LB/DON/156/04

26

MULTIDISCIPLINARY PRODUCT MODELS FOR BUILDINGS

by

Gamhewage Nuwan Kodagoda

A thesis submitted to University of Moratuwa for the Degree of Master of Philosophy

624 (0

Research Supervised by **Professor Priyan Dias**

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

UM Thesis coll.

82462

University of Moratuwa

82462

April 2004

82462

ABSTRACT

A building is an entity that is multidisciplinary by nature. Traditionally drawings have been used as the medium of communication between the various disciplines. With the advent of microcomputers, professionals from different disciplines have made use of computer software for their work. One of the major obstacles has been the exchange of data between such software.

This thesis presents a practical product model of a building which addresses these issues. It is based on an object oriented design. A primitive composite scheme is used to reduce the complexity of the model and to make it flexible. Two object hierarchies are presented. The building elements hierarchy consists of architectural, structural and service elements of a building. The multidisciplinary attributes of a building are captured by the primitive object hierarchies. Geometry however is implemented directly in the building elements and not as a primitive, as geometry is seen as a fundamental and integrating property of all aspects of a building.

The primitive properties can be attached dynamically to the building elements, thus creating composites. Primitive objects could be declared globally and shared among several building elements to improve efficiency. They could also be defined locally to individual building elements.

Three generic classes junctions, paths and outlets were proposed to represent service type elements. This allows a diverse range of services to be accommodated without complicating the model.

All building elements were represented as lines, and subsequently fleshed out according to their cross sectional dimensions. Whereever possible local geometry was used (e.g. for contained elements such as doors and windows with respect to the containing wall). The semantic relations "components", "component_of", "parts", "part_of" and "connected" were used to define relationships between instances of building elements.

A software called PROMOD was developed based on the proposed product model. The implementation was carried out in Delphi (an object oriented programming environment). The building is drawn using the 2D graphical input module of PROMOD. The input module automatically establishes the various relationships between the elements. Using PROMOD, different 2D views of the building can be generated.

Data entered into the product model was successfully exported to AutoCAD, to generate 3D views, and also to PROKON, to carry out structural analysis. In addition, the possibility of using the product model as a rich database was explored. It is shown that the semantic data stored within the model is sufficient to answer a varied range of queries (including cross disciplinary ones).

The thesis demonstrates the application of the model using the example of a two storey office cum residential reinforced concrete frame building with masonry infill walls.

Key Words : Product Models, Object Oriented, Services, Buildings, Structural, CAD

ACKNOWLEGEMENTS

I am most grateful to my research supervisor, Prof Priyan Dias of the Department of Civil Engineering, University of Moratuwa for his untiring support and encouragement during this research.

I also wish to thank the Heads of the Department of Civil Engineering for their support and encouragement I received during this project. My gratitude also goes to other staff members of the Department of Civil Engineering for their support.

I wish to thank the National Science Fundation (NSF) for providing financial support for this research. Their recognition of this research for a Merit Award for scientific research was a source of great encouragement.

Finally it would not have been possible to complete this project without the support of my family.

DECLARATION

This thesis is a report of research carried out in the Department of Civil Engineering, University of Moratuwa, between September 1997 and June 2003. Except where references are made to other work, the contents of this thesis are original and have been carried out by the undersigned. The work has not been submitted in part or whole to any other university. This thesis contains 131 pages.

Gamhewage Nuwan Kodagoda Department of Civil Engineering University of Moratuwa

CONTENTS

,

1.	INTRODUCTION1
1.1	Information about BuildingsI
1.2	Traditional systems2
1.3	Problems with traditional systems
1.4	A Product Model4
1.5	Objectives and Guide to Report5
2.	APPROACHES TO MODELLING7
2.1	Product Modelling for Buildings7
2.2	Conceptual Models11
2.3	Some Examples of Product Models15
2.4	Implementation18
3.	PROPOSED CONCEPTUAL MODEL
3.1	Introduction21
3.2	Object Oriented Modelling
3.2.1	Background21
3.2.2	Classes and Instances
3.2.3	Relationships Between Classes25
3.2.3.1	Inheritance25
3.2.3.1	Composition27
3.2.3.2	Primitive Composite Approach
3.3	Proposed Model
3.3.1	Introduction
3.3.2	Scope of the Model
3.3.3	Limitation of the Proposed Model
3.3.4	Building Elements Considered in the model
3.4	Instance Relations

3.5	Main Elements Considered	37
3.5.1	Wall Element	37
3.5.2	Room element	41
3.5.3	Frame element	42
3.5.4	Column element	43
3.5.5	Beam element	44
3.5.6	Slab element	45
3.5.7	Service elements	45
3.5.7.1	Junction Element	47
3.5.7.2	Path Elements	48
3.5.7.3	Outlet Elements	50
3.6	Handling Queries	50
3.6.1	Finding the Ratio of Area of a Room and its Openings	50
3.6.2	Finding an adjacent Room	51
3.6.3	Finding Structural Elements supporting a Room	51
3.6.4	Finding Service Elements that go through a given Building	
	Element	52
4.	ISSUES IN MODELLING	54
4.1	Global vs Local Coordinates	54
4.2	Line vs Solid Representation	57
4.2.1	Introduction	57
4.2.2	Representing Structural Elements	59
4.2.3	Representing Architectural Elements	61
4.3	Internal vs External Calculations	62
4.4	Input Module and Object Hierarchy	63
4.5	Handling Services	64

5.	PROMOD SOFTWARE	67
5.1	Platform for Implementation	67
5.1.1	Introduction	67
5.1.2	Object oriented modelling shells	67
5.1.3	CAD Software	68
5.1.4	General purpose programming languages	69
5.1.5	Delphi	71
5.2	Implementing Primitive Components	78
5.3	Implementing Building Classes	
5.4	Instance-Instance relationships	
5.5	Implementing the data file	
5.6	Implementing 2D graphics in the Product Model	91
5.7	Input Module	
5.8	Integrating with AutoCAD	95
5.9	Integrating with PROKON	96
5.10	Current trends in Product Models in the Industry	
6.	EXAMPLE.	101
6.1	Introduction	101
6.2	Building Elements	103
6.2.1	Floor Elements	103
6.2.2	Wall Elements	104
6.2.3	Frame Elements	106
6.2.4	Column and Beam Elements	107
6.2.5	Slabs	108
6.2.6	Door and Window Elements	109
6.2.7	Room Elements	110
6.3	PROMOD Sample Data file	

6.4	Using PROMOD	112
6.4.1	Starting PROMOD	112
6.4.2	Graphical View of Drawing	
6.4.3	Filtering Elements	115
6.4.4	Selecting Particular Elements	
6.4.5	Setting up a new building	
6.4.6	AutoCAD Integration	121
6.4.7	Prokon Integration	
7.	CONCLUSIONS	126
REFE	RENCES	

Þ

•

LIST OF FIGURES

Fig 1.1, A Product Model	4
Fig 2.1, STEP layers	8
Fig 2.2, An example of an EXPRESS-G diagram	2
Fig 2.3, An EXPRESS language representation of the example	3
Fig 2.4, An example of a NIAM diagram	3
Fig 2.5, An example of an IDEFIX diagram	4
Fig 2.6, An example STEP file	4
Fig 2.7, Decomposition of Levels in RATAS project	5
Fig 2.3, EXPRESS-G Model of the RATAS project1	6
Fig 2.9, EXPRESS-G Model of the (IDM) of the COMBINE project	7
Fig 3.1, Comparison of different techniques in Coding22	2
Fig 3.2, The beam class24	4
Fig 3.3, Beam Instances	4
Fig 3.4, Inheritance hierarchy.	6
Fig 3.5, Example of composition2	7
Fig 3.6, Data Integration through Primitive Schema	
(Howard et al. (1992))2	8
Fig 3.7, Primitive Composite Scheme Proposed	0
Fig 3.8, Scheduling Primitive Classes	1
Fig 3.9, Architectural Elements Considered	2
Fig 3.10, Structural Elements Considered	2
Fig 3.11, Service Elements Considered	3
Fig 3.12, Building Class Hierarchy	4
Fig 3.13, Primitive Class Hierarchy	4
Fig 3.14, Express-G diagrams showing some basic relationships of	
the proposed product model	6
Fig 3.15. Decomposition of the Building	7

Fig 3.16, Wall elements	38
Fig 3.17, Parts, Part_Of Relations between Wall elements	38
Fig 3.18, Wall, Column Connections	39
Fig 3.19, Connected Relations between Wall elements and Columns	39
Fig 3.20, Walls, Doors, Windows Connections	40
Fig 3.21, Components, Component_of Relations of Walls,	
Doors, Windows	40
Fig 3.22, A Room	41
Fig 3.23, Component_of Relations of Walls, and Rooms	41
Fig 3.24, Components Relations of Walls, and Rooms	42
Fig 3.25, A Frame	42
Fig 3.26, A Column, Beam Connection	43
Fig 3.27, Connected relationship between column and beams	43
Fig 3.28, Parts, Part_Of relationship between Columns	44
Fig 3.29, A Slab, Beam Connection	44
Fig 3.30, A Slab, Beam Connection	45
Fig 3.31, A Local Area Network	46
Fig 3.32, Junction class	47
Fig 3.33, Junction and Path connection	47
Fig 3.34, Network layout of a building	48
Fig 3.35, Path and Sub_Path classes	49
Fig 3.36, Relationships between paths, subpaths and building entities	49
Fig 3.37, Outlet class	
Fig 4.1, Global Coordinates at Floors	
Fig 4.2, Local Coordinates at Walls and Frames	55
Fig 4.3, Local Coordinates of Doors and Windows	55
Fig 4.4, Local Coordinates of Columns, Beams defined with respect to I	Frames.56
Fig 4.5, Geometrical relationships between different elements	56
Fig 4.6, Wireframe Model, CSG Model, Hidden Lines Removal	57
Fig 4.7, Working with a CSG model	58

Fig 4.8, Representing Structural Elements
Fig 4.9, Representing Beams and Columns
Fig 4.10, Beams and Columns Connections
Fig 4.11, Representing Beams and Columns
Fig 4.12, Wall-Column Connections
Fig 4.13, Wall-Wall Connections
Fig 4.14, Outlet class65
Fig 5.1, Hypercard Application67
Fig 5.2, XSteel
Fig 5.3, Delphi Opening Screen
Fig 5.4, Standard and Additional components in VCL72
Fig 5.5, A Typical Form with labels, edit boxes and buttons72
Fig 5.6, Object Inspector for setting Properties and events
Fig 5.7, An Event handler for a command button73
Fig 5.8, Listing of complete program for form in Fig 5.574
Fig 5.9, Listing of main program for form in Fig 5.5
Fig 5.10, Declaration of GColumn Class
Fig 5.11, Implementation of the Draw Method in the GColumn Class77
Fig 5.12, An Abstract Primitive Class
Fig 5.13, Implementation of the Primitive Classes
Fig 5.14, Representation of Global Primitive
Fig 5.15, Representation of Local Primitives
Fig 5.16, PrimitiveBts property of a Building Component
Fig 5.17, PrimitiveStatus property of a Building Component
Fig 5.18, Algorithm used to display a primitive of a building component
Fig 5.19, Building component base class and declaration
Fig 5.20, Main class hierarchy for Building Components
Fig 5.21, Opening elements sub class hierarchy for Building Components86
Fig 5.22, Space elements sub class hierarchy for Building Components
Fig 5.23, Solid elements sub class hierarchy for Building Components

•

١

Fig 5.24, Structural elements sub class hierarchy for Building Components	87
Fig 5.25, Format of Data file for one entity	89
Fig 5.26, Example of Datafile, Example Data file with local primitives	90
Fig 5.27, Predefined Coordinate System in Delphi	91
Fig 5.28, Modified Coordinate System with Limits, Scale, Zoom,	
Pan functions	91
Fig 5.29, Classes that make up PROMOD's coordinate system	92
Fig 5.30, Algorithm used in MouseDown, MouseMove events	93
Fig 5.31, TSelection class that handles the user interactions	94
Fig 5.32, Listing of Neutral file format generated by PROMOD	95
Fig 5.33, 3D View of the Frame of a Building	96
Fig 5.34, 3D View of the walls of a Buildings	96
Fig 5.35, PROKON input file generated by PROMOD	97
Fig 6.1, Ground floor plan of building	101
Fig 6.2, First floor plan of building	102
Fig 6.3, Geometry of floors	103
Fig 6.4, Sample drawing with wall elements	104
Fig 6.5, Sample drawing with frames, columns and beams	106
Fig 6.6, Sample drawing with slab elements	108
Fig 6.7, Sample drawing with doors	109
Fig 6.8, Sample drawing with rooms	110
Fig 6.9, Sample PROMOD data file	111
Fig 6.10, Opening Screen of PROMOD	112
Fig 6.11, After opening sample	112
Fig 6.12, File Menu of PROMOD	112
Fig 6.13, Element Menu of PROMOD	112
Fig 6.14, View Menu of PROMOD	113
Fig 6.15, Selecting Area to Zoom	114
Fig 6.16, Zoomed Area	114
Fig 6.17, Selecting another Area to Zoom	114

Fig 6.18,	Further Zoomed Area114
Fig 6.19,	Selecting Direction of Pan115
Fig 6.20,	Panned Drawing
Fig 6.21,	Filtered to show Columns only115
Fig 6.22,	Filtered for Columns and Frames
Fig 6.23,	Selecting Bottom Frame
Fig 6.24,	Sectional View of Frame (Only Columns)116
Fig 6.25,	Sectional View of Frame (Columns and Beams)116
Fig 6.26,	Selecting Area to Zoom117
Fig 6.27,	Zoomed Sectional View117
Fig 6.28,	Drawing Limits117
Fig 6.29,	Draw Menu118
Fig 6.30,	Select Menu118
Fig 6.31,	Drawing Walls with Ortho on
Fig 6.32,	Zoomed Sectional View
Fig 6.33,	Select Menu120
Fig 6.34	Drawing Doors and Windows
Fig 6.35,	Zoomed Sectional View
Fig 6.36,	2D view of Building in AutoCAD121
Fig 6.37,	3D view of building in AutoCAD121
Fig 6.38,	3D View of Walls in Building122
Fig 6.39,	3D View of Frames of Building122
Fig 6.40,	Selected Frame to be Analyzed123
Fig 6.41,	Bending Moment Diagram of Selected Frame123
Fig 6.42,	Shear Force Diagram of Selected Frame124
Fig 6.43,	Axial Force Diagram of Selected Frame

LIST OF TABLES

1

P

Table 6.1, floor elements properties	13
Table 6.2, Various relationships used 10	14
Table 6.3, Relationships of walls taken from Fig 6.3 10	15
Table 6.4, Properties of Walls shown in Fig 6.3)5
Table 6.5, Relationships of frames taken from Fig 6.5)6
Table 6.6, Properties for frame elements shown in Fig 6.5)7
Table 6.7, Relationships of columns, beams taken from Fig 6.4)7
Table 6.8, Properties of Columns and Beams as shown in Fig 6.4)7
Table 6.9, Properties for slabs as shown in Fig 6.6 10)8
Table 6.10, Relationships of doors taken from Fig 6.7	19
Table 6.11, Properties for door elements shown in Fig 6.7	19
Table 6.12, Properties for room elements as shown in Fig 6.8	0

