IMPACT OF THE MACROECONOMIC VARIABLES ON ALL SHARE PRICE INDEX: GARCH-X APPROACH

AAMD Amarasinghe

(148850F)

Degree of Master of Science in Business Statistics

Department of Mathematics

University of Moratuwa Sri Lanka

May 2017

IMPACT OF THE MACROECONOMIC VARIABLES ON ALL SHARE PRICE INDEX: GARCH-X APPROACH

Amarasinghe Arachchige Malith Damith Amarasinghe

(148850F)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Business Statistics

Department of Mathematics

University of Moratuwa Sri Lanka

May 2017

Declaration

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	Date:
The above candidate has carried ou supervision.	at research for the Masters Dissertation under my
Name of the supervisor:	
Signature of the supervisor:	Date :

Acknowledgements

First, I would like to acknowledge the financial support that I received from my university, Sabaragamuwa University of Sri Lanka (SUSL).

My sincere gratitude goes to my supervisor Prof. TSG Peiris, Professor in Applied Statistics, Department of Mathematics, Faculty of Engineering, University of Moratuwa. I am honored and privileged to have worked closely with him through the courses I took with him, and in preparing my dissertation. While working with Prof. TSG Peiris, I learned not how to map my trip only but more importantly how to make it valuable.

I extend my thanks to Mr. TUI Peiris, lecturer in the Department of Accountancy & Finance, Faculty of Management Studies, Sabaragamuwa University of Sri Lanka, for his time, kindness and invaluable comments to improve my dissertation.

I would like to take this opportunity to thank all of the faculty members and staff at the Accountancy & Finance department for their help and support through my journey. In particular, I would like to express my gratitude and appreciation to Mr. DG Dharmarathne, Head of the Accountancy & Finance department, Dr. Wasantha Rathnayake, Dean of the Faculty of Management Studies, Sabaragamuwa University of Sri Lanka, from whom I learned greatly during the time of my graduate courses.

During the period of working on this research, I received support from my friends and relatives.

Abstract

This study examines the dynamic impact of macroeconomic variables on all share price index (ASPI) volatility. Data were collected for the period commence from January 2006 to December 2015 using Central Bank annual reports and publications of Colombo stock exchange. Money supply, interest rates, consumer price index, exchange rate, and industrial production index were used as macroeconomic variables of the study. The AR(1)-GARCH (1, 1)-X model was identified as the significant model to model volatility of all share price index series. It was found that the previous all share price index (lag 1) positively and significantly affects the current all share price index implying that the volatility of stock market prices is affected by related news from the previous period (lag 1) more than by past volatility. Negative values of two parameters of the GARCH indicates that shocks to the conditional variance take a short time to die out, so volatility is not persistent. The result further implies that the volatility in interest rate and industrial production index are highly impact for the volatility of all share price index. The Johansen-Juselius cointegration test suggested that macroeconomic variables in the system share a long run relationship. Results imply that, all share price index has significant positive long run relationships with money supply, interest rate & exchange rate while significant negative long run relationships with industrial production index & consumer price index. The results of this study can be utilized for better decision making in share market.

Key words: all share price index, dynamic relationship, macroeconomic variables, volatility

Table of Contents

Declaration	i
Acknowledgements	ii
Abstract	iii
Table of Contents	iv
List of Figures	vii
List of Tables	viii
List of Abbreviations	ix
1. Introduction	
1.1 Background of the Study	1
1.2 Macroeconomic Variables	3
1.2.1 Money Supply (MS)	3
1.2.2 Short term Interest Rate (IR)	4
1.2.3 Colombo Consumer Price Index (CCPI)	5
1.2.4 Exchange Rate (EXR)	6
1.2.5 Industrial Production Index (IPI)	7
1.3 All Share Price Index (ASPI)	7
1.4 GARCH Approach	7
1.5 Objectives of the Study	8
1.6 Problem Statement	8
1.7 Hypotheses Development	9
1.8 Significance of the Study	9
1.9 Chapter Organization	10
2. Literature Review	
2.1 Theory of Efficient Market Hypothesis (EMH)	11
2.2 Implementation of EMH	12
2.3 Arbitrage Price Theory (APT)	13
2.4 Related Empirical Studies	14
2.4.1 Studies Related to Developed Economies	14
2.4.2 Studies Related to Developing Economies	22
2.4.3 Studies of Multiple Countries	26
2.5 Summary of Chapter 02	29

3. Materials & Methods	
3.1 Secondary Data	30
3.2 ARCH / GARCH Models	30
3.2.1 Conditional Mean Equation	30
3.2.2 ARCH (q) model	31
3.2.3 GARCH (p,q) model	32
3.2.4 Properties of GARCH (p,q) model	33
3.3 Different versions of GARCH	33
3.4 Evaluation of GARCH models	35
3.5 VAR Models	35
3.6 Various Statistical Tests related to Time Series	Modelling 36
3.6.1 Johansen-Juselius (1990) Cointegration Tes	st 36
3.6.2 Granger Causality Tests	37
3.7 The Error Correction Model	38
3.8 Impulse Response Functions	39
3.9 Forecast Error Variance Decompositions	41
4. Development of GARCH model	
4.1 Behavior of Selected Variables	42
4.2 Descriptive Statistics	45
4.3 Association among six Macroeconomic Variab	les 46
4.4 Autocorrelation Function (ACF) of LNASPI	47
4.5 Estimation of Variance Equation	51
4.6 AR(1)-GARCH-X(1,1) Model	
4.7 Hypothesis testing	56
4.8 Summary of Chapter 04	56
5. Study of Long run / Short run Relationship	
5.1 Stationary Process	57
5.2 Long Run Analysis	58
5.2.1 Selection of Optimal Lag lengths	58
5.2.2 Results of the Johansen-Juselius Cointegrat	ion Test 60
5.3 Short Run Analysis	62

5.3.1 Causality Test	
5.3.2 Impulse Response Function Analysis	
5.3.3 Forecast Error Variance Decompositions (FEVD)	64
5.4 Hypothesis testing	
5.5 Summary of Chapter 05	65
6. Conclusions, Recommendations and Suggestions	
5.1 Conclusions	67
6.2 Recommendations	
6.3 Suggestions for Future studies	
Reference List	69
Appendix A - Raw data collected from Jan 2006 to Dec 2015	

List of Figures

	Page
Figure 4.1 Monthly closing price of ASPI	42
Figure 4.2 Month end Money Supply	43
Figure 4.3 Three months Treasury bill rate	43
Figure 4.4 Month end Exchange rate	43
Figure 4.5 Monthly closing value of Industrial Production Index	44
Figure 4.6 Monthly closing value of Colombo Consumer Price Index	44
Figure 4.7 Plot of ACF for LNASPI	47
Figure 4.8 Plot of ACF for first difference of LNASPI	48
Figure 4.9 Plot of PACF for first difference of LNASPI	49
Figure 4.10 Estimated Residuals of the ARIMA (1,1,0) model	50
Figure 5.1 The Estimated Residuals of the VAR model	59
Figure 5.2 Impulse Response Functions of the ASPI to Cholesky	
One S.D. Innovations	64

List of Tables

	Page
Table 4.1 Useful Statistical Indicators of the Macroeconomic Variables	45
Table 4.2 Correlation Matrix among Six Macroeconomic Variables	
Table 4.3 ADF Test Results for LNASPI	
Table 4.4 ADF Test Results for First Difference of LNASPI	
Table 4.5 Summary of the Parameter Tests of Three Models Selected	
Table 4.6 Heteroskedasticity Tests for the Estimated Residuals of	
the AR (1) Model	51
Table 4.7 Residual Diagnostic Fits for AR(1)	51
Table 4.8 Estimated Optimal AR (1) Models	
Table 4.9 Residual Diagnostic Fits for AR(1) GARCH(1,1)	
Table 4.10 ARCH-LM Test results for AR(1) GARCH(1,1) Model	
Table 4.11 Estimates of the AR (1)-GARCH (1,1) Model	
Table 4.12 Estimated results of AR(1)-GARCH(1,1)-X model	
Table 4.13 Residual Diagnostic Fits AR(1) GARCH(1,1)-X	
Table 4.14 ARCH-LM Test results for AR(1) GARCH(1,1)-X Model	
Table 5.1 ADF Unit Root Test for all Variables	
Table 5.2 Optimum lag length for VAR system	
Table 5.3 Residual Serial Correlation LM Tests for the VAR	
Table 5.4 Johansen-Juselius Cointegration Test	61
Table 5.5 Pairwise Granger Causality Test	
Table 5.6 Variance Decomposition	65

List of Abbreviations

Abbreviation	Description
ACF	Autocorrelation Function
ADF	Augmented Dickey-Fuller
AIC	Akaike Information Criterions
APT	Arbitrage Pricing Theory
AR	Autoregressive
ARCH	Autoregressive Conditional Heteroscedasticity
ASPI	All Share Price Index
BSE	Bombay Stock Exchange
CAPM	Capital Asset Price Model
CCPI	Colombo Consumer Price Index
CSE	Colombo Stock Exchange
EGARCH	Exponential GARCH
EMH	Efficient Market Hypothesis
EXR	Exchange Rate
FEVD	Forecast Error Variance Decomposition
FPE	Final Prediction Error
FTSE	Financial Times Stock Exchange
GARCH	Generalized Autoregressive conditional Heteroscedasticity
GCC	Gulf Cooperation Council
GDP	Gross Domestic Production
GNP	Gross National Product
GRT	Granger's Representation Theorem
HQ	Hannan-Quinn information criterion
IPI	Industrial Production Index
IR	Interest Rate
IRF	Impulse Response Function
LM	Lagrange Multiplier
LN	Natural Log
LR	Lag Range
LTTE	Liberation Tigers of Tamil Eelam
MA	Moving Average

MS Money Supply

NSE National Stock Exchange
OLS Ordinary Least Squares

PACF Partial Autocorrelation Function

PGARCH Periodic GARCH

PVM Present Value Model

S&P Standard & Poor

SIC Schwarz Information Criterion

TGARCH Threshold GARCH

UK United Kingdom

US United States

VAR Variance Autoregressive
VDC Variance Decomposition

VECM Vector Error Correction Model

VMA Vector Moving Average

WTI Western Texas Intermediate