial strain for a joint with β =60 ⁰ , infill thickness 3 mm and
σ_3 = 2, 4 and 6 MPa
Figure 7.7 Axial stress vs axial strain for a joint with $\beta \rightarrow 0^0$, infill thickness 3 mm and
σ_3 = 2, 4 and 6 MPa
Figure 7.8 Axial stress vs axial strain for a joint with $\beta \rightarrow 0^{\circ}$, infill thickness 6 mm and
σ_3 = 2, 4 and 6 MPa
Figure 7.9 Ratio σ_1 / σ_3 vs orientation angle (β) at 3mm and 6mm thick infill
Figure 7.10 Joint shear strength (τ) vs joint orientation angle (β) at 3 mm and 6 mm
infill
Figure 8.1 Shearing modes of joints with infill: (a) interfering condition where
$t/a < (t/a)_{cr}$ having two possible shear planes ab and $a'b'$ depending on σ_{no} . (b) non-
interfering condition, i.e., $t/a > (t/a)_{cr}$, where the potential shear plane through the
fill is horizontal
Figure 8.2 Shear strength model for infilled joints showing the role of ϕ_b and ϕ_{fill} 227
Figure 8.3 Variation of normalised shear stress against t/a ratio and the critical t/a ratio
for graphite infilled joints: (a) joint Type 1 and (b) joint Type 2
Figure 8.4 Variation of normalised shear stress against t/a ratio and the critical t/a ratio
for bentonite infilled joints: (a) joint Type 1 and (b) joint Type 2 233
Figure 8.5 Variation of normalised shear stress against t/a ratio and the critical t/a for
clayey sand infill joints of Type 1 and 2
Figure 8.6 Compacted and polished surface of graphite infill in some parts of the
specimen after shearing

-

.

Figure 8.7 Shear strength model depicting the contribution of A and B components for
graphite infilled joints: (a) Type 1 and (b) Type 2 joints
Figure 8.8 Shear strength model depicting the contribution of A and B components for
bentonite infilled joints: (a) Type 1 and (b) Type 2 joints
Figure 8.9 Summary of joint types 1 and 2 based on the proposed model for clayey
sand238
Figure 8.10 Variation of σ_n / σ_{no} with increasing t/a ratio for grahite infilled joints: (a)
Type 1 and (b) Type 2
Figure 8.11 Variation of $\sigma n / \sigma no$ with increasing t/a ratio for bentonite infilled joints:
(a) Type 1 and (b) Type 2
Figure 8.12 Variation of σ_n / σ_{no} with increasing t/a ratio for clayey sand infilled joints
of Type 1 and Type 2243
Figure 8.13 Summary of joint types 1 and 2 based on the proposed shear strength
model: (a) graphite infill, (b) bentonite infill and (c) clayey sand
Figure 8.14 Flowchart showing the conceptual approach of proposed shear strength
model for infilled joints
Figure 9.1 New shear strength model for infilled joints showing the role of ϕ_b and φ_{fill}
(modified from Figure 8.2 for convenience)

LIST OF TABLES

Table 3.1 Parameters controlling shear strength of infilled joints (de Toledo & de		
Freitas, 1993)		
Table 3.2 Boundary conditions and its influence on the shear strength of infilled joints.		
Joints tested were flat saw cut and polished surfaces of Limestone and Basalt		
(Kanji, 1974)		
Table 4.1 Details of test series and conditions for unfilled joint (Haque, 1999)122		
Table 4.2 Details of test series and conditions for unfilled joints under a shear rate of		
0.5 mm/min122		
Table 4.3 Test condition and test series of graphite infilled joints under CNS and CNL.132		
Table 4.4 Test condition and test series of bentonite infilled joints under CNS (Haque,		
1999)		
Table 4.5 Test condition and test series of bentonite infilled joints under CNS		
conducted to asses shear behaviour of forward and reverse cycles		
Table 4.6 Test condition and test series of clayey sand infilled joints under CNS.		
Table 4.7 Fourier coefficients for 'n' number of harmonic cycles obtained for a Fourier		
simulation of natural graphite joint		
Table 6.1 Critical t/a ratio for different infill types		
Table 7.1 Joint Parameters and Test Conditions 211		
Table 8.1 Empirical constants of the proposed shear strength model		

NOTATION

a	asperity height
a h	integration intervals
$a_{a}a_{b}h_{a}$	Fourier coefficients
A_i	ioint surface area
h	shear displacement
i	initial asperity angle
i(h)	angle of the tangent drawn at any distance on the dilation curve
<i>k</i>	constant normal stiffness
n	harmonic numbers
NSD	normalised strength drop
t	infill thickness
Т	period of Fourier series for $\Delta \sigma_n$
$(t/a)_{crit}$	critical infill thickness to asperity height
p, q	hyperbolic constants
σ _{no}	initial normal stress
δ_{n}	horizontal displacement corresponding to peak shear stress
S.h	dilation at any shear displacement, h
σ_{nh}	normal stress at any shear displacement, h
$\Delta \tau_{\rm p}$	change in peak shear stress
$\Delta \sigma_n$	change in normal stress
(In) infilled	peak shear stress of infilled joint
(Tr) clean	peak shear stress of clean joint
Th.	shear stress at any shear displacement, h
ф.	basic friction angle of joint
Ogu .	peak friction angle of infill
A and B	components of the new proposed shear strength model
ĸ	$(t/a)/(t/a)_{cr}$ ratio
α, β	empirical coefficients defining the shape of functions A and B , respectively.