

DIVERSION OF DIYAWINI OYA INTO THE SURGE CHAMBER OF SAMANALA WEWA POWER STATION

By A.R.M.M.S. Karunasena

This thesis was submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the Degree of Master of Engineering

Supervised By: Prof. Priyantha D.C. Wijayatunga

Department of Electrical Engineering University of Moratuwa Sri Lanka

2004

82486

Abstract

Investigations of the development of hydro power in the upper Walawe river basin using the head difference of about 350 m between the two pineplaines of the south eastern part of the central high lands of Sri Lanka had commenced in mid 1950's.

Several studies have been conducted since then on the possible ways of developing this potential .These studies lead to the finalization of Samanalawewa hydro power project in 1985.

The scheme envisaged the development of the potential in two stages .Under the stage I major components such as main dam, low pressure tunnel ,surge chamber ,a single penstock add power plant of 120MW capacity housing two generating units were to be developed. Work under stage I was completed and plant was commissioned in 1992.

Stage II of the scheme envisaged the construction of Diyawini Oya reservoir, a second penstock and an extension to the stage I power house to install two additional generating units to bring the total installed capacity of Samanalawewa hydro power project to 240MW.

According to the studies the installation of additional 120MW capacity in the second stage of the project was aimed at providing the needs of additional peaking capacity in the CEB generating system at a future date .The studies conducted in 1985 expected such requirement to be in the CEB system in early 21st century.

After completion of the wet blanketing of the reservoir to arrest the leakage which developed on the right abutment of the dam Ceylon Electricity Board wished to evaluate the feasibility of the development of stage II of the scheme in the early years of 21" century as envisaged ill 1985.

In 1999, CEB requested Central Engineering Consultancy Bureau to review the feasibility of implementing the stage II of Samanalawewa hydro power project. During this review the capacity of the existing system to cater for the conditions after the installation of additional units the feasibility of construction of Diyawini Oya reservoir and the installed capacity to be developed in the near future were evaluated. Most of components of the existing project are found to have sufficient capacity to cater for the increased flows after stage II. Some modifications are required in the surge chamber in order to connect the Intake from the Diyawini oya reservoir. A provision has already been made available for this purpose in the surge chamber.

Review of the feasibility of the development of Diyawini reservoir by CECB indicated that the water tightness of the reservoir is uncertain in the light of the latest geological information available .It was also noted that any treatment of reservoir to improve the water tightness will be prohibitively costly. Accordingly CEB apparently had given up the proceeding of stage II studies.

However it was interesting to investigate the possibility of using Diyawini Oya waters diverted in the direction of the surge chamber and released in to the surge chamber at a feasible point. This way additional water quantity from the stream can be pumped in to the surge chamber and it is added to generate electricity at the power station. It is very important to check the electrical energy loss when pumping such a quantity of water and then compared with the energy gain at the end. All relevant calculations were done and it indicates that the project is well profitable and impacts on Environmental and social aspects are in favor of the project.

DECLARATION

i

To the best of my knowledge and belief, the work included in this thesis in part or in whole has not been submitted for any other academic qualification at any institution.

Signed by :

A.R.M.M.S. Karunasena

Certified by :

UOM Verified Signature

Prof. Priyantha D.C. Wijayatunga Director General - Public Utilities Commission Sri Lanka.

Preface

This is a thesis on a specific project called "Diversion of Diyawini oya in to the surge chamber of Samanalawewa Power Station" carried out by me for partial fulfilment of Master of Engineering Degree (Electrical) at University of Moratuwa.

Review of the feasibility study of the development of Diyawini reservoir carried out by Central Engineering Consultancy Bureau in the year 2000, indicated that the water tightness of the reservoir is uncertain in the light of the latest geological information available. It was also noted that any treatment of reservoir to improve the water tightness will be prohibitively costly. Beside this ,energy gains of about 23 Gwh due to the addition of Diyawini reservoir is not economical compared to the cost of development.

Hence it was the intention of me to further study about the above mentioned Diyawini oya stream and construct a pump intake and divert as much flow as possible to the surge chamber while fulfilling down stream requirement of the people living. Also to ascertain the financial and social benefits that could be gained by Ceylon Electricity Board as well as the farmer community at the down stream and to evaluate any impacts in terms of social and environmental issues.

A.R.M.M.S. Karunasena Samanalawewa Power Station, ersity of Moratuwa, Sri Lanka. December 2004. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

Prof. R.Lucas, Dr. Thilak Siyabalapitiya and Dr. Thusitha Sugathapala for giving me lot of valued inputs to improve this thesis during final evaluation.

Professor Priyantha D.C. Wijayatunga deserves a very special word of thank who has guided me through out this exercise as my supervisor and for giving lot of inputs to me with the knowledge of his vast experience carrier.

H.S. Somathilaka the Chief Engineer of the Samanalawewa Power Station, where I am presently working and this project site is located, has given his attention and fullest corporation to carry out my studies on this project.

Mr. Kamal Laksiri is one of the Chief Civil Engineers attached to CEB and presently working in the Kukule Hydro Power Station to whom. all critical civil design matters were referred and spending his precious time to help me in making this thesis a successful one.

Mr. W.H. Wickramaratna is the Mechanical Engineer of Samanalawewa Power Station who had always been discussed with me the Mechanical aspect of this project and very keen in giving a lot of valued information.

Mr. K.L.R. Perera an Engineer attached to Samanalawewa Power Station who was very helpful to me especially in computer related work.

Mr. Jayantha de Silva of M/s Lanka Development Network (Pvt) Ltd for prompt reply made to find out all pump data at present Sri Lankan market.

M/s ACL Cables (Pvt) Ltd for helping me with providing prices etc for cable products.

The International Centre for Hydro Power – Norway for selecting my paper on this project and inviting me to the international seminar held in Aruza in Tanzania in August 2003.

The Institution Of Engineers –Sri Lanka for giving me an opportunity to make a presentation on this project for 97th Annual session of Young members section on 24th October 2003.

All the farmers in the Surge Chamber Area for providing me their information during the interviews in all possible ways.

List of Figures

Figure	1.2(a):	Map of Samanala Wewa Reservoir	1
Figure	1.2(b):	Schematic representation of Samanala Wewa Reservoir	1
Figure	2(a):	Location Map	4
Figure	2(b):	Cross section of surge chamber and Diyawini oya	5
Figure	4.3 (a):	Observed stream flows (2002/2003)	10
Figure	5(a):	Location Map	12
Figure	7.1(a):	Schematic top view of the location of the project	16
Figure	7.1(b):	Schematic side view of the location of the project	17
Figure	7.1(c):	GPS measuring points	17
Figure	7.2(a):	Shortest way between Intake and surge chamber	18
Figure	7.2(b):	Shortest way up the hill	18
Figure	7.3(a):	Pipe connection under the ground level of surge chamber	18
Figure	7.3(b):	Pipe connection just above the ground level of surge chamber	19
Figure	7.3(c):	Pipe connection over the surge chamber *	19
Figure	7.4(a):	Variation of surge level with reservoir water level	21
Figure	7.4(b):	Variation of reservoir water levels from 1992-2002	22
Figure	9.1(a).	A centrifugal pump (left) and an axial pump (right).	26
Figure	9.3(a) :	Net energy gain and saving for different flow rates	28
Figure	9.3 (b) :	Combined performance curves	30
Figure	9.3 (c):	Performance curves for different speeds	32
Figure	10.1(a):	Dimensions of existing weir.	36
Figure	10.1(b) :	Front, side elevation and plan of proposed structure.	37
Figure	10.1(c) :	Side elevation and plan of Proposed pump Intake Building	38
Figure	10.2(a) :	Sectional view of weires & Dissertations	34
Figure	10.2 (b)	Weir catibration curve 1k	35
Figure	11 (a) :	Schematic diagram of control panel	41
Figure	11 (b) :	Pump control circuit no 1	42
Figure	11 (c) :	Pump control circuit no 2	43
Figure	11 (d) :	Existing supervisory control system	44
APPE	NDIX H		
Figure	8(a):	Moody diagram	66
APPE	NDIX K		
Figure	9 (a)	Pump performance curves for 200 l/s pump	69
Figure	9 (b)	Pump performance curves for 680 l/s pump	70
APPE	NDIX M		
Figure	10	Flood hydrograph	79

V

List of Tables

Table 4.1(a):	Mean values of rain fall and temperature	7
Table 4 $3(a)$:	Observed stream flows in l/s	9
Table $4.4(a)$:	Comparison of previous stream flow studies	11
Table 6(a):	Flow available for pumping in m^3/s	15
Table 7.1(a):	GPS measurements	7
Table 7.2(a):	Length of the routes	18
Table 8(a):	Absolute roughness values of selected pipe materials	24
Table $9.3(a)$:	Pump capacities	29
Table 9.3(b):	Performance curves and load curve data	29
Table $9.3(c)$:	Combinations of pumps	30
Table $9.3(d)$:	Performance curve data for different speeds	31
Table 9.3(e):	Energy required for single pump with VSD	33
Table 11(a):	Pump combinations	39
Table 11(b):	Floater fixing levels	40
Table $12(a)$:	Flow available for pumping	45
Table $12(h)$:	Total energy gain with pump operated in parallel	46
Table $12(c)$:	Total energy gain with single pump with a VSD	47
Table 13 $1(a)$:	Total cost for the project (case 1)	48
Table 13.2(a):	Cost analysis for the project (case 1)	49
Table 13 3(a):	Total cost for the project (case 2)	50
Table 13.4(a):	Cost analysis for the project (case 2)	51
Tuble 15. ((u).	Cost unaryous for the project (case 2)	
APPENDIX B	University of Moratuwa, Sri Lanka.	
Table 4 (a):	Average monthly rain fall figures Dissertations	60
ruore r (u).	www.lib.mrt.ac.lk	
APPENDIX C		
Table 4 (a):	Temperature recorded in the area	61
APPENDIX D		
Table 4 (b):	Hydrological calculations	62
APPENDIX E		
Table 5 (a):	Interview results area S2-S3 (left bank)	63
Table 5 (b):	Interview results area S2-S3 (right bank)	63
Table 5 (c):	Interview results area S3-S4	63
12		
APPENDIX G		
Table 7 (a):	Variations of surge levels	64
APPENDIX	200-	
Table 7 (a):	Monthly average reservoir water level	65
APPENDIX I		
Table 7 (a):	Friction calculations	67
APPENDIX J		10
Table 7 (a):	Pump data	68

vi

APPENDIX L

Flow data	71
Energy	71
Pump capacities	72
Energy for pumps	72
Cost saving	73
Weir calibration data	74
	Flow data Energy Pump capacities Energy for pumps Cost saving Weir calibration data

APPENDIX P

.

Photograph 1 :	Cylinders for measuring flows		75
Photograph 2 :	Interviewing of farmers		75
Photograph 3:	Proposed site for the pump intake		76
Photograph 4 :	Down stream flow	76	
Photograph 5:	Existing structure	A.C.	77
Photograph 6:	Surge chamber		77
Photograph 7 :	Access road to the pump intake		78

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List Of Symbols

Ddiameter $[m]$ or $[m]$ ffriction factorggravitationhheadLlengthQflow rateReReynolds numbervvelocity μ viscosity π 3.1415 ρ densityUEvapotranspirationkCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fallACatchment areaZUpsurge levelElectronic Theses & Diss[mhtion]	press	Δp	pressure difference [Pa]	or [bar]
ffriction factorggravitation $[m/s^2]$ hhead $[m]$ Llength $[m]$ Qflow rate $[m^3/s]$ ReReynolds number $[m/s]$ vvelocity $[m/s]$ μ viscosity $[Ns/m^2]$ π 3.1415 $[kg/m^3]$ UEvapotranspiration $[mm]$ kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fall $[mm/hr]$ ACatchment areaUniversity of Moratuwa, [sqkm]m]ZUpsurge levelElectronic Theses & Diss[mhtion]	diam	D	diameter [m] c	or [mm]
ggravitation $[m/s^2]$ hhead $[m]$ Llength $[m]$ Qflow rate $[m]^3/s]$ ReReynolds number $[m/s]$ v velocity $[m/s]$ μ viscosity $[M/s]$ π 3.1415 $[Ns/m^2]$ π 3.1415 $[Mm]$ Q density $[kg/m^3]$ U Evapotranspiration $[mm]$ k Coefficient of monthly consumption by vegetation P Monthly percentage of day time hours of the year C Coefficient of runoff i Intensity of rain fall $[mm/hr]$ A Catchment areaUniversity of Moratuwa, [sqkm]n] Z Upsurge levelElectronic Theses & Diss(mhtion)	fricti	f	friction factor	2
hhead $[m]$ Llength $[m]$ Qflow rate $[m]$ Qflow rate $[m]$ ReReynolds number $[m/s]$ vvelocity $[m/s]$ μ viscosity $[M/s]$ μ viscosity $[Ns/m^2]$ π 3.1415 $[Ns/m^2]$ ρ density $[kg/m^3]$ UEvapotranspiration $[mm]$ kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fall $[mm/hr]$ ACatchment areaUniversity of Moratuwa, [sqkm]n]ZUpsurge levelElectronic Theses & Diss[m]htion	grav	g	gravitation [m/s	-
Llength $[m]$ Qflow rate $[m^3/s]$ ReReynolds number $[m/s]$ v velocity $[m/s]$ μ viscosity $[m/s]$ π 3.1415 $[Ns/m^2]$ π 3.1415 $[kg/m^3]$ UEvapotranspiration $[mm]$ kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fall $[mm/hr]$ ACatchment areaUniversity of Moratuwa, [sqkm]m]ZUpsurge levelElectronic Theses & Diss[m] tion	head	h	head [m]	
Qflow rate $[m^3/s]$ ReReynolds number $[m/s]$ v velocity $[m/s]$ μ viscosity $[Ns/m^2]$ π 3.1415 $[Ns/m^2]$ ρ density $[kg/m^3]$ UEvapotranspiration $[mm]$ kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fall $[mm/hr]$ ACatchment areaUniversity of Moratuwa, [sqkm]n]ZUpsurge levelElectronic Theses & Diss[m] tion	lengt	L	length [m]	
ReReynolds numbervvelocity $[m/s]$ μ viscosity $[Ns/m^2]$ π 3.1415 $[Ns/m^3]$ ρ density $[kg/m^3]$ UEvapotranspiration $[mm]$ kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fall $[mm/hr]$ ACatchment areaUniversity of Moratuwa, [sqkm]n]ZUpsurge levelElectronic Theses & Diss[m] tion	flow	Q	flow rate [m ³ /s	s]
vvelocity $[m/s]$ μ viscosity $[Ns/m^2]$ π 3.1415 $[kg/m^3]$ ρ density $[kg/m^3]$ UEvapotranspiration $[mm]$ kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fall $[mm/hr]$ ACatchment areaUniversity of Moratuwa, [sqkm]m]ZUpsurge levelElectronic Theses & Diss[m] tion	Reyr	Re	Reynolds number	
μviscosity[Ns/m²]π3.1415[kg/m³]ρdensity[kg/m³]UEvapotranspiration[mm]kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fallACatchment areaZUpsurge levelElectronic Theses & Diss[m] tion	velo	V	velocity [m/s]
 π 3.1415 ρ density [kg/m³] U Evapotranspiration [mm] k Coefficient of monthly consumption by vegetation P Monthly percentage of day time hours of the year C Coefficient of runoff i Intensity of rain fall [mm/hr] A Catchment area University of Moratuwa, [sqkm]m] Z Upsurge level Electronic Theses & Diss[mhtion] 	visco	μ	viscosity [Ns/	m*]
ρdensity[kg/m³]UEvapotranspiration[mm]kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fallACatchment areaZUpsurge levelElectronic Theses & Diss[m] tion	3.14	π	3.1415	1
UEvapotranspiration[mm]kCoefficient of monthly consumption by vegetationPMonthly percentage of day time hours of the yearCCoefficient of runoffiIntensity of rain fallACatchment areaZUpsurge levelElectronic Theses & Diss[mhtion	dens	ρ	density [kg/r	n']
 k Coefficient of monthly consumption by vegetation P Monthly percentage of day time hours of the year C Coefficient of runoff i Intensity of rain fall [mm/hr] A Catchment area University of Moratuwa, [sqkm]m Z Upsurge level Electronic Theses & Diss[mhtion 	Evap	U	Evapotranspiration [mm]
 P Monthly percentage of day time hours of the year C Coefficient of runoff i Intensity of rain fall [mm/hr] A Catchment area University of Moratuwa, [sqkm]m] Z Upsurge level Electronic Theses & Diss[mhtion 	Coet	k	Coefficient of monthly consumption by vegetation	
CCoefficient of runoffiIntensity of rain fall[mm/hr]ACatchment areaUniversity of Moratuwa, [sqkm]n]ZUpsurge levelElectronic Theses & Diss(mhtion)	Mon	Р	Monthly percentage of day time hours of the year	
iIntensity of rain fall[mm/hr]ACatchment areaUniversity of Moratuwa, [sqkm]n]ZUpsurge levelElectronic Theses & Diss(mhtion)	Coe	С	Coefficient of runoff	
ACatchment areaUniversity of Moratuwa, [sqkm]n]ZUpsurge levelElectronic Theses & Diss(mhtion)	Inter	i	Intensity of rain fall [mm	ı/hr]
Z Upsurge level Electronic Theses & Dissemption	Cato	A	Catchment area University of Moratuwa, [sqk	mjnka.
	Ups	Z	Upsurge level) Electronic Theses & Dissem	
B Width of the weir www.lib.mrt.ac.lk [m]	Wid	В	Width of the weir www.lib.mrt.ac.lk [m]	

1.5

Table of Contents

Declaration Preface Abstract Acknowledgement List of figures List of Tables	i iii iv v vi vi
List of symbols	VIII
Chapter 1-Introduction 1.1 Samanalawewa Power Station 1.2 Samanalawewa Reservoir 1.3 Samanalawewa Intake 1.4 Samanalawewa Power Tunnel 1.5 Samanalawewa Surge Chamber 1.6 Development of second stage proposals	1 1 2 2 3 3 3 3
Chapter 2-Description of Diyawini Oya and its surroundings	4
Chapter 3-Research Questions	6
Chapter 5-Flow Calculations 4.1 4.2 4.3 4.4 Calculation of flow using past data Calculation to find maximum flow Elecalculation of flow with observed data WW Comparison with data obtained from previous studies	7 7 8 9 11
Chapter 5-Down Stream Water Requirement5.1Location map5.2Results of Interviews5.3Water use	12 12 12 13
Chapter 6-Calculation of available flow for pumping	15
Chapter 7-Design of pipe route and connection at the surge chamber7.1GPS Measurements7.2Route Options7.3Options of pipe connections at the surge chamber7.4Best design for connection at the surge chamber	16 16 18 18
Chapter 8-Design of pipe line	23
Chapter 9-Selections of pumps 9.1 Types of pumps 9.2 Pump combination 9.3 Requirement for the pumps	26 26 26 27
Chapter 10-Design of Weir and Pump Intake 10.1 Design of weir 10.2 Calibration of water height over the weir	34 34 35

a

Chapter 11-Design	of pump control center	39)
Chapter 12-Energy	calculations	45	2
Chapter 13-Cost an	nd Benefit calculations 13.1 Total cost for the project (case1) 13.2 Operational Analysis (case1) 13.3 Total cost for the project(case 2) 13.4 20perational Analysis (case 2)	48 48 49 50 51	
Chapter 14-Requir	ement of other facilities 14.1 Electricity Supply 14.2 Control cable for data transmission 14.3 Construction of access road 14.4 Construction of pump intake building 14.5 Surge chamber modification	52 52 52 52 52 52	
Chapter 15-Enviro	onment and Social Impacts 15.1 Environmental Impacts 15.2 Social Impacts	54 54 55	4 1 5
Chapter 16-Conclu	usion	56	5
Chapter 17-Recon	mendations	57	7
References	Electronic Theses & Dissertations	58	3
Appendices	 A-Project Layout B-Rain fall Data (1918-1998) C-Temperatures recorded in the Area D-Hydrological calculations E-Details of Interviews F-Variation of Surge levels G-Reservoir water level (1992-2002) H-Moody Diagram I Friction calculations J -Pump data K- Performance curves of pumps L- Calculation of energy gain with different flows M-Flood Hydrograph N-Weir calibration Data P- Photographs 	59 60 61 62 63 64 64 65 65 65 77 70 70 70 70 70	9)1234567891956

Х