

SIMULATION OF DEEP EXCAVATION USING FINITE ELEMENT METHOD

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Engineering in Geotechnical Engineering

N.J.JAYAKODY

SUPERVISOR Dr. T. A. PEIRIS

Department of Civil Engineering University of Moratuwa Sri Lanka

82547

Abstract

Finite Element calculations are frequently used in the design of deep excavations because prediction of ground movements and wall deformation is not possible with classical limit equilibrium fixed earth support and free earth support methods. To solve such geotechnical boundary value problems successfully, appropriate constitutive laws should be used for the description of mechanical behaviour of the soils.

Two possible behaviour of soils can be categorized as those with a constitutive law based on plasticity and those based on elasticity. A key distinction between the plasticity and the elasticity group is that in the latter, strains are recoverable upon decrease in stresses, where as in elastoplastic models strain are only partly recoverable.

A crucial point in making the choice of a suitable soil constitutive model is the ease with which values can be assigned to the model constants. The level of investigations carried out and the type of data available is another factor. Considering the above points mentioned, the study summarizes the application of a simple linear elastic model and a non linear elastic [Hyperbolic] model for modeling the 15m deep base excavation supported by an anchored secant bored pile wall.

Finite element software SIGMAW is applied for a 2-D plain strain type analysis. The mechanical behaviour of the soil is modeled with linear and non linear elastic constitutive model using reasonable soil parameters, derived through limited tests.

The actual excavation was carried out in 4 steps. Pre-stressed anchors were used as additional supports, just before each excavation step. The wall deformations were obtained through inclinometers installed at several locations. The FEM simulation was carried out in this research and the computed and observed deformation patterns were compared.

CONTENT

1

		Page
Acknowledgements List of Symbols Abstract		
Chap	ter	
Chapte	er 1 – Introduction	
1.1	Introduction	1
1.2	Outline of the Thesis	3
Chapt	er 2 – Earth Retaining Systems	
2.1	Introduction to Earth Retaining Systems	4
2.2	Externally Stabilized Systems sity of Moratuwa, Sri Lanka.	4
2.2.1	Gravity Retaining Walls lectronic Theses & Dissertations	5
2.2.2	Embedded Retaining Structures	5
2.2.3	Walls Depending on Flexural Rigidity and Gravity	6
2.3	Internally Stabilized Earth Retaining Systems	7
2.3.1	Reinforced Earth	7
2.3.2	Anchored Earth Retaining Systems	8
2.3.3	Soil Nailing	9
2.4	Review of Methods of embedded type retaining Structure	9
2.4.1	Traditional Methods	10
2.4.1.1	Earth Pressure Computation	10
2.4.1.2	Pore Water Pressure Computation	12
2.4.1.3	Equilibrium Considerations	13
2.4.1.4	Methods of Analysis and Design	13
2.4.1.5	5 Factor of Safety Computation	15
2.4.2	Finite Element Method	16

Chap	ter 3 – Secant Pile Wall System and Sub Soil Condition	19
3.1	Introduction to the Earth Retaining System Used	19
3.2	Idealization of the ground profile	24
Chap	ter 4 – Constitutive Models used in the FE Analyses	
4.1	Introduction	26
4.2	Linear elastic model	26
4.3	Non-linear elastic [Hyperbolic] model	28
Chap	ter 5 – Finite Element Analysis of the case history and selection of Soil Parameters and Anchor Properties	
5.1	Introduction	36
5.2	Defining the mesh	36
5.3	Boundary conditions	37
5.4	Software used for simulation	38
5.5	Modeling the insitu conditions	38
5.6	Selection of soil parametersersity of Moratuwa, Sri Lanka.	39
5.6.1	Idealization of the Sub Soil Profile Theses & Dissertations	39
5.6.2	Classification of the soil According to the Unified System	39
5.6.3	Shear Strength Parameters	39
5.6.4	Assignment of Parameters for the Sub Soil Profile	41
5.6.5	Parameters for the Non Linear Elastic (Hyperbolic) Model	42
5.7	Modeling the anchor installation and excavation	43
5.8	Simulation of anchors	44
5.9	Simulation of excavation process with linear elastic analysis	45
5.10	Simulation of excavation process with non linear elastic analysis	52
Chap	ter 6 – Conclusions and Recommendations	
6.1	Conclusions	58

-

6.2	Recommendations	59

References	60
Appendix 1	A1-1
Appendix 2	A2-1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

The author would like to express her deepest gratitude to her advisor Dr. T.A. Peiris, Department of Civil Engineering, University of Moratuwa for his invaluable guidance, motivation, and . especially the encouragement rendered throughout the course of study.

Acknowledgements are also extended to Dr. U.G.A. Pusswewala the course co-ordinator, Dr. S.A.S. Kulathilaka of University of Moratuwa and Eng. W.A.A.W. Bandara of Engineering Laboratory Services, for their encouragement and assistance during the full tenure of the research. Further the author would like to convey special thanks to Dr. S.A.S. Kulathilaka for his valuable comments and rational suggestions rendered during the thesis preparation amidst his busy work schedules.

Furthermore the author appreciates the scholarship granted by the Asian Development Bank to follow the Master of Engineering Course at University of Moratuwa.

Nirmalee Jayakody 23-09-2004

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

6 ag.

List of symbols

- Ei Initial Tangent Modulus
- K. Initial Modulus Number
- n Modulus Exponent
- P_a Atmospheric Pressure
- R_f Failure Ratio
- σ_1 Major Principle Stress
- σ_3 Minor Principle Stress
- ϵ Axial Strain
- C Cohesion
- Ø Soil Friction Angle
- E_{ur} Unloading-reloading Modulus
- Kur Unloading-reloading Modulus Number
- E_t Tangent Modulus
- K_i Tangent Modulus Number
- v Poission's Ratio

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk