REFERENCES

British Standards Institution BS 5950-1. (2000). "Structural Use of Steelwork in Building Part1: Code of practice for Design - Rolled and welded Section", London: British Standards Institution.

Coelho A.M.G., Bijlaard F.S.K. \& Silva L.S., (2004) "Experimental assessment of the ductility of extended end plate connections", Engineering Structures 26, pp.1185-1206.

Eurocode 3, BS EN- 1993-1-1:2005, design of steel structures - part 1-1: General rules and rules for buildings December 2005.

Eurocode 3, BS EN 1993-1-8:2005, Part 1.8: design of joints, Eurocode 3: design of steel structures, December 2005.

Faridmehr I., Tahir M.Md. \& Lahmer T. (2016). "Classification System for SemiRigid Beam -to-Column Connections", Latin American Journal of Solids and Structures 13, pp.2152-2175.

Fattouth M.F.Shaker and Waseem M.Abd Elrahman (2014), "Behaviour of Flush and Extended End -Plate Beam-To-Column Joints under Bending and Axial Force", World Applied Sciences Journal 30 (6):685-695.

Ismail R.E.S., Fahmy A.S., Khalifa A.M. \& Mohamed Y.M. (2015). 'Numerical Study on Ultimate Behavior of Bolted End-Plate Steel Connections", Latin American Journal of Solids and Structures 13, pp.1-22.

Jaspart J-P and K.Weynand (2015), Design of moment resisting joints in steel structures.

Maggi Y.I, R.M.Goncalves, R.T.Leon, L.F.L.Ribeiro (2005) "Parametric analysis of steel bolted end plate connections using finite element modeling", Journal of Constructional Steel Research 61 (2005) 689-708.

Sebastian -Lucian Buzuleac (2013), "Finite element analysis of beam-column bolted end plate connections in steel frames", Technical University of Civil Engineering Bucharest.

Steel Construction Institute and the British Constructional Steelwork Association Ltd. (1995). Joints in steel construction- moment connections. Ascot, SCI/BCSA

Tahir, M.Md., \& Husseein, M.A. (2008), "Experimental Tests on Extended Endplate Connections with Variable Parameters", Steel Structures 8, pp.369-381.

Tahir M.Md., Hussein M.A., Sulaiman A. \& Mohamed S., (2009) "Comparison of Component Method with Experimental Tests for Flush End-Plate Connections using Hot-Rolled Perwaja Steel Sections", Steel Structures 9,pp. 161-174.

Appendix A:

Design Calculations for Extended End Plate Connection- EEP 3d

Reference	Calculation	Output
	$\begin{aligned} & \mathrm{A}_{\mathrm{vc}}=3414 \mathrm{~mm}^{2} \\ & \omega=\omega_{1}=0.69 \end{aligned}$	
Cl.6.2.6.2 (2)	Assume longitudinal compressive stress, $\quad \sigma_{\text {com,Ed }}<0.7 \mathrm{f}_{\mathrm{y}, \mathrm{wc}}$ $\mathrm{k}_{\mathrm{wc}}=1.0$ $\mathrm{t}_{\mathrm{wc}}=12.8 \mathrm{~mm}$ $\frac{\omega k_{w c} b_{\text {eff }, \text {, wc }} t_{w c} f_{y, w c}}{\gamma_{\text {Mo }}}=842573 \mathrm{~N}$ Column web Bearing resistance $=842.573 \mathrm{kN}$	$\begin{aligned} & \mathrm{F}_{7}= \\ & 842.57 \mathrm{kN} \end{aligned}$
$E q^{\text {n }}$ (6.13c)		
	$\begin{aligned} & \omega \mathrm{k}_{\mathrm{wc}} \rho \mathrm{~b}_{\mathrm{eff}, \mathrm{c}, \mathrm{wc}} \mathrm{t}_{\mathrm{wc}} \mathrm{f}_{\mathrm{y}, \mathrm{wc}} \quad=842573 \mathrm{~N} \\ & \quad \gamma_{\mathrm{M} 1} \\ & \text { Column web Buckling resistance }=842.573 \mathrm{kN} \end{aligned}$	$\begin{array}{ll} \text { F8 }= \\ 842.57 & \mathrm{kN} \end{array}$
$\begin{aligned} & \text { EN 1993-1-8 } \\ & : 2005 \\ & \text { T } 3.4 \end{aligned}$	9. Bolt Shear	
	Resistance of a single bolt in shear $\left(\mathrm{F}_{\mathrm{v}, \mathrm{Rd}}\right)$ is given by: $\begin{array}{r} \mathrm{F}_{\mathrm{v}, \mathrm{Rd}}=\alpha_{\mathrm{v}} \mathrm{f}_{\mathrm{ub}} \mathrm{~A} \\ \gamma_{\mathrm{M} 2} \end{array}$	
	Where; $\quad \alpha_{v}=0.6 \quad$ for class 8.8 bolts $\begin{aligned} \mathrm{A} & =\mathrm{A}_{\mathrm{s}}=353 \mathrm{~mm}^{2} \\ \mathrm{~F}_{\mathrm{V}, \mathrm{Rd}} & =\frac{0.6 \mathrm{x} 800 \mathrm{x}}{} \begin{array}{l} 1.25 \\ \mathrm{~V}_{\mathrm{Rd}} \end{array} \\ & =\mathrm{n}_{\mathrm{V}, \mathrm{Rd}} \end{aligned}$ No: of Bolts in Shear $=8$ Shear Resistance of the connection $=1084.42 \mathrm{kN}$	$\begin{array}{cc} \mathrm{F}_{9} & = \\ 1084.42 \mathrm{kN} \end{array}$
$\begin{aligned} & \text { EN 1993-1-8 } \\ & : 2005 \\ & \text { T } 3.4 \end{aligned}$	10. Bolt Bearing	
	The bearing Resistance of a single bolt ($\mathrm{F}_{\mathrm{b}, \mathrm{Rd}}$) is given by: $\mathrm{F}_{\mathrm{b}, \mathrm{Rd}}=\frac{\mathrm{k}_{1} \alpha_{\mathrm{b}} \mathrm{f}_{\mathrm{ub}} \mathrm{dt}_{\mathrm{p}}}{\gamma_{\mathrm{M} 2}}$ Where α_{b} is the least value of α_{d}, For the Direction of load transfer For end Bolts $\alpha_{d}=\mathrm{e}_{1}=50=0.64$	

Reference	Calculation	Output
	$\begin{array}{rll}3 d_{0} & 3 \mathrm{x} & 26\end{array}$ For inner Bolts $\alpha_{d}=\frac{p_{1}}{3 d_{0}}-\frac{1}{4}=\frac{100}{3 \mathrm{x} \mathrm{26}}-\frac{1}{4}=1.03$ $\begin{aligned} & \frac{\mathrm{f}_{\mathrm{ub}}}{\mathrm{f}_{\mathrm{u}, \mathrm{p}}}=\frac{800}{410}=1.95 \\ & \alpha_{\mathrm{b}}=0.64 \end{aligned}$ For the perpendicular to the Direction of load transfer For edge bolts k 1 , is the smaller of $2.8 \frac{\mathrm{e}_{2}}{\mathrm{~d}_{0}}-1.7$ or 2.5 $2.8 \frac{\mathrm{e}_{2}}{\mathrm{~d}_{0}}-1.7=2.8 \times \frac{75}{26}-1.7=7.85$ Therefore for edge bolts, $\mathrm{k}_{1}=2.50$ For inner bolts k1, is the smaller of $1.4 \frac{\mathrm{p}_{2}}{\mathrm{~d}_{0}}-1.7$ or 2.5 $1.4 \frac{\mathrm{p}_{2}}{\mathrm{~d}_{0}}-1.7=1.4 \times \frac{100}{26}-1.7=3.68$ Therefore for inner bolts, $\mathrm{k}_{1}=2.50$ Therefore the minimum bearing resistance for a bolt is: $$ $\begin{aligned} \text { bearing resistance of the connection: } & =8 * 358.392 \\ & =2867.13 \mathrm{kN} \end{aligned}$	$\begin{gathered} \mathrm{F}_{10}= \\ 2867.13 \mathrm{kN} \end{gathered}$
$\begin{aligned} & \text { Cl.6.2.6.7 } \\ & \mathrm{Eq}^{\mathrm{n}}(6.21) \end{aligned}$	11. Beam flange and web in compression $\mathrm{F}_{\mathrm{c}, \mathrm{ff}, \mathrm{Rd}}=\quad \mathrm{M}_{\mathrm{c}, \mathrm{Rd}} /\left(\mathrm{h}-\mathrm{t}_{\mathrm{fb}}\right)$ $\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=$ Design resistance of the beam assume that the design shear force in the beam doesn't reduce $\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}$ therefore, from P363 $\begin{aligned} & \mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=649 \mathrm{kNm} \\ & \mathrm{~F}_{\mathrm{c}, \mathrm{fb}, \mathrm{Rd}}=\begin{array}{c} 649 \\ 533-15.6 \end{array}=1254.11 \mathrm{kN} \end{aligned}$	$\begin{gathered} F_{11}= \\ 1254.11 \mathrm{kN} \end{gathered}$

Reference	Calculation							Output
	Summary of tension resistance							
						若		
	Row 1, alone	398.36	790	377.26	N/A	377.26	377.26	
	Row 2,alone	398.36	790	406.66	672.42	398.36		
	Row 2, with row 1	698.29		N/A	N/A	698.29		
	Row 2					321.03	321.03	
	Row 3, alone	398.36	790	406.66	672.42	398.36		
	Row 3, with row 1 \& 2	990.82		N/A	N/A	990.82		
	Row 3					292.53		
	Row 3, with row 2	690.89		813.31		690.89		
	Row 3					369.86	292.53	
	Column web Beam flange Moment r	in Transv and web istance	erse compr in compress	ession sion is no	$=$ critical	842.57	kN	
	Effective re The effective $\begin{aligned} & \mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}}= \\ & \mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}}= \\ & \mathrm{F}_{\mathrm{t}, \mathrm{Rd}}= \\ & = \end{aligned}$ Effective res higher rows $1.9 \times \mathrm{Ft}, \mathrm{~F}$ Resistanc Hence no	istance o resistanc 377.26 321.03 292.53 istance sh exceeds Rd = of bolt r reduction	bolt rows of each of kN kN kN ould be red 386.323 ow $1 \& 2$ a is required	f the thre uced if th kN are less th d	bolt row resistan an this val	in tensio e of one ue.	zone f the	

Reference	Calculation	Output
	4. Column flange in bending	

Appendix B:

Design Calculations for Flush End Plate Connection- FEP 3d

Reference	Calculation	Output
	\quad Design Calculation according to EC3 Partial factors for Resistance Structural Steel	
EN 1993-1-8	γ мо $=1.0$	
$\begin{aligned} & \text { N.A.2.15 } \\ & \text { T NA. } 1 \\ & \text { T NA. } 1 \end{aligned}$	$\begin{array}{ll} \gamma_{\mathrm{M} 1}=1.00 & \text { (Resistance of a member to buckling) } \\ \gamma_{\mathrm{M} 2}=1.10 & \text { (plates in bearing in bolted connections) } \\ \text { For tring resistance verification } \gamma_{\mathrm{M}, \mathrm{u}}=1.10 \end{array}$	
$\text { T NA. } 1$	Bolts $\quad \gamma_{\mathrm{M} 2}=1.25$ Welds $\gamma_{\mathrm{M} 2}=1.25$	
EN 1993-1-8	1. Bolts Tension $\mathrm{F}_{\mathrm{t}, \mathrm{Rd}}=\frac{\mathrm{k}_{2} \mathrm{f}_{\mathrm{ub}} \mathrm{~A}_{\mathrm{s}}}{\gamma_{\mathrm{M} 2}}$ For non countersunk Bolts, $\mathrm{k}_{2}=0.9$ $F_{t, R d}=\frac{\mathrm{k}_{2} f_{\mathrm{ub}} \mathrm{~A}_{\mathrm{s}}}{\gamma_{\mathrm{m} 2}}=\frac{0.9 \mathrm{x} 800 \mathrm{x} \quad 353}{1.25}=203.328 \mathrm{kN}$	
$\begin{array}{\|l} \hline 2005 \\ \text { Cl.3.6.1 (1) } \end{array}$		
T 3.4		$\begin{array}{cc} \mathrm{F}_{1} & = \\ 203.33 & \mathrm{kN} \end{array}$
C1.6.2.6.5	2. End plate in bending	
	for flush end plate $\begin{array}{llll} \mathrm{w} & = & 100 & \mathrm{~mm} \\ \mathrm{e} & =75 & \mathrm{~mm} \\ \mathrm{e}_{\text {min }} & =75 & \mathrm{~mm} \end{array}$	$\frac{1}{4}$
$\begin{aligned} & \text { Cl.6.2.6.5 (1) } \\ & \text { T 6.6 } \end{aligned}$	Bolt row 1 - First Bolt row below tension flange of beam Effective length for an end plate, for circular patterns, $\begin{aligned} & \ell_{\text {eff,cp }}=2 \pi \mathrm{~m} \\ & \mathrm{~m}=38.55 \mathrm{~mm} \\ & \ell_{\text {eff,cp }}=242.09 \mathrm{~mm} \end{aligned}$ for non circular patterns, $\ell_{\text {eff,nc }}=\alpha \mathrm{m}$	
Figure 6.11	$\begin{aligned} \lambda_{1} & =\frac{\mathrm{m}}{\mathrm{~m}+\mathrm{e}}=0.34, \quad \lambda_{2}=\frac{\mathrm{m}_{2}}{\mathrm{~m}+\mathrm{e}}=0.31 \\ \alpha & =7.5 \\ \ell_{\mathrm{eff}, \mathrm{nc}} & =289.13 \mathrm{~mm} \end{aligned}$	
T 6.2	Mode 1 - Complete failure of the T-stub flange $\begin{aligned} & \ell_{\text {eff } 1}=\ell_{\text {eff.nc }} \text { but } \ell_{\text {eff }, 1} \leq \ell_{\text {eff,cp }} \\ & \ell_{\text {eff }, 1}=242.09 \mathrm{~mm} \end{aligned}$	
T 6.2		
	$\gamma_{\text {мо }}$ (1.0	

Reference	Calculation	Output
$\begin{aligned} & \text { T } 6.4 \\ & \text { T } 6.2 \end{aligned}$		
	Mode 3 $\begin{aligned} & \mathrm{F}_{\mathrm{T}, 3, \mathrm{Rd}}=\sum \mathrm{F}_{\mathrm{t}, \mathrm{Rd}}=2 * 203.33=406.656 \mathrm{kN} \\ & \text { Resistance only from Row } 1 \text { bolts }=398.36 \mathrm{kN} \end{aligned}$	
Cl.6.2.6.4 (1)	Bolt row 1 and 2 combined Bolt row 1,2 - end bolt row	
T 6.4	Effective length of an unstiffened column flange for circular patterns, $\quad \Sigma \ell_{\text {eff,cp }}=2^{*}(\pi \mathrm{~m}+\mathrm{p})$ for welded end plate narrower than column flange $\begin{aligned} \mathrm{r}_{\mathrm{c}} & =12.8 \mathrm{~mm} \\ \mathrm{~m} & =33.44 \mathrm{~mm} \\ \mathrm{e} & =79.4 \mathrm{~mm} \\ \mathrm{p} & =90 \mathrm{~mm} \\ \Sigma \ell_{\text {eff,cp }} & =390.003 \mathrm{~mm} \end{aligned}$ for non circular patterns, $\begin{aligned} & \ell_{\text {eff,nc }}=2^{*}(2 \mathrm{~m}+0.625 \mathrm{e}+0.5 \mathrm{p}) \\ & \Sigma \ell_{\text {eff,nc }}=323.01 \mathrm{~mm} \end{aligned}$	
T 6.2	Mode 1 $\begin{aligned} \ell_{\text {eff, }, 1} & =\ell_{\text {efff,nc }} \text { but } \ell_{\text {eff }, 1} \leq \ell_{\text {eff,cp }} \\ \Sigma \ell_{\text {eff }, 1} & =323.01 \mathrm{~mm} \\ & =\left(8 \mathrm{n}-2 \mathrm{e}_{\mathrm{w}}\right) \mathrm{M}_{\mathrm{p}, 1, \mathrm{Rd}} /\left[2 \mathrm{mn}-\mathrm{e}_{\mathrm{w}}(\mathrm{~m}+\mathrm{n})\right] \\ \mathrm{F}_{\mathrm{T}, 1, \mathrm{Rd}} & =10 \mathrm{~mm} \\ \mathrm{e}_{\mathrm{w}} & =10 \end{aligned}$	
	$\begin{aligned} \mathrm{M}_{\mathrm{p}, 1, \mathrm{Rd}} & =\frac{0.25 \sum \ell_{\mathrm{eff}} \mathrm{t}_{\mathrm{f}}^{2} \mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{mo}}}=\frac{0.25^{*} 323.01 * 20.5^{2} * 265}{1.0} \\ \mathrm{M}_{\mathrm{p}, 1, \mathrm{Rd}} & =8993.10 \mathrm{kNmm} \\ \mathrm{~F}_{\mathrm{T}, 1, \mathrm{Rd}} & =1383.84 \mathrm{kN} \end{aligned}$	
$\begin{aligned} & \mathrm{T} 6.4 \\ & \mathrm{~T} 6.2 \end{aligned}$	Mode 2 $\begin{aligned} \ell_{\text {eff }, 2} & =\ell_{\text {eff,nc }}=323.01 \mathrm{~mm} \\ \mathrm{~F}_{\mathrm{T}, 2, \mathrm{Rd}} & =\frac{2 \mathrm{M}_{\mathrm{p}, 2 \mathrm{Rd}}+\mathrm{n} \sum \mathrm{~F}_{\mathrm{t}, \mathrm{Rd}}}{\mathrm{~m}+\mathrm{n}} \end{aligned}$	

Reference	Calculation	Output
Figure 6.6	$\mathrm{t}_{\mathrm{fb}}=15.6 \mathrm{~mm}$ $\mathrm{a}_{\mathrm{p}}=8.4 \mathrm{~mm}$ $\mathrm{t}_{\mathrm{fc}}=20.5 \mathrm{~mm}$ $\mathrm{t}_{\mathrm{p}}=25.0 \mathrm{~mm}$ $\mathrm{t}_{\mathrm{wc}}=12.8 \mathrm{~mm}$ $\mathrm{s}_{\mathrm{p}}=2 * \mathrm{t}_{\mathrm{p}}=50.0 \mathrm{~mm}$ For a rolled I or H section column, $\mathrm{s}=\mathrm{r}_{\mathrm{c}}=12.7 \mathrm{~mm}$ $\begin{aligned} & \mathrm{b}_{\text {eff }, \mathrm{c}, \mathrm{cc}}=248.4 \mathrm{~mm} \\ & \mathrm{~A}_{\mathrm{vc}}=3414 \mathrm{~mm}^{2} \\ & \omega=\omega_{1}=0.69 \end{aligned}$	
C1.6.2.6.2 (2)	Assume longitudinal compressive stress, $\quad \sigma_{\text {com,Ed }}<0.7 \mathrm{f}_{\mathrm{y}, \mathrm{wc}}$ $\mathrm{k}_{\mathrm{wc}}=1.0$ $\mathrm{t}_{\mathrm{wc}}=12.8 \mathrm{~mm}$ $\frac{\omega k_{w c} b_{\text {eff }, \text {, wc }} t_{w c} f_{y, w c}}{\gamma_{\text {Mo }}}=842573 \mathrm{~N}$ Column web Bearing resistance $=842.573 \mathrm{kN}$	$\begin{aligned} & \mathrm{F}_{7}= \\ & 842.57 \mathrm{kN} \end{aligned}$
$E q^{n}(6.13 c)$	$\omega k_{w c} \rho b_{e f f, c, w c} t_{w c} f_{y, w c}=842573 \mathrm{~N}$ $\gamma_{\mathrm{m} 1}$ Column web Buckling resistance $=842.573 \mathrm{kN}$	$\begin{aligned} & \mathrm{F} 8= \\ & 842.57 \mathrm{kN} \end{aligned}$
$\begin{aligned} & \text { EN 1993-1-8 } \\ & : 2005 \\ & \text { T } 3.4 \end{aligned}$	9. Bolt Shear Resistance of a single bolt in shear ($\mathrm{F}_{\mathrm{v}, \mathrm{Rd}}$) is given by: $\begin{array}{r} \mathrm{F}_{\mathrm{v}, \mathrm{Rd}}=\alpha_{\mathrm{v}} \mathrm{f}_{\mathrm{ub}} \mathrm{~A} \\ \gamma_{\mathrm{M} 2} \end{array}$ Where; $\quad \alpha_{v}=0.6 \quad$ for class 8.8 bolts $\begin{aligned} \mathrm{A} & =\mathrm{A}_{\mathrm{s}} \quad=353 \mathrm{~mm}^{2} \\ \mathrm{~F}_{\mathrm{v}, \mathrm{Rd}} & =\frac{0.6 \mathrm{x} 800 \mathrm{x} \quad 353}{1.25} \times 10^{-3}=135.552 \mathrm{kN} \\ \mathrm{~V}_{\mathrm{Rd}} & =\mathrm{n}_{\mathrm{v}, \mathrm{Rd}} \end{aligned}$ No: of Bolts in Shear $=6$ Shear Resistance of the connection $=813.312 \mathrm{kN}$	$\begin{array}{cc} \mathrm{F}_{9} & = \\ 813.312 \mathrm{kN} \end{array}$

Reference	Calculation							Output
	Row 1, alone	398.36	712	406.66	N/A	398.36	398.36	
	Row 2,alone	398.36	712	406.66	672.42	398.36		
	Row 2, with row 1	690.89		813.31	N/A	690.89		
	Row 2					292.53	292.53	
	Column we Beam flang Moment	in Transve and web in istance	erse compr in compres	ession sion is no	$=$ critical	842.57	kN	
	Effective resistance of bolt rows							
	$\begin{aligned} & \text { The effecti } \\ & \mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}}= \\ & \mathrm{F}_{\mathrm{t} 2, \mathrm{Rd}}= \end{aligned}$	resistance $\begin{aligned} & 398.36 \\ & 292.53 \end{aligned}$	e of each of kN kN	f the thre	bolt row	in tensio	zone	
	Effective r higher row $\begin{aligned} & 1.9 \times \mathrm{F} \\ & \mid \mathrm{F}_{\mathrm{t} 1, \mathrm{Rd}} \end{aligned}$	stance sho xceeds Rd = $=386.32$	ould be red 386.323	uced if the	resista	e of one	f the	
	$\begin{aligned} \Sigma \mathrm{Ft}, \mathrm{Rd} & =386.32+292.53 \\ & =678.85 \mathrm{kN} \end{aligned}$							
	Compressi Moment re $\begin{aligned} & =\quad 48 \\ & =\quad 30 \end{aligned}$	resistance stance of the $\begin{array}{ll} 2 & \mathrm{x} \quad 380 \\ + & \mathrm{kNm} \end{array}$	he beam to $86.32+$	$\begin{gathered} 42.57 \mathrm{kN} \\ \text { column } \\ 397.2 \end{gathered}$	$\begin{aligned} & \text { oint } \\ & \times \quad 292 . \end{aligned}$	3		

