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Abstract 

A building is a complex system with multiple interacting physical processes taking place 

simultaneously. Various aspects influence the performance of buildings and the building 

envelope is one of the major contributors in this regard. Building orientation, Aspect ratio, 

Window to wall ratio, Location and types of fenestration, Envelope materials and their 

characteristics etc. can have a major impact on the energy consumption and life cycle cost of 

buildings. However, the best combination of the said envelope elements for optimizing the 

performance of buildings is difficult to determine and is not known. Whole building 

simulation tools are often used in making building performance predictions. Building energy 

simulation is generally used on a scenario-by-scenario basis, with the designer generating a 

solution and subsequently having the computer evaluating it. This is however, a slow and a 

tedious process and only a few cases are evaluated in a large range of scenarios, possibly 

leading to sub-optimal envelope designs. By coupling a generic optimization tool with a whole 

building energy simulation tool, it is possible to optimize the performance of buildings by 

determining the best combination of envelope elements, subject to predefined constraints. First 

part of the thesis explains optimization of energy performance and life cycle cost of buildings 

through this methodology. Secondly, drawbacks of whole building simulation tools that lead 

to issues in energy performance predictions of buildings are discussed in detail. The issues 

have been addressed by coupling the whole building simulation tool with a computational 

fluid dynamics tool on a complementary data exchange platform. It is observed that with this 

approach more reliable building performance predictions can be made. Final section of the 

thesis discusses on optimizing indoor environmental quality using computational fluid 

dynamics with respect to identified mechanical ventilation configurations. Model predictions 

have been validated using a detailed experimental design where computational model 

predictions closely agree with the actual measurements. 
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