LB/DONS/75/2015

CH OY4

ENCAPSULATION OF NANOPARTICLES IN LAYERED MATERIALS TO BE USED IN AGRICULTURAL APPLICATIONS

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Adassooriyage Nadeesh Madusanka

(108025U)

Thesis submitted in partial fulfillment of requirement for the degree of Master of Science

66 (043)

Department of Chemical and process Engineering

University of Moratuwa

Sri Lanka

109279

July 2011

TH2928

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future (such as articles or books).

UOM Verified Signature

Signature:

Date: 07/07/2011

A. N. Madusanka

The above candidate has carried out research for the masters under my supervision.

Signature of the supervisor: .

Signature of the supervis

UOM Verified Signature

.. Date: 07/07/2011

Df Nilwala Kottegoda

UOM Verified Signature

..... Date: 07/07/2011

Dr Marliya Ismail

ACKNOWLEDGEMENT

It gives me a great delight to acknowledge many who have helped in my efforts towards the successful completion of this research course.

Firstly, I would like to express my sincere thanks to Dr Nilwala Kottegoda, senior scientist at Sri Lanka Institute of Nanotechnology and senior lecturer at Department of Chemistry, University of Sri Jayewardenepura and Dr Marliya Ismail, senior lecturer, Department of Chemical Process and Engineering, University of Moratuwa for the encouragement and invaluable advice given throughout my research course.

I am also grateful to prof. Ajith de Alwis, science team leader at Sri Lanka Institute of Nanotechnology and professor at Department of Chemical and Process Engineering, University of Moratuwa for the continuous guidance and encouragement.

A special word of thanks goes to Sri Lanka Institute of Nanotechnology for the financial support for this research work and to all senior scientists, scientists and management team for their support throughout the research.

My heartfelt thanks goes out to Imalka, Deshani, Chaminda, Fathima, Samangi, Neranga and Mrs H.L. Perera for giving me a helpful hand in completing this research project. I am particularly thankful to Dasun and Sandaruwan for their invaluable support in proof reading of my thesis. At last but not least; I would like to remember my parents, brothers and my wife Gihani with loving gratitude.

ABSTRACT

Layered materials, which consist of stacks of layers, where the thickness of those layers occur, in the nanometer scale with interlayer charge balancing ions are interesting due to their potential applications in catalysis, biomedical applications, environmental remediation and controlled/ slow release applications in agriculture. Montmorillonite (MMT) is one of the smectite type clay composed of tetrahedral sheets of silica sandwiched between octahedral sheets aluminaand it can be used as a stable host matrix for storage, and delivery of encapsulated plant nutrients, which are released in a given medium for extended periods in a sustainable manner. In an attempt to address the unsolved problems in fertilizer use in agriculture which is the loss of nitrogen due to leaching and evaporations as gaseous matter, a controlled release fertilizer nanocomposite formulation based on montmorillonite clay was developed. The resulting nanocomposite was prepared by the encapsulation of urea modified hydroxylapatite nanopartiles into montmorollinite clay. The resulting nanocomposites were characterized using a number of solid state characterization techniques such as Powder X-ray Diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Thermogravimetric Analysis. The release behavior of the nutrients in the fertilizer compositions were studied in acidic soils (pH- 4.2 and pH -5.2) and in neutral sandy soil for over 60 days. The release bahaviour was compared with a commercial NPK fertilizer composition, which is currently used in tea industry. A sustained release of nitrogen was observed for the two acidic soils with the new fertilizer composition.

Table of Contents

Declaration of the candidate & supervisors	i
Acknowledgment	
Abstract	iii
Table of Content List of Figures	
List of Tables	x
List of Abbreviation	xi
1.Introduction	1
1.1 Background	1
1.2 Anionic Clays	1
1.3 Other Layered Materials	2
1.4 Cationic Clays	3
1.4.1. Structure of cationic*clays	3
1.4.2. Layer charge	4
1.4.3. Active bond sites of clay minerals	5
1.4.4. Classification of cationic clays	5
1.4.5. Montmorillonite group	7
1.4.6. Applications	
1.5 Montmorillonite Clay as the Matrix for the Controlled/Slow Release of Plant Nutrient Nanoparticles	9
1.5.1. Montmorillonite clay in controlled release formulations	9
1.5.2. Hydroxyapatite nanoparticles and its surface modification	.12
1.6 Mathematical Modeling of Plant Nutrient Release from Plant Nutrient Nanoparticles Encapsulated Montmorillonite Nanocomposite	.14
1.7 Objectives	.14
2 Experimental	
2.1 Characterization Techniques	.16

2.1.1 Po	wder X-ray diffraction (PXRD)	16
2.1.2 Fo	urier transform infra red spectroscopy (FTIR)	
2.1.3 Th	ermo gravimetric analysis	19
2.1.4 Sca	anning electron microscopy (SEM)	19
2.1.5 At	omic force microscopy (AFM)	21
2.1.6 Ele	emental analysis	22
2.1.7 Vis	scosity measurements	23
	itation speed measurements	
2.2 Metho	odologies	23
2.2.1 Pre	eparation of hydroxyapatite nanoparticles	23
2.2.2 Su	rface modification of HA nanoparticles using urea	23
2.2.3 Syr	nthesis of montmorillonite-plant macronutrient nanocomposites	24
	ncapsulation of urea modified HA nanoparticles with montmorillonit	
	ncapsulation of HA nanoparticles with montmorillonite clay	
	tercalation of urea into clay gallery of montmorillonite clay	
(d) In	tercalation of K+ ions into clay gallery of montmorillonite clay	24
	velling of behavior of urea surface modified nano HA- MMT	
	osite	25
	acronutrient release behavior of urea surface modified HA- MMT osite	25
	d Discussion	
	esis and Characterization of Hydroxyapatite Nanoparticles	
3.1.1	The second se	
3.1.2	PXRD characterization	
	Elemental Analysis	
3.1.3	Scanning electron microscopy	
3.1.4	Atomic force microscopy	
3.1.5	FTIR characterization	
3.1.6	Thermal analysis	30

	esis and Characterization of Urea Surface Modified atiteNanoparticles32	
3.2.1	PXRD characterization	32
3.2.2	Elemental analysis	32
3.2.3	Scanning electron microscopy	33
3.2.4	FTIR characterization	34
3.2.4	Thermal analysis	36
-	sulation of Hydroxyapatite Nanoparticles, Urea Surface Modified atite Nanoparticles, Urea and K^+ ions with Montmorillonite Clay	37
3.3.1	PXRD characterization	37
3.3.2	FTIR characterization	38
3.3.3	Scanning electrone microscopy	39
3.3.4	Thermal analysis	40
	O Study of the Encapsulation of Plant Nutrients with Montmorillonite C	•
3.4.1 Montmor	Encapsulation of urea surface modified HA nanoparticles with rillonite Clay	42
3.4.2	Encapsulation of HA nanoparticles with montmorillonite clay	43
3.4.3	Intercalation of urea into montmorillonite clay	44
3.4.4	Intercalation K ⁺ ions into montmorillonite clay	46
3.5 Water	Swelling Properties	47
3.5.1 nanopart	Water swelling behavior of urea surface modified hydroxyapatite icles encapsulated montmorillonite clay nanocomposite	47
3.5.2 hydroxya	PXRD analysis of swelling behavior of urea surface modified apatite nanoparticles encapsulated montmorillonite clay nanocomposite	48
3.5.3 hydroxya	FTIR analysis of swelling behaviour of urea surface modified apatite nanoparticles intercalated montmorillonite clay nanocomposite.	49
3.6 Releas	se Behavior of Plant Nutrients	50
3.6.1	Nitrogen release behaviour	50
3.6.2	Nitrogen release mechanism	53
3.6.3	Phosphorus and potassium release behaviour	

3.7 Fact	tors relevant in scaling up for the prepared nanocom	posite as a
controlled	d/slow release fertilizer	
3.8.1	Geometrical scaling up	
3.8.2	Kinematic scaling up	57
4 Conclusi	ion and Suggestions	60
References		

Appendix A

List of Figures

Figure 1.1 Classification of layered materials Background
Figure 1.2 Structure of layered double hydroxides
Figure 1.3 Diagramatic representation of singal tetrahedral unit(A) and the sheet of tetrahedral units(B)
Figure 1.4 Diagramatic representation of singal octahedral unit(A) and the sheet of octahedral units(B)
Figure 1.5 Diagramatic representation of 1:1 layer structure (A) and 2:1 layer structure (B)
Figure 1.6 Diagramatic representation montmorillonite clay
Figure 1.7 Structure of Hydroxyapatite
Figure 2.1 Reflection of X-rays from two planes of atoms in a solid
Figure 2.2 A typical PXRD pattern of montmorillonite clay
Figure 2.3 Schematic diagram of an SEM set-up
Figure 2.4 An AFM probe scan over a sample
Figure 3.1 XRD pattern of (a) synthesized HA nanoparticles (b) Commercial HA nanoparticles
Figure 3.2 SEM image of synthesized HA nanoparticles
Figure 3.3 (a) Topographical image of (b) Phase image of synthesized HA nanoparticles
Figure 3.4 FTIR spectrum of synthesized HA nanoparticles
Figure 3.5 TGA (a) and DTA (b) profiles for synthesized HA nanoparticles
Figure 3.6 XRD pattern of the urea adsorbed HA nanoparticles
Figure 3.7 SEM image of urea adsorbed HA
Figure 3.8 FTIR spectrums for HA nanoparticles and urea adsorbed HA nanoparticles
Figure 3.9 Schematic representation of a possible structure of the urea modified HA nanoparticles
Figure 3.10 TGA (a) and DTA (b) profiles for surface modified synthesized HA nanoparticles using urea

Figure 3.11 PXRD patterns of (a) Na-MMT (b) HA nanoparticles encapsulated with MMT (c) Urea intercalated MMT (d) Urea modified HA nanoparticles encapsulated with MMT (e) K ⁺ intercalated into MMT
Figure 3.12 FTIR spectrum (a) Na MMT (b) Urea modified HA nanoparticles encapsulated (c) Urea intercalated
(d) K ⁺ intercalated into MMT
Figure 3.13 SEM images of (a) Na-MMT (b) Urea modified HA nanoparticles encapsulated MMT
Figure 3.14 TGA (a) and DTA (b) profiles for Na-MMT
Figure 3.15 TGA (a) and DTA (b) profiles for urea modified HA nanopartcles encapsulated MMT
Figure 3.16 PXRD patterns of urea suface modified HA nanoparticlaes encapsulated MMT with (a) 10:1 (b)10:2(c) 10:3 (d) 10:4 (e) 10:5 (f) 10:6 (g) 10:7 (h) 10:8 (i) 10:9 (j) 10:10 weight ratios
Figure 3.17 PXRD patterns of HA nanoparticlaes encapsulated MMT with (a) 10:1 (b)10:2(c) 10:3 (d) 10:4 (e) 10:5 (f) 10:6 (g) 10:7 (h) 10:8 (i) 10:9 (j) 10:10 weight ratios
Figure 3.18 PXRD patterns of urea intercalated MMT with (a) 10:1 (b)10:2(c) 10:3 (d) 10:4 (e) 10:5 (f) 10:6 (g) 10:7 (h) 10:8 (i) 10:9 (j) 10:10 weight ratios
Figure 3.19 PXRD patterns of K ⁺ ions intercalated MMT with (a) 10:1 (b)10:2(c) 10:3 (d) 10:4 (e) 10:5 (f) 10:6 (g) 10:7 (h) 10:8 (i) 10:9 (j) 10:10 weight ratios
Figure 3.20 Water swelling behavior of urea surface modified HA nanoparticles encapsulated MMT
Figure 3.21 PXRD patterns of water swelled urea surface modified HA nanoparticles encapsulated MMT after (a) 2min (b) 4 min (c) 6 min (d) 8 min (e)10 min (f) 15 min (g) 20 min (h) 25 min (i) 30 min
Figure 3.22 FTIR spectrums of water swelled urea surface modified HA nanoparticles encapsulated MMT after (a) 2min (b) 4 min (c) 6 min (d) 8 min (e)10 min (f) 15 min (g) 20 min (h) 25 min (i) 30 min (j) 35 min (k) 40 min (l) 45 min (m) 50 min (n) 55 min (o) 60 min
Figure 3.23 N release behaviour for sand pH.7 (a) urea adsorbed HA nanoparticles encapsulated MMT (b) commercial fertilizer containing NPK macronutrients
Figure 2.24 N release behaviour for soil all 5.2 (a) unse adapted IIA comparations

List of Tables

Table 1.1 Classification of cationic crystalline clays	5
Table 3.1 FTIR data obtained for urea, HA nanoparticles and urea adsorbed HA nanoparticles	3
Table 3.2 d spacings of the urea surface modified HA nanoparticles encapsulated MMT with different weight ratios	0
Table 3.3 d spacings of HA nanoparticles encapsulated MMT with different weight ratios	1
Table 3.4 d spacings of urea intercalated MMT with different weight ratios	3
Table 3.5 d spacings of K+ ions intercalated MMT with different weight ratios 4	4
Table 3.6 Diffusion exponent 'n', gel characteristic constant k and correlation coefficient r for the release of N at different pH	2
Table 3.7 Physical properties of liquids	3
Table 3.8 Reynolds number and power number calculation	5

ABBREVIATION

AFM	Atomic Force Microscope
ATR	Attenuated Total Reflectance
CEC	Cations Exchange Capacity
EDX	Energy Dispersive X-ray Analysis
FTIR	Fourier Transform Infra Red Spectroscopy
НА	Hyroxyapatite
LDH	Layered Double Hydroxide
MMT	Montmorillonite
Modi. NanoHA	Modified Nanohydroxyapatite
Np	Power Number
NPK	Nitrogen, Phosphorus, Potasium
0	Octahedral
PXRD	Powder X-ray Diffraction
Re	Renolds Number
SEM	Scanning Electron Microscopy
Т	Tetrahedral
TGA	Thermo Gravimetric Analysis