LB/DON/ 15/05

PREPARATION AND CHARACTERIZATION OF LOW DENSITY POLYETHYLENE-BASED COMPOSITE MATERIALS CONTAINING RICE-STRAW AS A FILLER

by

S. S. Dodampegamage

66 04 66.022.32 (669.018.672)

This Thesis was submitted to Department of Chemical and Process Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science in Polymer Technology

> Department of Chemical and Process Engineering University of Moratuwa

> > Sri Lanka,

2004

University of Moratuw

82548 Thesis

82543

DECLARATION

I hereby declare that this submission is a result of a work carried out by me and to the best of my knowledge, it contain no material previously written or published by another person nor material which has been accepted for the award of any degree or acceptable qualification of a university, or other Institute of higher learning, except where the due reference to the material is made.

UOM Verified Signature

(S. S. Dodampegamage) December 21 2004

To the best of my knowledge, the above particulars are correct.

UOM Verified Signature

(Dr. B A J K Premachandra)

This thesis consists of four chapters. Chapter one contains an introductory part including scope and the objectives of the research. Since the present research is divided in to three major parts, chapter two, three and four are arranged accordingly. Each chapter includes an introduction discussing the relevant literature, the experimental work, results and discussions and finally, the conclusions drawn. The contents of this thesis can be best summarized as follows.

<u>Preparation and characterization of composite materials containing LDPE and</u> <u>untreated rice-straw powder</u>

A series of Low Density Polyethylene (LDPE)/straw composites containing different amount of straw (as wt %) were prepared using rice-straw powder having • three different particle sizes (50 µm, 90 µm and 250 µm). Mixing was done by meltmixing technique, where LDPE and straw powder were mixed in a Brabender plasti-corder, which was operating at 170°C temperature and 60 rpm. The composites were studied by using Fourier Transform Infra-red spectroscopy (FTIR). The failure modes, tensile properties, water absorption, biodegradation and weatherability were investigated as a function of the weight percentage as well as particle size of straw filler in the composite. It was found that the incorporation of straw into LDPE matrix has reduced the ductility of the composite. The mechanical properties of the composites, especially the tensile strength and elongation at break were significantly low compared to those of neat LDPE. A significant improvement in modulus was shown by the composites. It was found that the tensile properties were depended on the amount and particle size of the straw in a composite.

Biodegradability of cellulose component in the rice-straw and LDPE-straw composites, after exposure to cellulase enzyme solution, was assessed by weight loss measurements. It was found that rice-straw sample is readily biodegradable but degradability of the composite samples was not significantly affected by the cellulase enzyme.

ii

The extent of degradation after the weathering process was assessed by the loss of tensile strength measurements of the composites after incubation of the samples in a weather meter, which was at 70° C and continuous UV and moisture cycles for five days. It was found that the degradability of the composite samples depends on the amount of the rice-straw in a sample.

<u>Preparation and characterization of maleic anhydride grafted LDPE and</u> <u>composite materials with maleic anhydride grafted LDPE and untreated rice</u> <u>straw</u>

A series of maleic anhydride grafted LDPE samples with different wt%'s of maleic anhydride and dicumyl peroxide were prepared and studied. The maleic grafted LDPE samples were prepared by melt free radical grafting method, where the grafting reaction of LDPE was carried out with the free radical initiator (Dicumyl peroxide) in a Bra-bender PL2000 plasti-corder operating at 170 ° C. Fourier transform infrared (FTIR) spectroscopy confirmed the grafting of maleic anhydride on LDPE backbone. Melt viscosity measurements and tensile measurements of grafted LDPE samples confirmed the unwanted cross- link formation during the grafting reaction.

A series of composites with maleic grafted LDPE and different composition of untreated rice-straw were prepared using simultaneous grafting and mixing technique. In this regard LDPE, maleic anhydride, dicumyl peroxide and rice-straw were fed in to the hot plasti-corder operating at 170° C, where melt free radical grafting reaction as well as melt mixing of straw filler with LDPE were occurred. Fourier transform infrared (FTIR) spectroscopy confirmed the formation of new interface interaction (ester bond) between the rice-straw and maleic grafted LDPE. The failure modes, mechanical properties, rheological properties, water absorption, biodegradation and weatherability were investigated with respect to the weight percentage of the straw as well as particle size of the straw in the composite sample. Improved mechanical properties, especially tensile strength and modulus were also evidenced the compatibility and interface interaction in the maleated LDPE-straw composites. It was found that the tensile and modulus values of maleated LDPE-straw composites having smaller particle size and higher filling level of rice-straw

to be higher due to the formation of more interactions at the interface. According to the melt viscosity and shear rate analysis, higher melt viscosity was shown by the maleated LDPE-straw composites due to the undesirable cross-links formed in the maleation process. Compared to the LDPE-straw composites, the corresponding maleated LDPE-straw composites have shown higher water absorption. As in the case of LDPE-straw composite these composites also have not shown any weight loss after the digestion with cellulase enzyme but have shown a considerable degradability after the weathering process.

<u>Preparation and characterization of composite materials with maleated LDPE</u> <u>and treated rice-straw</u>

Using simultaneous grafting and mixing technique, another series of composites were prepared with maleated LDPE and treated rice-straw powder. In order to remove lignin and other waxy substances, rice-straw was subjected to steam explosion and hot alkyl treatments. By the chemical analysis results it was found that most of the lignin and other waxy substances have removed from the straw surface. Fourier transform infrared (FTIR) spectroscopic results also confirmed the removal of lignin and thereby increase of wt% of cellulose in rice-straw. Further FTIR analysis of the composite sample more clearly showed the formation of interface ester linkages between the treated straw and maleated LDPE.

Similar to the chapter three, different property analysis such as mechanical, water absorption, enzymatic digestion and weatherability were carried out with respect to the weight percentage and particle size of the straw filler. Compared to the LDPEstraw composites and maleated LDPE-untreated straw composites, significant improvement in the mechanical properties were resulted in the maleated LDPEtreated straw composites. It was also evidenced that the removal of lignin by the treatment processes has enhanced the interface interaction of maleated LDPE-straw system. Further it was found that filler properties such as the amount of straw filler in the composites. Providing more surface area and more OH groups to form ester bonds, composites having smaller size and higher amount of straw have shown higher tensile and modulus values. Also in this series the percentage elongation properties were significantly reduced with the introduction of the treated straw in to

iv

LDPE but the reduction is significantly lower than the composites with maleated LDPE-untreated straw. The extent of the biodegradability of the composites with cellulase enzyme was also analyzed by the weight loss measurements. As in the above two composite series maleated-treated composites also have not shown significant digestion with the cellulase enzyme.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

v

9

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor, to whom I am deeply indebted, Dr Jagath K Premachandra, Department of Chemical and Process Engineering, University of Moratuwa. His attentiveness and interest in this study, advice and criticism have motivated me immensely and guided me on the pathway to the successful completion of this work.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

I would like to acknowledge Dr. Gamini Senevirathna, Deputy Director Research (Technology), Rubber Research Institute, Mrs. Dilhara Edirisinghe, for their kind assistance in granting me to carryout practical in their institute premises. I render my heartiest gratitude and special thank to Mr. H. N. K. K. Chandralal, Mr. L. G. P. Lelwela and Mrs. Manel Mahanama, for their immense co operation and assistance towards my research and further, acknowledge all staff members and technical officers of Rubber Research Institute, Ratmalana, for their kind co operation.

My deep gratitude goes to Dr. N. Munasinghe, Head of the Materials Engineering Department, University of Moratuwa, for his kind assistance in granting me to use laboratory equipments in his department. I further, extend my gratitude and special thank to the academic staff member Mr. V. S. C. Weragoda and the senior staff technical officer, Mr. Sarath Chandrapala for their immense co operation and assistance towards my research work.

vi

I further, acknowledge Dr. Sudantha Liyanage, Head of the Polymer Division, Department of Chemistry, University of Sri Jayawardenapura for granting me permission to use laboratory facilities in the department. I acknowledge with special thanks to the Technical officer Mr. Sagara Dias, for his immense assistance given to me.

I further extend my deep gratitude to Dr. (Mrs.) Padma Amarasinghe, Department of Chemical and Process Engineering, University of Moratuwa, all academic staff and the laboratory staff of the department for their support in numerous ways, for which I will always be thankful. I will be indebted to Asian Development Bank for granting financial assistance for the course of study.

Finally, I acknowledge with heartiest gratitude to my husband and my best friends Gayani and Manju who supported me in numerous ways, which motivated me to complete this work successfully.

TABLE OF CONTENTS

.

Declaration	i
Abstract	ii
Acknowledgements	iv
Table of contents	viii
List of Tables	xiv
List of Figures	xv
List of abbreviations	xx
CHAPTER ONE – BACKGROUND MOTIVATION	1
1.1 Background motivation	2
. 1.2 Objectives	5
CHAPTER TWO - PREPARATION AND	
CHARACTERIZATION OF LDPE -STRAW COMPOSITES	6
2.1 INTRODUCTION	7
2.1.1 Polymer composites	7
2.1.2 Lignocellulosic fillers	9
2.1.3 Chemical composition of lignocellulosic materials	10
2.1.4 Rice-straw as a filler	12
2.1.5 Degradation of rice-straw	13
2.1.6 Enzymatic degradation of cellulose	14
2.1.7 Advantages and disadvantages of straw as a filler	16

2.2THEORIES ON THE EFFECT OF FILLERS ON THE	
FAILURE MODES AND MECHANICAL	
PROPERTIES OF A COMPOSITE	19
2.2.1 The effect of fillers on the failure modes of a	
polymeric composite	19
2.2.2 The effect of fillers on extension	20
2.2.3 The effect of fillers in tensile strength of a polymeric	
composite	20
2.2.4 The effect of fillers in modulus of a composite	22
2.3 EXPERIMENTAL	24
2.3.1 Materials	24
2.3.2 Preparation of the straw powder	24
2.3.3 Preparation of composites with LDPE and straw	
powder	24
2.3.4 FTIR analysis of LDPE and PES composites	25
2.3.5 Determination of the tensile properties of the PES	
composites Pectronic Theses & Dissertations	25
2.3.6 Determination of the water absorptivity and	
biodegradability of PES composites	25
2.3.7 Determination of the weatherability of PES composites	26
2.4 RESULTS AND DISCUSSION	27
2.4.1 Analysis of FTIR spectra of PES composites	27
2.4.2 Tensile properties of PES composites	30
2.4.2(a) Failure modes of PES composites	30
2.4.2(b) Tensile properties of PES composites	38
2.4.3 Water absorption and biodegradadility of PES	
composites	44
2.4.4 Determination of the weatherability of PES composites	48

2.5 CONCLUSIONS

50`

ix

CHARACTERIZATION OF MALEIC ANHYDRIDE GRAFTED LDPE AND MALEATED LDPE-STRAW	
COMPOSITES	
3.1 INTRODUCTION	
3.2 EXPERIMENTAL	
3.2.1 PREPARATION AND CHARACTERIZATION OF	
MALEIC ANHYDRIDE GRAFTED LDPE	
3.2.1.1 Materials	
3.2.1.2 Recrystalization of maleic anhydride	
3.2.1.3 Preparation of maleic anhydride grafted LDPE	
(maleated LDPE)	
3.2.1.4 Spectroscopic analysis of maleated LDPE	
3.2.1.5 Analysis of rheological properties of LDPE and	
maleated LDPE change with maleation	
(Rheological analysis of LDPE and different	
maleated LDPE samples)	
3.2.1.6 Determination of the tensile properties of different	
maleated LDPE samples	
3.2.2 PREPARATION AND CHARACTERIZATION OF	
COMPOSITE MATERIALS WITH MALEIC	
ANHYDRIDE GRAFTED LDPE AND RICE	
STRAW	
3.2.2.1 Materials	
3.2.2.2 Preparation of composite samples with maleic	
anhydride grafted LDPE and rice-staw	
3.2.2.3 Determination of the tensile properties of MPES	
composite samples	

х

3.2.2.5 Analysis of rheological properties of MPES	
composites	61
3.2.2.6 Determination of the water absorptivity and	
biodegradability of MPES composites	61
3.2.2.7 Determination of weatherability of MPES	
composites	61
3.3 RESULTS AND DISCUSSION	62
3.3.1 PREPARATION AND CHARACTERIZATION	
OF MALEIC ANHYDRIDE GRAFTED LDPE	62
3.3.1.1 Spectroscopic analysis of maleic anhydride grafted	
LDPE samples	62
3.3.1.2 Rheological analysis of LDPE and different	
maleated LDPE samples	62
3.3.1.3 Determination of the mechanical properties of the	
maleated LDPE samples	64
3.3.2 PREPARATION AND CHARACTERIZATION	
OF COMPOSITE MATERIALS WITH	
MALEIC ANHYDRIDE GRAFTED LDPE AND	
RICE STRAW	66
3.3.2.1 FTIR analysis of MPES composite and LDPE	
sample	66
3.3.2.2 Failure modes of MPES composites	69
3.3.2.3 Determination of Tensile properties of MPES	
composites	76
3.3.2.4 Analysis of rheological properties of MPES	
composites	82
3.3.2.5 Determination of the water absorptivity and	
biodegradability of MPES composites	82
3.3.2.6 Determination of weatherability of MPETS	
composite samples	84
3.4 CONCLUSIONS	87

•

Ê

xi

CHAPTER FOUR - PREPARATION AND	
CHARACTERIZATION OF COMPOSITE MATERIALS	
WITH MALEIC ANHYDRIDE GRAFTED LDPE AND	
TREATED RICE STRAW	88
4.1 INTRODUCTION	89
4.2 EXPERIMENTAL	92
4.2.1 Materials	92
4.2.2 Modification of rice-straw by mercerization and	
steam explosion methods	92
4.2.3 FTIR spectral analysis of treated straw powder	
and untreated straw powder.	93
4.2.4 Chemical analysis of components of straw	
powder samples before and after treatments	93
4.2.5 Preparation of maleic anhydride grafted LDPE- treated rice-straw composites	93
4.2.6 FTIR spectral analysis of MPETS composites and	
MPES composites	94
4.2.7 Determination of tensile properties of the MPEST	
composites	94
4.2.8 Determination of the water absorptivity and	
biodegradability of MPETS Composites	94
4.2.9 Determination of weatherability of MPETS	
composites	94

.

xii

4.3 RESULTS AND DISCUSSION

4.3.1 FTIR spectral analysis of untreated straw powder	95
and treated straw powder	
4.3.2 Chemical analysis of the components of straw	95
powder samples before and after the treatments	
4.3.3 FTIR spectral analysis of MPETS composites and	96
MPES composite samples	
4.3.4 Analysis of failure modes of MPETS composites	98
4.3.5 Determination of tensile properties	98
4.3.6 Water absorption and biodegradability of MPETS	98
composites	
4.3.7 Determination of weatherability of MPETS	104
composites	111
4.4 CONCLUSIONS	113

CHAPTER FIVE

5.1

5.2

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

FUTURE WORK	115
LIST OF REFERENCES	116

114

LIST OF TABLES

.

	Page No
Table 2.1 Different types of lignocellulosic fillers used in the	9
polymeric composites	
Table 2.2 Infrared peak assignments for LDPE, straw powder and	
PES composite	28
Table 2.3 Tensile properties of LDPE and PES composites	39
Table 2.4 Variation in tensile properties of LDPE and PES	
composites after weathering process	48
Table 3.1 Tensile properties of different maleated LDPE samples.	66
Table 3.2 Infrared vibrations and assignment for PES composite,	
maleated LDPE and MPES composite	67
Table 3.3 Tensile properties of maleic grafted LDPE and MPES	
composites Table 3.4 Variation in tensile properties of MPES composites after	76
weathering process	85
Table 4.1 Infrared vibrations and assignment for straw powder	95
Table 4.2 Chemical analysis of components in rice-straw	96
Table 4.3 Tensile properties of maleic grafted LDPE and MPETS	
composites	103
Table 4.4 Variation in tensile properties of MPETS composites	
after weathering	112

xiv

LIST OF FIGURES

•

	Page No.
Figure 1.0 Schematic representation of cellulose	11
Figure 1.1 Schematic representation of hemicellulose	11
Figure 1.2 Schematic representation of three basic building blocks of lignin	12
Figure 2.0 FTIR spectra of a) Rice Straw b) LDPE c) PES	
composites	29
Figure 2.1 (a) Stress-strain curve for LDPE	31
• Figure 2.1 (b) Stress-strain curves for (�) PES-50-5, (@) PES-	
50-10 and PES-50-15 composites	32
Figure 2.1 (c) Stress-strain curves for (♦) PES-90-5, (●) PES-	
90-10 and (\blacktriangle) PES-90-15 composites	33
Figure 2.1 (d) Stress-strain curves for (�) PES-250-5, (@)	
PES-250-10 and (\blacktriangle) PES-250-15 composites	34
Figure 2.2 (a) Stress-strain curves of different PES composites	
having 5%wt of straw. (♦) PES-50-5, (●) PES-	
90-5 and (\blacktriangle) PES-250-5 composites	35
Figure 2.2 (b) Stress-strain curves of different PES composites	
having 10 %wt of straw. (�) PES-50-10, (•)	
PES-90-10and (A) PES-250-10 composites	36

xv

Figure 2.2 (c) Stress-strain curves of different PES composites having 15 %wt of straw. (♦) PES-50-15, (●) PES- 90-15and (▲) PES-250-15 composites	
	37
Figure 2.3 (a) Variation in tensile strength vs straw content for (\blacklozenge)	
PES-50, (\textcircled{O}) PES-90 and (\blacktriangle) PES-250 composites	38
Figure 2.3 (b) Variation in % elongation vs straw content for (\clubsuit)	
PES-50, (\bullet) PES-90 and (\blacktriangle) PES-250 composites	39
Figure 2.3 (c) Variation in Young's modulus vs straw content for	
(♦) PES-50, (●) PES-90 and (▲) PES-250	
composites	40
Figure 2.4 Percentage weight change of (♦) PES-50-5, (■) PES-	
. 50-15, (*) PES-90-15 and (1) PES-250-15 composites	
during immersion in watery of Morstuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk	46
Figure 3.0 Schematic representation of Maleic anhydride	53
Figure 3.1 Decomposition reaction of DCP	54
Figure 3.2 Formation of LDPE macro radical	54
Figure 3.3 Grafting of maleic anhydride on LDPE backbone	55
Figure 3.4 Transfering step of macro radical in to LDPE backbone	55
Figure 3.5 Formation of covalent interaction between maleated LDPE and OH of cellulose	57
Figure 3.6 FTIR spectra of Maleic anhydride grafted LDPE and virgin LDPE	63

xvi

Figure 3.7 Melt viscosity and shear rate behavior of (
(\bullet) LDPE + 0.05% DCP + 5% MA, (\blacktriangle) LDPE+ 0.25%	
DCP + 5% MA, ($_$) LDPE + 0.4% DCP+5% MA and	
(\blacklozenge) LDPE + 0.4% DCP samples	6
Figure 3.8 FTIR spectra of (a) Maleic anhydride grafted LDPE, (b)	
PES composite and (c) MPES composite	6
Figure 3.9(a) Stress-strain curves for (♦) MPES 50-5, (●) MPES	
50-10 and (\blacktriangle) MPES 50-15 composites	70
Figure 3.9(b) Stress-strain curves for (♦) MPES 90-5, (●) MPES	
90-10 and (▲) MPES 90-15 composites	7
Figure 3.9(c) Stress-strain curves for (�) MPES 250-5, (•) MPES	
250-10 and (▲) MPES 250-15 composites	7:
Figure 3.10(a) Stress-strain curves of different MPES composites	
having 5%wt of straw. (�) MPES-50-5, (�) MPES-	
90-5 and (\blacktriangle) MPES-250-5 composites	7.
Figure 3.10(b) Stress-strain curves of different MPES composites	
having 10 %wt of straw. (\blacklozenge) MPES-50-10, (\spadesuit)	
MPES-90-10and (▲) MPES-250-10 composites	74
Figure 3.10(c) Stress-strain curves of different MPES composites	
having 15 %wt of straw (\blacklozenge) MPES-50-15, (\blacklozenge)	
MPES-90-15and (▲) MPES-250-15 composites	75
Figure 3.11(a) Variation in tensile strength vs straw content for (�)	
MPES-50, ($ullet$) MPES-90 and ($llet$) MPES-250	
composites	79

Figure 3.11(b) Variation in Young's modulus vs straw content for (♦) MPES-50, (●) MPES-90 and (▲) MPES-250		
composites	80	
Figure 3.11(c) Variation in % elongation vs Straw Content for (�)		
MPES-50, (\bullet) MPES-90 and (\blacktriangle) MPES-250		
composites	81	
Fig 3.12 Melt viscosity and shear rate behavior of MPES composite		
(\blacklozenge) MPES 50-15 and (\blacksquare) PES50-15 composite	83	
Fig 3.13 Percentage weight change of (□) MPES 50-5, (■) MPES		
50-15, (★) MPES 90-15 and (●) MPES 250-15		
composites during immersion in water.	86	
Figure 4.0 FTIR spectra of (a) Treated Straw and (b) Untreated Straw	97	
Figure 4.1 FTIR spectra of (a) MPETS and (b) MPES Composite	99	
Figure 4.2(a) Stress-strain curves for (♦) MPETS 50-5, (●)		
MPETS 50-10 and (\blacktriangle) MPETS 50-15 composites	100	
Figure 4.2(b) Stress-strain curves for (♦) MPETS 90-5, (●)		
MPETS 90-10 and (\blacktriangle) MPETS 90-15 composites	101	
Figure 4.2(c) Stress-strain curves for (♦) MPETS 250-5, (●)		
MPETS 250-10 and (\blacktriangle) MPETS 250-15 composites	102	
Figure 4.3(a) Variation in tensile strength vs straw content for (�)		
MPETS-50, (●) MPETS-90 and (▲) MPETS-250	X	
composites	105	
		25

•

xviii

í.

·! [.....

Figure 4.3(b) Variation in Young's modulus vs straw content for	
(\blacklozenge) MPETS-50, (\blacklozenge) MPETS-90 and (\blacktriangle) MPETS-	
250 composites	106
Figure 4.3(c) Variation in % elongation vs straw content for (\clubsuit)	
MPETS-50, (\bullet) MPETS-90 and (\blacktriangle) MPETS-250	
composites	107
Figure 4.4(a) Variation in tensile strength of different composites	
for (\blacklozenge) PES 50 series, (\blacklozenge) MPES 50 series and (\blacktriangle)	
MPETS 50 series composites	108
Figure 4.4(b) Variation in Young's modulus of different	
. composites for (\blacklozenge) PES 50 series, (\blacklozenge) MPES 50	
series and (A) MPETS 50 series Electronic Theses & Dissertations www.lb.mrt.ac.lk	109
Fig 4.5 Percentage weight change of (♠) MPETS 50-5, (■)	
MPETS 50-15, (★) MPETS 90-15 and (●) MPETS	
250-15 composites during immersion in water	110

xix

LIST OF ABBREVIATIONS

•

•

CCl_4	- Carbon tetra Chloride
CaCO ₃	- Calcium Carbonate
DCP	- Dicumyl Peroxide
DP	- Degree of Polymerization
FTIR	- Fourier Transform Infra- Red
KBr	- Potasium Bromide
HDPE	- High Density Polyethylene
LDPE/PE	- Low Density Polyethylene
MA	- Maleic Anhydride
MPa	- Mega Pascal
MPETS	- Maleated LDPE/Treated straw composite
MPES	- Maleated LDPE/Un Treated straw composite
NaOH	- Sodium hydroxide
PES	- LDPE/Un Treated rice-straw composite
PMPPIC	- Poly[methylene (poly (phenyl isocyanate))]
РР	- Polypropylene
PS	- Polystyrene
PVC	- Polyvinyl Chloride
rpm	- Rounds per minutes
TAPPI	- Technical Association for Pulp And Paper Industry
TDIC	- Toluene2, 4- diisocyanate
%T	- Percentage transmittance
UV	- Ultraviolet radiation
Wt %	- Weight percentage
3-D	- Three dimensional

XX