
Service Oriented Software Framework for

Rapid Application Development

Rubasinghe N.

158773F

Faculty of Information Technology

University of Moratuwa

June 2018

Service Oriented Software Framework for

Rapid Application Development

Rubasinghe N

158750H

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the fulfilment of the requirements of Degree of Master of

Science in Information Technology

June 2018

i

Declaration

We declare that this thesis is our own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

Nishantha Rubasinghe ………………………………

Date: 2018-06-27 Signature of Student

Supervised by

Mr Chaman Wijesiriwardana

Senior Lecturer

Faculty of Information Technology

University of Moratuwa

 …………………………………..

Date: 2018-06-27 Signature of Supervisor

ii

Acknowledgements

I would like to express my gratitude to my supervisor Mr Chaman Wijesiriwardana,

Senior Lecturer at the University of Moratuwa, Sri Lanka whose expertise.

understanding. And patience added considerably to my research experience. I

appreciate his vast knowledge and skill in many areas and his assistance in writing

reports.

I would like to thank the other lecturers of University of Moratuwa, Sri Lanka.

especially, Prof. Asoka Karunananda for the knowledge and assistance they provided

at all levels of the research project.

I would also like to thank all the batch mates of the M.Sc. in IT degree program who

gave their valuable feedback to improve the results of the research and my family for

the support they provided me through my entire life and. I must acknowledge my wife

Shashikala, without whose love, encouragement and editing assistance I would not have

finished this thesis.

iii

Abstract

This paper proposes a service-oriented rapid application development framework for

application developments. It provides nine commonly use business patterns, the

application under development with representations for the data model, business logic,

API layer, user interfaces. Which are presented together with a diagram showing the

precedence for checking the convenience of their utilization? The paper describes the

layers, techniques, code generation, API testing tool and explores possible future

extensions.

Many aspects of software development projects can be improved with an information

architecture that provides a framework to automate the design, development, testing

processes using pre-defined patterns and automate processes to ensure that the process

is completed on time, within budget, and reliably with quality assurance. In this paper,

we address a critical aspect of the time-consuming gaps that exists between the process

of software design, implementation, and testing. The proposed pattern-based software

rapid development framework is intended to fill these gaps and provide a more

integrated approach in the development of a software system. We introduce the

capability to orchestrate new integration technology that leverages recent advances in

Web Services, including service-oriented architecture. This new approach can lead to

significant improvement in software productivity and quality by providing a platform

that bridges the gap between stakeholders and software engineers, as well as providing

a reliable integration mechanism using pattern-based service-oriented approach to

manage rapid changes in domain knowledge.

iv

Table of Contents

 Page

Declaration i

Acknowledgements ii

Abstract iii

Table of Contents iv

List of Figures v

List of Tables vi

Chapter 1 – Introduction 1

 1.1 Introduction 1

 1.2 Background and motivation 1

 1.3 Problem Definition 2

 1.4 Aim & Objectives 2

 1.5 Summary 3

Chapter 2 – Rapid Development Approaches 4

 2.1 Introduction 4

 2.2 Rapid Application Development 4

 2.3 Software Development Challenges 5

 2.4 Software Patterns 6

 2.5 Latest RAD Frameworks & Approaches 7

 2.6 Code Generations 8

 2.6 API Testing Tools 8

 2.7 Summary 9

Chapter 3 – Approach 10

 3.1 Introduction 10

 3.2 Hypothesis 10

 3.3 Major Phases of the Proposed Framework 10

 3.3.1 Identifying Common Business Patterns 10

 3.3.2 Code Generation Module 11

v

 3.3.3 Automate API Testing Tool 12

 3.4 Advantages & Limitations 13

 3.5 Summary 15

Chapter 4 – Design & Implementation 16

 4.1 Introduction 16

 4.2 Over roll Framework Design 16

 4.3 Top Level Architecture 17

 4.4 Analyzing & identifying patterns 18

 4.4.1 Pattern 1 18

 4.4.2 Pattern 2 20

 4.4.3 Pattern 3 22

 4.4.4 Pattern 4 25

 4.4.5 Pattern 5 28

 4.4.6 Pattern 6 30

 4.4.7 Pattern 7 33

 4.4.8 Pattern 8 37

 4.4.9 Pattern 9 40

 4.5 Common Functions of an Entity Model 43

 4.6 Code Generation 43

 4.7 API Testing Tool 45

 4.8 Summary 47

Chapter 5 – Evaluation 48

5.1 Introduction 46

5.2 Case Study Evaluation 46

5.2.1 Case Study 1 48

5.2.2 Case Study 2 50

5.3 Case Study Outcomes 52

5.4 Summary 52

vi

Chapter 6 – Conclusion 53

6.1 Introduction 53

6.2 Conclusion 53

6.3 Further Works 53

6.4 Summary 54

Chapter 7 – Reference 55

vii

List of Figures

 Page

Figure 3.5.2.1: Workflow of the code generation 11

Figure 4.3.1: System Architecture 17

Figure 4.4.1.1: Data Model of Pattern 1 18

Figure 4.4.1.2: Basic UI Input form of Pattern 1 19

Figure 4.4.2.1: Data Model of Pattern 2 20

Figure 4.4.2.2: Basic UI Input form of Pattern 2 21

Figure 4.4.3.1: Data Model of Pattern 3 22

Figure 4.4.3.2: Basic UI Input form of Pattern 3 24

Figure 5.4.4.1: Sample Data Model of Pattern 4 25

Figure 4.4.4.2: Basic UI Input form of Pattern 4 27

Figure 4.4.5.1: Data Model of Pattern 5 28

Figure 4.4.5.2: Basic UI Input form of Pattern 5 29

Figure 4.4.6.1: Data Model of Pattern 6 30

Figure 4.4.6.2: Basic UI Input form of Pattern 6 32

Figure 4.4.6.3: simplest UI Input form of Pattern 6 33

Figure 4.4.7.1: Data Model of Pattern 7 34

Figure 4.4.7.2: Basic UI Input form of Pattern 7 36

Figure 4.4.8.1: Data Model of Pattern 8 37

Figure 4.4.8.2: Basic UI Input form of Pattern 8 39

Figure 4.4.9.1: Data Model of Pattern 9 40

Figure 4.4.9.2: Basic UI Input form of Pattern 9 42

Figure 6.5.3: A screenshot of a single API test mode 46

Figure 5.1.1.2: Data Model of cash study 1 49

Figure 5.1.2.2: Data Model of cash study 2 51

viii

List of Tables

 Page

Table 4.5.1: Common API/UI function list for a pattern model 42

Table 4.5.2: entity configuration settings 43

Table 4.5.3: entity property configuration settings 44

Table 5.1.1.1: Case Study 1 - Entity mapping with patterns 48

Table 5.1.2.1: Case Study 2 - Entity mapping with patterns 50

1

Chapter 1

 Introduction

1.1 Prolegomena

Today, business moves faster, and clients tend to change their minds more frequently

over the course of a project’s development life cycle. Of course, they expect the

development team to adapt to their needs and modify the structure of an application

quickly. Software development process which minimizes the pre-planning phase, and

results in more rapid software development lifecycle. RAD is a methodology for

compressing the analysis, design, build, and test phases into a series of short, iterative

development cycles. The idea behind this methodology is to start developing as early

as possible so that clients can review a working prototype and offer additional

direction.

 we proposed pattern-based service-oriented framework for rapid development. which

cover not only the development, design, code generation and API testing. such a rapid

application development framework can improve developer productivity and improve

the quality, reliability, and robustness of new software. Developer productivity is

improved by allowing developers to focus on the unique requirements of their

application instead of spending time on application infrastructure

1.2 Background and motivation

Every single CEO of any IT company wants to build software in best quality and faster.

Time is the most expensive and valuable resource and quality is the most important

factor of success. It is obvious that skills improve development speed. More skilled

developers solve problems faster and create less complex solutions. Some say there

can be 10x productivity difference between extremely skilled and less skilled

developers. The next trivial question is what can be done to increase developers’ skills?

First Option is, you can hire only skilled developers. That might work, but this model

is not easily scalable. Skilled people tend to work on hard problems that demand their

skills.

The software process model such as RAD consists of a set of activities undertaken to

design, develop, testing and maintain software systems. A variety of software process

models have been designed to structure, describe and prescribe the software

2

development process. The software process models play a very important role in

software development, so it forms the core of the software product. Software project

failure is often devastating to an organization. Schedule slips, buggy releases, and

missing features can mean the end of the project or even financial ruin for a company.

Oddly, there is disagreement over what it means for a project to fail. In this paper, the

discussion is done on current process models and analysis on a failure of software

development, which shows the need for new research.

1.3 Problem Definition

There is a strong need for a new system development approach for application

development with accompanying framework that reduces design, development testing

time and software model reuse.

We understand that in traditional software development cycle most of the

developers using previously used or common business patterns. in the current

industrial scene, there is no service-oriented rapid application development framework

with integrated patterns between data models, business models, service layer, UI

templates and test automation

1.4 Aim & Objectives

1.4.1 Aim

The aim of this project is to developing service-oriented application development

framework which can increase productivity in the major phases software development

lifecycle. Especially in design, implementation, and testing

1.4.2 Objectives

• Identify common business patterns and templates for each category of

development (includes five key elements based on software system’s business

patterns: database layer, business logic layer, API layer, UI templates)

• Build a development framework with latest technologies and higher

development standards including the capability of customizing functionalities,

Code maintainability, add new features, modify existing features, improve

performance and readymade component collection such as role management and

permission management

3

• Build Integrated Code generator for above 2 steps. this is the most important

part of the research. even after identifying patterns & building templates for each

pattern, developers may have to spend some more time to implement and

integrate combined patterns, so our aim is to reduce development time as much

as possible. Additionally, we can minimize testing/bug fixing by automated code

generation and reducing human involvements for well-known and identified

patterns

• Build an automated test tool for APIs Testing. this also a one of the important

part of the research. the idea is reduced time for each level of development life

cycle mainly in Design, Development, Testing

1.5 Summary

This chapter gave an overview of the proposed solution for rapid development. A brief

introduction was given about rapid development methodology and this chapter

provides a discussion of some of the background and motivation for this study. We

defined the problem definition and aim and objectives. Next chapter shows the current

developments and approaches of rapid development frameworks.

4

Chapter 2

Rapid Development Approaches

2.1 Introduction

Over the last 30 years, the information technology industry has experienced constant

and rapid advances in computing devices, software products and technologies, and

changing requirements as consumers find new ways to use this technology. industry's

transition to distributed service-oriented applications that run on multiple computing

platforms, such as laptops, handheld PDAs, and smartphones. Subsequently, advances

in language paradigms, software design practices, and programming environments have

been driven by the need to support reuse, adaptability, and the management of

complexity within these software applications. These software characteristics are

critical to support higher levels of agility, productivity, quality, maintenance, and

evolution.

Business demand for new applications is increasing, but IT's ability to deliver them is

not according to latest researches. turnaround expected by the business for custom

development projects is shrinking. Rapid application development is quickly becoming

a necessity.

Rapid application development frameworks prioritize speed and agility so that IT teams

can increase their productivity and improve project outcomes. Instead of the typical

turnaround of months or years for new applications, rapid application development

enables, IT teams to deliver in a matter of days or weeks. improving the portability of

the user interface across multiple platforms and improve scalability should be one of

the main key features of feature RAD [1] frameworks

2.2 Rapid application development

Rapid Application Development (RAD) [1] is a condensed development process that

produces a high-quality system with low investment costs. RAD process allows

software developers to quickly adjust to shifting requirements in a fast-paced and

constantly changing market. The ability to quickly adjust is what allows such a low

investment cost. The Rapid Application Development method is divided into four

phases: Requirements Planning, User Design, Construction, and Cutover. The user

5

design and construction phases are repeated until the user approves that all the

requirements are met.

RAD is most effective for projects with a well-defined business objective and a clearly

defined user group, but which are not computationally complex. It is especially useful

if the project is of small to medium size and time sensitive. However, it requires a stable

team composition with highly skilled developers and users who are deeply

knowledgeable about the application area. Deep knowledge is essential when working

on a condensed development timeline that requires approval after each construction

phase. If you don't have these requirements, RAD may not work well for your

organization.

RAD takes advantage of automated tools and techniques to restructure the process of

building information systems. This new process, extrapolated to the entire IS

organization, results in a profound transformation of information systems development.

RAD replaces hand-design and coding processes, which are dependent upon the skills

of isolated individuals, with automated design and coding, which is an inherently more

stable process. RAD may thus give an IS organization its first real basis for continuous

improvement. In addition to being more stable, Rapid Application Development is a

more capable process, as it is much faster and less error-prone than hand coding.

The success of Rapid Application Development is contingent upon the involvement of

people with the right skills and talents. Excellent tools are essential to fast application

development, but they do not, by themselves, guarantee success. Fast development

relies equally heavily on the people involved. These people must thus be carefully

selected, highly trained, and highly motivated. They must be able to use the tools and

work together in close-knit teams. Rapid development usually allows each person

involved to play several different roles, so a RAD project mandates a great degree of a

cooperative effort among a relatively small group of people

2.3 Software Development Challenges

To have a successful software project, it is essential to identify what constitutes success.

Projects succeed when enough factors go well to allow a project’s objectives to be

satisfied. Project success and failure can rarely be described in absolute terms. If failure

is no accident, then success is no accident. Failure and success provide different

6

perspectives on improvement: failure tells what not to do in future, whereas success

shows what should be done again.

Using a structured systems development methodology is one of the critical success

factors in a systems development project. You must set a realistic timetable for the

completion of a systems project and expect that some deadlines will slip as unexpected

setbacks inevitably arise. The data model is the core of the system. Without a carefully

constructed data model, any system is doomed to failure.

2.4 Software Patterns

Some years ago Alexander Christopher noted that a pattern “describes a problem which

occurs over and over again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice” [10] On the other hand, Gamma et all

defined design patterns as "descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context" [11] From these

definitions it is understandable that patterns have two important parts: a problem and a

solution, Where the solution can be reused several times in different problem domains

The book Design Patterns: Elements of Reusable Object-Oriented Software [11]

launched an avalanche of best practices and share knowledge in the world of software

engineering and put the design patterns in the centre of software design and

development in a very practical way It is one of the most important pattern languages

in the software industry. A design pattern describes a commonly-recurring structure

of communicating components that solve a general design problem in a particular

context.

Architectural patterns [12] express fundamental structural organization schemas for

software systems. They provide a set of predefined subsystems, specify their

responsibilities, and include rules and guidelines for organizing the relationships

between them.

Cruz A, M [13], identified the most common use case patterns found on use case models

of data-oriented applications. These patterns are well - recognized from the different

types of relationships (e.g., master, master-detail or master-reference relationships)

7

established from the entities defined in a domain model level and, also from the

common CRUD operations found on these entities.

2.5 Latest RAD Frameworks & Approaches

Rapid application development focuses on four major components: tools, people,

methodology, and management. Current, powerful computing technology is essential

to support such tools as application generators, UI(screen/form) frameworks &

generators, report generators, pattern languages, relational or object-oriented database

tools, automated testing tools and CASE tools. People include users and the

development team. The methodology stresses prototyping and joint application design.

In this section, we are discussing few frameworks and approaches

Bootstrap [2] is a good example of UI framework, rather than coding from scratch,

Bootstrap enables you to utilize readymade blocks of code to help you get started.

Combine that with cross-browser compatibility and CSS-Less functionality, many

hours of coding can be saved. Pre-styled Components: Some basic components are

needed by all the web pages and we need not write it for all the web applications. For

example Sidebars, Navigation bars, Tabs etc. All these styled and readymade for design

noobs like us who barely use CSS. Bootstrap is the most popular framework for UI, but

its only for UI development such as (HTML, CSS, and Client-Side Components such

as jQuery plugins and Charts est.)

COTS Approach

Commercial off-the-shelf (COTS) [14] is a very common name for most of the

organizations nowadays. There are different types of COTS products, but here COTS

software is referred to as COTS. It is pre-built software. Here different components are

bought from different vendors and then integrating them we get the final product. Its

reusability property facilitates us with the variety of features with shrinking budget and

less time duration. The only successful way for a commercial off-the-shelf (COTS)

implementation to be successful is to decide at the outset that you are going to re-

engineer your business to fit the limitations of the COTS package. These packages

usually imply a specific method of doing business with a corresponding set of

8

capabilities. A managerial decision must be made that whatever the package does is

good enough and that customization is not an option.

2.6 Code Generations

 Code generation is an important part of today’s software development. Using code

generation can increase code quality, ease maintenance and shorten development time.

It can be used for development of different parts of software systems like database

access layers, business logic, API layer, user interface and many others. code generators

may be ready to use products or developed in-house for project’s specific requirements.

There are different tools and environments for the development of code generators.

Eclipse modelling framework (EMF) is a Java framework and code generation facility

for building applications and tools, based on structured models. EMF started as an

Implementation of MOF specification, but now it can be thought of as a highly efficient

Java implementation of a core subset of the MOF API. The meta-model definition or

meta meta-model in EMF is called Ecore

2.6 API Testing Tools

Several approaches to simplify testing RESTful APIs exist. commonly used tools like

JUnit1, NUnit and other xUnit frameworks aim at unit-testing. Their tight-coupling

with the implementation language of the subject under test makes it difficult to use them

for testing web-services. Therefore, many teams are searching for techniques to

improve testing such services. One approach is SoapUI, a tool which can configure test

cases for web-services by using a Service-Oriented-Architecture. The fact that it can

mainly be configured via its graphical interface makes it difficult to enable an

automated test case generation. Thus, it did not fulfil our requirements. Apache JMeter

[15] is an “open-source testing tool” developed by “Apache Software Foundation

(ASF)”. JMeter’s main function is to load test client/server. Moreover, JMeter is used

in regression testing by generating test scripts.

Even though there are several good REST API Testing Frameworks available in the

market today, they may not always suit your application, may need more configurations

for each API, sequential testing and model testing as I explained in approach chapter

9

[3.5.4]. since we are proposing code generator for our framework we can automate most

of the configuration with our own testing tool

2.7 Summary

This chapter gave an overview of the rapid application development and A brief

introduction was given about software development challenges, software patterns,

latest RAD frameworks & approaches, code generation tools and API testing tools.

Next chapter shows our approach for proposed rapid development framework of rapid

development frameworks.

10

Chapter 3

Approach

3.1 Introduction

Chapter 2 presented the rapid development approaches for software developments.

This chapter presents our approach to developing pattern-based service-oriented rapid

application development framework with industry’s most popular standards and

technologies

3.2 Hypothesis

Increasing productivity, reducing cost and improving quality, the major challenges

facing software development organizations can be summarized as more, better, and

faster by using pattern-based service oriented rapid application development

framework.

3.5 Major Phases of The Proposed Framework Development

From the framework development perspective, 6 different phases can be highlighted

1) Identifying Common Business Patterns

2) Develop Data Model

3) Develop API Model

4) Develop UI Model

5) Code Generation Module

6) Automate API testing Module

3.5.1 Identifying Common Business Patterns

Our main objective of this project was identifying set of integrated patterns that apply

to data models, business models, API models and UI models. Based on those patterns

we proposed a service-oriented rapid application development framework to improve

productivity and quality in all design, development and testing phases. In chapter 4

[4.4.1] we explain all patterns with pattern details

11

 3.5.2 Code Generation Module

this section we will describe our approach for code generation of the proposed

framework. Source code generation is one of the main assets of the proposed framework

if you wish to increase developer productivity.

Figure 4.5.1: Workflow of the code generation

this code generator populating code based on characteristics and behaviors of pre-

identified 9 patterns explained in [chapter 4.4]. purpose of this code generator is deliver

code which is consistent with the pre-decided set of functionalities. Additionally, these

generators can generate complex API and interface components including forms, filter

12

and several other advanced navigation features. The generated code is comparable to

the one written by the senior developers. since identified base code patterns and

functionalities written by senior developers. such a code generator create code and then

have nothing to do with the project. in other hand developers can focus on the unique

requirements of their application instead of spending time on application infrastructure

Our code generators are capable of:

1. Proper standard code base with infrastructure

2. Providing code generation any specific data model using identified patterns

3. Generating source code native to the target environment or platform (Exposing

Business Logic as REST API)

4. Providing easily modifiable and well-organized source code

5. Preserving customizations and modifications during subsequent application

regenerations

3.5.3 Automate API testing Module

 From the test implementation perspective, different design patterns can be understood

in automation module

1. Single API Tests

Filtering Options will be available to select APIs from Existing Restful API list.

once you selected an API, input section will be automatically populated. Ex: request

JSON, API input parameters

2. API Sequence Tests

Apart from testing of each API, the sequence of APIs to be called also a challenge

and may end up with inadequate coverage. For example, consider the sample

cashflow APIs as below:

1) Create User

2) Create Account

3) Create Sample Transaction

4) List Transactions by account

13

Apart from testing of each API, there can various sequences of flow can be made

from it. The output of an API can be used as an input to another API. All the

sequence flow should be covered to deliver a bug-free application.

3. Model Tests

This is also some kind of sequence testing, but the purpose of this type automatically

tests the model after generating source code

For example, consider the item model APIs as below:

1) Create Item

2) Create Update Item

3) Create Delete Item

4) Read Item

5) Search Items

6) Advanced Search Items

The idea is automating testing process for all the generated APIs

4.6 Advantages & Limitations

This section describes advantages and limitations of proposed framework

4.6.1 Advantages

Business Logic as Restful API

the REST protocol totally separates the user interface from the server and the data

storage. This has some advantages when making developments. For example, it

improves the portability of the interface to other types of platforms, it increases the

scalability of the projects and allows the different components of the developments to

be evolved independently.

The REST API always adapts to the type of syntax or platforms being used, which gives

considerable freedom when changing or testing new environments within the

development. With a REST API, you can have PHP, Java, Python or Node.js servers.

The only thing is that it is indispensable that the responses to the requests should always

take place in the language used for the information exchange, normally XML or JSON.

14

Pre-Build Components

Another major advantage of the proposed framework is providing a comprehensive set

of pre-built components that are commonly used in enterprise web applications. It offers

a solid foundation with components such as:

• Notification components

• Security Components

• User Management & Permission Components

Technical Skills

Another significant advantage is that the developers don't need to become technical

architecture experts: They can leverage the expertise of the enterprise's technical

architects. Similarly, it can help consultants come up to speed more quickly. And it can

also be used as a requirement in consulting contracts to ensure compliance with

enterprise standards.

Design Time

Designing data model, UI model, test model is much easier with our proposed identified

9 patterns. Your application consists of one or more entity models and you have to one

or more of patterns to generate an entity model.

 Code Generator

Using Code generation module to write code is a major advantage of the proposed

framework, otherwise, must be written by a person. This offers many benefits including

saving developers’ time, ensuring consistency and guaranteeing accuracy. By removing

the repetitive basic code creation chores, your developers are free to work on more

customization and logical tasks that require their individual skills. I should have

mentioned that Generating code that much closer to hand-written quality with good

industry standard was my major intention. in that way developers can easily customize

generated source code

Testing Time

Test automation saves testing time and resources. Test tools can execute tests faster

than a person can, and in most cases, they can do so in an unattended mode. So, test

automation should reduce test cycle time or the number of testers needed.

15

4.6.1 Limitations

1. Designed for data-oriented application development

2. Designed for relational database data model, this concept cannot be applied to

No SQL or any other data structure

3. UI code generation is only focused on backend development, admin, and

applications (not for front-end websites and apps)

4.7 Summary

This chapter gave an overview of our approach proposed solution and provides a

discussion of each module of proposed solution such as identifying common business

patterns, develop data model, develop API model, develop UI model, code generation

module and automate API testing module. We defined the problem definition and the

hypothesis for this thesis.

16

Chapter 4

Design & Implementation

4.1 Introduction

Chapter 3 presented the approaches for major components of the proposed rapid

development framework. This chapter presents details of designing & implementation

of each component, our approach is to complete development framework with

industry’s most popular standards and technologies

Technologies are constantly evolving and as developers, we need to cope up with what's

the latest or at least popular nowadays. As developers, we might find having a hard time

catching up with latest technologies because it will give you more confusion as to what

sets of technologies to use and where to start. We know that there are tons of resources

out there that you can use as a reference to learn but you still find it hard to connect the

dots in the picture. Sometimes you might think of losing the interest to learn and give

up. When we are thinking about framework development, we should mainly focus on

selecting wildly using technologies

4.2 Over roll framework design

In this paper, we propose a development framework, code generation, and API test

automation tool for rapid application development. The architecture of the development

framework is illustrated in Figure 5.3.1. As shown, the system builds the service layer

(Restful APIs) [3] for the presentation layer. After that, the code is generated from the

models with the real devices and the new service is registered. Users can then pick up

a registered service and deploy the generated code in an execution engine. The engine

provides an execution environment where a service can be loaded and scheduled to run.

17

4.3 Top Level Architecture

Figure 4.3.1: System Architecture

18

4.4 Analyzing & identifying patterns

From this section, we will provide a set of predefined subsystems, specify their

characteristics, responsibilities, and include rules and guidelines for recognizing each

pattern.

4.4.1 Pattern 1 – Simple Master Pattern

Context: Brand names in phone shop inventory, country list in e-commerce portal are

samples for this pattern. generally, this pattern is using for categories or types of

resources and settings.

Forces: independent entity, simple entity type without foreign keys

Problem: How can we manage categories of products or parties in a simplest and

reusable way?

Example: Brand Names (Toyota, Nissan, Audi) in Auto Classified site

Solution:

Data Model:

Figure 4.4.1.1: Data Model of Pattern 1

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Name 1"

 },

 {

19

 "ID": "23c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 1053,

 "Name": "Name 2"

 }, ...

]

POST: new

- API Template

{

 "Name": "Item Category 1",

 ...

}

POST: update

- API Template

{

 "ID":"13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Item Category 1",

 ...

}

 UI:

Figure 4.4.1.2: Basic UI Input form of Pattern 1

20

4.4.2 Pattern 2 – Association Pattern

Context: models in phone shop inventory, city list in e-commerce portal are samples

for this pattern. Generally, this pattern is using for referencing with another entity.

Forces: Dependent entity, at least one attribute which is a foreign key

Problem: How can we manage a many-to-one relationship entity data in a simplest and

reusable way? in this pattern, primary entity is a child entity

Example: Modes (Prius, Allion, Premio) and BrandNames (Toyota, Nissan, Audi) in

Auto Classified site

Solution:

Data Model:

Figure 4.4.2.1: Data Model of Pattern 2

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Name 1",

 "ItemCategory": {

 "ID": "d189a497-e7a8-4c13-ac88-149690bde176",

 "Code": 1,

 "Name": "ItemCategory 1"

 }

 }, ...

]

21

POST: new

- API Template

{

 "Name": "Item Sub Category 1",

 "ItemCategory": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 ...

}

POST: update

- API Template

{

 "ID":"abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name":"Item Sub Category 1",

 "ItemCategory": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 ...

}

Pattern-specific APIs:

GET: advanced search – new filtering option for category

GET: get list by category (GetListByCaregory)

- API Template

same as list json sample

UI:

Figure 4.4.2.2: Basic UI Input form of Pattern 2

22

5.4.3 Pattern 3 - One to One Pattern

Context: Employee – employee contact info in a payroll, customer – customer

membership info in an e-commerce site. Generally, this pattern is using keep partial

details of an entity.

Forces: a) secondary entity primary key same as the primary entity

 b) may need to update secondary data separately

 c) secondary entity data retrieval may be optional for some cases

Problem: How can we manage a one-to-one relationship entity data in a simplest and

reusable way?

Example: Customer - customer financial information in an account management

system

Solution:

Data Model:

Figure 4.4.3.1: Data Model of Pattern 3

API Structure:

GET: list, search, advanced-search & info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Customer 1 ",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }

 }, ...

23

]

POST: new

- API Template

{

 "Name": "Customer 1",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }, ...

}

POST: update

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Customer 1",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }, ...

}

Pattern specific APIs:

POST: update secondary data (UpdateContactInfo)

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }

}

POST: read secondary data (GetContactInfo)

- API Template

{

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "ContactInfo": {

 "Email": "test@test.com",

24

 ...

 }

}

UI:

Figure 4.4.3.2: Basic UI Input form of Pattern 3

25

4.4.4 Pattern 4 – Model Divide Pattern

Context: Employee – employee contact info in a payroll, customer – customer

membership info in an e-commerce site. Generally, this pattern is using keep partial

details in the same primary entity.

Forces: a) no secondary entity, keep partial data in the same primary entity

 b) may need to update secondary data separately

 c) secondary entity data retrieval may be optional for some cases

 c) data-model changed but others same as pattern 3

Problem: How can we manage a simple entity data with separation in a simplest and

reusable way?

Solution:

Data Model:

Figure 5.4.4.1: Sample Data Model of Pattern 4

API Structure:

GET: list, search, advanced-search & info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Customer 1 ",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }

26

 }, ...

]

POST: new

- API Template

{

 "Name": "Customer 1",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }, ...

}

POST: update

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Customer 1",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }, ...

}

Pattern specific APIs:

POST: update secondary data (UpdateContactInfo)

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "ContactInfo": {

 "Email": "test@test.com",

 ...

 }

}

POST: read secondary data (GetContactInfo)

- API Template

{

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "ContactInfo": {

27

 "Email": "test@test.com",

 ...

 }

}

UI:

Figure 4.4.4.2: Basic UI Input form of Pattern 4

28

4.4.5 Pattern 5 - Inheritance Pattern

Context: Ad – Auto Ad, Property Ad in a classified site, Employee – Manager in an

HRM system. Generally, this pattern is using inheritance entity types.

Forces:

a) a one-to-one relationship between primary entity & secondary entities

b) both base entity and derived entity (secondary entities) functionalities

should be implemented

Problem: How can we manage inheritance entity data in a simplest and reusable way?

Solution:

Data Model:

Figure 4.4.5.1: Data Model of Pattern 5

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Manager 1 ",

 "Department": "HR",

 ...

 }, ...

]

29

POST: new

- API Template

{

 "Name": "Manager 1",

 "Department": "HR",

 ...

}

POST: update

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Manager 1",

 "Department": "HR",

 ...

}

UI:

Figure 4.4.5.2: Basic UI Input form of Pattern 5

30

5.4.6 Pattern 6 - Associated Collection Pattern

Context: Ad- Image list in a classified site, this pattern is using secondary entity for

keeping a collection of items with reference to the primary entity.

Forces: a) secondary entity is a week entity

 b) small number of items attached to primary item

 c) secondary has only one dependent (primary entity)

 d) most of the time, lazy loading enabled

Problem: How can we manage entity which has a collection of independent items in a

simplest and reusable way?

Example:

Advertisement and Image list of the advertisement in a classified site

Solution:

Data Model:

Figure 4.4.6.1: Data Model of Pattern 6

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Job 1 ",

 "JobImages": [

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

31

 "Name": "Image 1"

 }, ...

]

 }, ...

]

POST: new

- API Template

{

 "Name": "Job 1",

 "JobImages": [

 {

 "Name": "Image 1"

 }, ...

]

}

POST: update

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Job 1",

 "JobImages": [

 {

 "ID": "ergb1fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Image 1"

 }, ...

]

}

Pattern specific APIs:

POST: update secondary data (UpdateImageList)

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "JobImages": [

 {

 "ID": "ergb1fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Image 1", ...

 }, ...

32

]

}

POST: read secondary data for selected record (GetImageList)

{

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "JobImages": [

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

 "Name": "Image 1"

 }, ...

]

 }

UI:

Figure 4.4.6.2: Basic UI Input form of Pattern 6

33

Figure 4.4.6.3: simplest UI Input form of Pattern 6

34

4.4.7 Pattern 7 - Simple Composite Pattern

Context: Student- Subjects in a school management system, select admins from

existing user list in CMS. this pattern is using composite entity for keeping a collection

of items with reference to the primary entity.

Forces: a) using a composite relationship to keep secondary item collection

 b) small number of items attached with primary item

 c) most of the time, lazy loading enabled

Problem: How can we manage a many-to-many relationship entity data in a simplest

and reusable way?

Example:

Student- Subjects in a school management system

Solution:

Data Model:

Figure 4.4.7.1: Data Model of Pattern 7

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Student 1 ",

 "Subjects": [

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

 "Name": "Subject 1"

35

 ...

 }, ...

]

 }, ...

]

POST: new

- API Template

{

 "Name": "Student 1",

 "Subjects": [

 {

 "Subject 1",

 "Subject 12", ...

], ...

}

POST: update

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": "Student 1",

 "Subjects": [

 {

 "Subject 1",

 "Subject 12", ...

 }, ...

]

}

36

UI:

Figure 4.4.7.2: Basic UI Input form of Pattern 7

37

4.4.8 Pattern 8 - Composite Pattern

Context: Set Branches including branch’s additional info like (phone), based on City

entity in a financial application. this pattern is using composite entity for keeping a

collection of items with reference to the primary entity.

Forces: a) using a composite relationship to keep secondary item collection

 b) small number of items attached with primary item

 c) most of the time, lazy loading enabled

Problem: How can we manage a many-to-many relationship entity with additional data

in a simplest and reusable way?

Example:

Student- Subjects in a school management system

Solution:

Data Model:

Figure 4.4.8.1: Data Model of Pattern 8

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Sampath Bank",

 "Branches": [

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

38

 "Name": "Kandy Branch"

 }, ...

]

 }, ...

]

POST: new

- API Template

{

 "Name": "Sampath bank",

 "Branches": [

 {

 "Name": "Kandy Branch"

 }, ...

]

}

POST: update

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name": " Sampath bank ",

 "Branches": [

 {

 "ID": "ergb1fd3-f2f5-4e94-87a6-0071304fd831",

 "Name": "Kandy Branch"

 }, ...

]

}

Pattern specific APIs:

POST: update secondary data (UpdateBranchList)

- API Template

{

 "ID": "abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Branches": [

 {

 "ID": "ergb1fd3-f2f5-4e94-87a6-0071304fd831",

 "Name": "Kandy Branch"

 }, ...

39

]

}

POST: read secondary data for the selected record (GetBranchList)

{

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Branches": [

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

 "Name": "Kandy Branch"

 }, ...

]

}

UI:

Figure 4.4.8.2: Basic UI Input form of Pattern 8

40

4.4.9 Pattern 9 - Independent Association Pattern

Context: Article- Comment list in a CMS, this pattern is using secondary entity for

keeping a collection of items with reference to the primary entity.

Forces: a) secondary entity is a week entity

 b) can manage secondary entity data independently

 b) a large number of items attached with primary item

 c) most of the time, lazy loading disabled

Problem: How can we manage entity which has a huge collection of independent items

in a simplest and reusable way?

Example:

 and Image list of the advertisement in a classified site

Solution:

Data Model:

Figure 4.4.9.1: Data Model of Pattern 9

API Structure:

GET: list, search, advanced search, and info

- API Template

[

 {

 "ID": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 "Code": 2085,

 "Name": "Item 1",

 "PriceLevels": [

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

 "Name": "Price 1"

41

 }, ...

]

 }, ...

]

POST: new

- API Template

{

 "Name": "Price Level 1",

 "Item": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 ...

}

POST: update

- API Template

{

 "ID":"abc61fd3-f2f5-4e94-87a6-0071304fd832",

 "Name":"Price Level 1",

 "Item": "13c61fd3-f2f5-4e94-87a6-0071304fd832",

 ...

}

Pattern-specific APIs:

POST: read secondary data for the selected record (GetPriceLevels)

- API Template

[

 {

 "ID": "a6c1cbf3-8bc2-4011-9491-10f9702a9221",

 "Name": "Price 1"

 }, ...

]

42

UI:

Figure 4.4.9.2: Basic UI Input form of Pattern 9

4.5 Common Functions of an Entity Model

. Entity model can be generated from a combination of patterns (one or more). below

list is the common finicalities of an entity model, in addition to that there may be pattern

specific new APIs and UI components, we have mentioned some of them pattern detail

sections. Ex: Pattern 2 (Association) adding new filter option for advanced search API

and UI (presentation layer). in next section, we will explain how we can use unique

characteristics for generating source code.

Table 4.5.1: Common API/UI function list for a pattern model

Action Rest API UI Description

Search Yes Yes General text search

AdvancedSearch Yes Yes Advanced search for each pattern

Create Yes Yes Create new record

Info Yes Yes Read existing record

Update Yes Yes Update existing record

Delete Yes Yes Delete existing record

Backup Yes Yes Backup a record

Restore Yes Yes Restore backup record

GetBackupsByID Yes Yes List backups by record id

GetBackupByID Yes Yes Get backup by backup id

43

4.5 Code Generation

Source code generation is one of the main assets of the proposed framework if you wish

to increase developer productivity. T4 template handles generating source code for each

layer from an entity framework metadata and entity configuration & entity property

configuration as explained below.

4.5.1 Entity Configuration

Entity model level preparties for code generation, all properties are optional, default

properties will be generated from data table properties

Sample JSON setting

{

 "ReLoad": "true",

 "MenuGroup": "Sales",

 "GenarateAPI": "True",

 "GenarateUI": "True",

 "DisplayColumn": "True",

 "BasePattern": "SimpleEntity",

}

JSON Property Description

ReLoad Reload entity model

GenarateAPI Generate APIs for this entity model

GenarateUI Generate UI for this entity model

BasePattern For recognize base pattern of the entity

MenuGroup Menu group is generated

Model Title Title for UI

Description Model description

Table 4.5.2: entity configuration settings

4.5.2 Entity Property Configuration

Entity model property level preparties for code generation, all properties are optional

default properties will be generated from data table column properties.

Sample JSON setting

{

 "InputType": "dropdownlist",

 "DisplayName": "Item Category",

44

 "Searchable": "True",

 "Orderable": "True",

 "DisplayColumn": "True",

 "Validations": [

 {

 "Type": "Required",

 "Message": "Select Item Category"

 }

],

 "DataItems": [

 {

 "Name": "English",

 "Value": "English"

 }

]

}

JSON Property Description

InputType Input type Ex: drop-down list

DisplayName Label for input (optional)

Searchable Search Option enable for API and UI

Orderable Order by Option enable for API and UI

DisplayColumn Show this column in list view/ search result

Validations Collection of validations for validate API and UI

DataItems Values for a drop-down list

Table 4.5.3: entity property configuration settings

Developer manages all the process of code re-generation, and he doesn't need to do

anything special to generate code for the model. the code is generated for a model

every time when the changed model is saved so that you always have all updates are

available in the code in each layer. if developing a model one by one or module by

module, you may disable code re-generation by using the “reload” property of an entity

configuration

T4 template handles generating source code for each layer from an entity framework

metadata and entity configuration & entity property configuration as I explain above.

T4 is aimed at developers who would like to either create modules based on identified

patterns to minimize handwritten code. With T4 we can generate code which simply

45

wraps calls to business logic, create Request/Response classes, and interface files such

as MVC components (model, view controller)

Since REST services should simply be a wrapper around our business logic, T4 we can

automate creation of REST APIs or any other service technology based on our interface

and model. This leaves the developer more time to focus on the business logic written

in C# and customization of the application

4.6 API Testing Tool

Even though there are many API Testing Frameworks available in the market today,

they may not always suit your application, may need more configurations for each API,

sequential testing and model testing steps as I explained in approach chapter. This may

call for the creation of your own rest testing framework.

Especially when you have code generation tools,

The framework should be able to execute the basic REST operations (GET, POST,

PUT, PATCH, DELETE) and perform the validations on the code, message, headers

and body of the response.

Single API Tests

Implement Filtering Options will be available to select APIs from Generated Existing

Restful API list. once you selected an API, input section will be automatically

populated. Ex: request JSON, API input parameters [Figure 6.5.3].

API Sequence Tests

Apart from testing of each API, there can various sequences of flow can be made from

it. The output of an API can be used as an input to another API. All the sequence flow

should be covered by testing of any use cases.

For example, consider the sample cashflow APIs as below:

1. Create User

2. Create Account

3. Create Sample Transaction

4. List Transactions by account

46

Model Tests

This is also some kind of sequence testing, but the purpose of this testing mode is

automatically tested all the APIs of a model after generating source code

For example, consider the item model APIs as below:

1. Create Item

2. Create Update Item

3. Create Delete Item

4. Read Item Sad

5. Search Items

6. Advanced Search Items

The idea is automating testing process for all the generated APIs,

Figure 6.5.3: a screenshot of a single API test mode

47

4.7 Summary

This chapter fully described the implementation of all the phrases of the proposed rapid

application development framework. Next chapter explains the evaluation of the

framework that we have already developed.

48

Chapter 5

Evaluation

5.1 Introduction

The previous chapter discussed the details on the implementation of all the modules of

the

proposed solution. This chapter justifies and evaluates the identified patterns and

proposed framework.

5.2 Case Study Evaluation

We use two case studies to evaluate your development framework with two different

software development teams. design of the case study covers major phases of our

framework such as design, the code generating & implementation and API testing

1) A classified website like ikman.lk

2) Cashflow application

5.2.1 Case Study 1:

We have selected a classified website like ikman.lk for evaluate our identified patterns

and framework. Figure 6.1.1 shows entity relationship and how its matched with our identified

patterns. Entity mapping fully fitted with our identified patterns. consider mapping

details as below

* - secondary entity

Entity Used Patterns Description

BrandName P1 Auto brands for vehicle ad type, Ex: Toyota,

Model P2 Vehicle models. Ex: Premio

User P3 User details with contact details

UserMembershipInfo *P3 User membership details

Ad P4, P5 Ad details with contact details

AutoSaleAd *P5 Auto Sale Ad details (Base type is Ad)

AdImage *P4 Collection of ads for Ad

Comment *P9 Collection of comments for Ad

Shop P1, P7, P8 Shop Details Ex: Car sale

ShopAdmin *P7 Collection of users for Shop

Branch *P8 Member financial overview

City P2 Location cities

District P1 Location districts

 Table 5.2.1.1: Case Study 1 - Entity mapping with patterns

49

Figure 5.2.1.2: Data Model of case study 1

50

5.2.2 Case Study 2:

The other selected case study is a Cashflow application, including bank accounts,

transactions, categories and member information.

Figure 6.1.2 shows entity relationship and how its matched with our identified patterns

Entity mapping fully fitted with our identified patterns. consider mapping details as

below

* - secondary entity

Entity Used Patterns Description

Account P2, P5, P9 Base Type of Accounts

CreditCardAccount *P5 Credit account details

TermDepositAccount *P5 Term Deposit account details

MortgageAccount *P5 Mortgage loan account details

Transaction *P9 Accounts transaction details

Member P1, P3, P4 Member personal & contact info

MemberEmploymentInfo *P3 Member employment info

MemberFinancialOverview *P3 Member financial overview

Category P1 Transaction category, Ex: Travel

SubCategory P2 Transaction Subcategory, Online booking

Table 5.2.2.1: Case Study 2 - Entity mapping with patterns

51

Figure 5.2.2.2: Data Model of cash study 2

52

5.3 Case Study Outcomes

• Data model & Entity mapping 100% fitted with our identified patterns

• Design decisions ware very easy and fast with pre-defined patterns

• Its took acceptable time to set up entity & entity property configuration [chapter

4.5.1], [chapter 4.5.2]

• Code generation was successful & finally, we got working application module

within the very small period. Generated project is not 100% suitable for

production. but it’s a more than 60-65% completed application with high-quality

industry standard code base.

• The generated source code is customizable, but it may take some developer to

familiarize with coding standard and unfamiliar technologies

• API testing tool is productive, Filtering options available for generated API list.

API testing configuration time can be reduced by automated API testing modes

[chapter 4.6]

5.4 Summary

This chapter fully described the evaluation of the proposed framework by using case

study evaluation method. we successfully used two case studies for evaluation for our

main objective of proposed framework. Next chapter explains the conclusion &

further works.

53

Chapter 6

Conclusion & Further work

6.1 Introduction

One of the biggest challenges that app developers faced before was ... The platform

supports rapid application development. One rapid application development tool for

building web, mobile, desktop, and server-based applications

6.2 Conclusion

Nowadays, business moves faster, and clients tend to change their minds more

frequently over the course of a project’s development life cycle. Of course, they expect

the development team to adapt to their needs and modify the structure of an application

quickly. Software development process which minimizes the pre-planning phase, and

results in more rapid software development lifecycle. RAD is a methodology for

compressing the analysis, design, build, and test phases into a series of short, iterative

development cycles. The idea behind this methodology is to start developing as early

as possible so that clients can review a working prototype and offer additional direction.

we proposed pattern-based service-oriented framework for data-oriented (information

systems) rapid application developments based on the most commonly used integrated

patterns. which cover not only the development, design, code generation and API

testing. such a rapid application development framework can improve developer

productivity and improve the quality, reliability, and robustness of new software.

Developer productivity is improved by allowing developers to focus on the unique

requirements of their application instead of spending time on application infrastructure

 6.4 Further work

Our main objective of this project was identifying set of integrated patterns that apply

to data models, business models, API model and UI templates. Based on those patterns

we proposed a service-oriented rapid application development framework to improve

productivity and quality in all design, development and testing phases. there are some

other areas in software development lifecycle which can be applied. especially in use

case specification in requirement engineering domain.

54

6.5 Summary

This chapter concludes the thesis by implementing a pattern-based service-oriented

rapid application framework and how it can be enhancing further to improve the

software development productivity and quality

55

Chapter 7

Reference

 [1] M. James, Rapid application development (RAD). Macmillan Publishing Co., Inc.

Indianapolis, IN, USA ©1991, 1991.

[2] Twitter, “Bootstrap HTML, CSS, and JS framework by Twitter.” [Online].

Available: http://getbootstrap.com/.

[3] R. T. Fielding and R. N. Taylor, Architectural styles and the design of network-

based software architectures. University of California, Irvine Doctoral dissertation,

2000.

[4] J. Cowan, J. Paoli, F. Yergeau, E. Maler, C. M. Sperberg-McQueen, and T. Bray,

“Extensible Markup Language (XML) 1.1,” W3C CR CR-Xml11-20021015, 2002.

[5] C. Douglas, “JSON (JavaScript Object Notation),” 1999. [Online]. Available:

http://www.json.org/.

[6] B. Don et al., “Simple Object Access Protocol (SOAP) 1.1.” 2002.

[7] Boyd, Lorraine. Business Patterns of Association Objects. In “Martin, Robert C.

(ed.); Riehle, Dirk (ed.) and Buschmann, Frank (ed.) Pattern Languages of Program

Design 3”, Addison-Wesley, pp. 395-408, 1998.

[8] Coad, P.; North, D.; Mayfield, M. Object Models: Strategies, Patterns and

Applications, Yourdon Press, 2nd edition, 1997.

[9] Johnson, Ralph and Woolf, Bobby. Type Object. In “Martin, Robert C. (ed.);

Riehle, Dirk (ed.) and Buschmann, Frank (ed.) Pattern Languages of Program Design

3”, Addison-Wesley, pp. 47-65, 1998.

[10] Christopher, A., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-king, I.,

Angel, S., A Pattern Language. Oxford University Press, New York, 1977.

[11] Gamma, E., Helm, R., Johnson, R., Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley Professional, 1994.

[12] L. Bass, P. Clements, and R. Kazman,Software Architecture in Practice,3rd ed.,

P. Gordon, Ed. Boston, Massachusetts, USA: Addison-Wesley Professional, 2012.

[13] CRUZ, A.M., A Pattern Language for Use Case Modeling, Proceedings of

MODELSWARD 2014, INSTICC Press,2014.

[14] M. Moristo, C. B. Seaman, V.R. Basili, A. T. Parra, S.E. Kraft, S.

E.Condo. COTS-based software development: Process and open issues, The Journal

of Systems and Software, September 2002.

[15] Halili, E.(2008). Apache JMeter: A practical beginner's guide to automated

testing and performance measurement for your websites, Birmingham: Packt

Publishing Limited.

56

[16] Coad, Peter. Object-Oriented Patterns. Communications of the ACM, V. 35,

nº9, pp. 152-159, September 1992.

[17] Johnson, Ralph and Woolf, Bobby. Type Object. In "Martin, Robert C (ed.);

Riehle, Dirk (ed.) and Buschmann, Frank (ed.) Pattern Languages of program

design 3", Addison-Wesley, pp. 47-65, 1998.

[18] Coad, P.; North, D.; Mayfield, M. Object Models: Strategies, Patterns and

Applications, Yourdon Press, 2nd edition, 1997.

[19] Boyd, Lorraine. Business Patterns of Association Objects. In “Martin, Robert

C. (ed.); Riehle, Dirk (ed.) and Buschmann, Frank (ed.) Pattern Languages of

Program Design 3”, Addison-Wesley, pp. 395-408, 1998.

Fowler, Martin. Analysis Patterns. Addison-Wesley, 1997.

