#### References

Pang, B., Lee, L. & Vaithyanathan, S., 2002. *Thumbs up? Sentiment Classification using Machine Learning Techniques*. Philadelphia, Association for Computational Linguistics.

Agarwal, A. et al., 2011. *Sentiment Analysis of Twitter Data*, New York: Department of Computer Science, Columbia University.

Amazon, 2018. Amazon Machine Learning. [Online]

Available at: <a href="https://aws.amazon.com/aml/">https://aws.amazon.com/aml/</a>

Amolik, A., Jivane, N., Bhandari, M. & D., 2016. Twitter Sentiment Analysis of Movie Reviews using Machine Learning Techniques.. *International Journal of Engineering and Technology,* p. 2038.

Anon., 2016. Internet usage statistics in Sri Lanka. [Online]

Available at: http://www.digitalmarketer.lk/internet-usage-statistics-in-sri-lanka.html

Anon., 2017. Web Apps Documentation. [Online]

Available at: <a href="https://docs.microsoft.com/en-us/azure/app-service/">https://docs.microsoft.com/en-us/azure/app-service/</a>

Anon., 2018. Azure Machine Learning Studio. [Online]

Available at: <a href="https://azure.microsoft.com/en-us/services/machine-learning-studio/">https://azure.microsoft.com/en-us/services/machine-learning-studio/</a>

Anon., 2018. Bayesian networks - an introduction. [Online]

Available at: https://www.bayesserver.com/docs/introduction/bayesian-networks

Anon., 2018. SAS Institute Inc.. [Online]

Available at: <a href="https://www.sas.com/en\_us/home.html">https://www.sas.com/en\_us/home.html</a>

Aslam, S., 2018. [Online]

Available at: <a href="https://www.omnicoreagency.com/twitter-statistics/">https://www.omnicoreagency.com/twitter-statistics/</a>

Becker, L., Erhart, G., Skiba, D. & Matula, V., 2013. AVAYA: Sentiment Analysis on Twitter with Self-Training. *Second Joint Conference on Lexical and Computational Semantics (\*SEM), Volume 2: Seventh International Workshop on Semantic,* p. 333–340.

Boiy, E., Hens, P., Deschacht, K. & Moens, M. F., June 2007. Automatic Sentiment Analysis in On-line Text. *Proceedings ELPUB2007 Conference on Electronic Publishing – Vienna, Austria.* 

Cambria, E., 2013. *An Introduction to Concept-Level Sentiment Analysis*, s.l.: Temasek Laboratories, National University of Singapore.

Davidov, D., Tsur, O. & Rappoport, A., 2010. Enhanced Sentiment Learning Using Twitter Hashtags and Smileys. *Coling 2010: Poster Volume*, August, p. 241–249.

Doyle, D., n.d. Ranks NL Webmaster Tools. [Online]

Available at: https://www.ranks.nl/

[Accessed 13 03 2018].

Ehrlich, K. & Shami, N. S., 2010. Microblogging Inside and Outside the Workplace. *IBM TJ Watson Research Center and Center for Social Software*.

Ericson, G. & Rohm, W. A., 2017. *What is Azure Machine Learning Studio?*. [Online] Available at: <a href="https://docs.microsoft.com/en-us/azure/machine-learning/studio/what-is-ml-studio">https://docs.microsoft.com/en-us/azure/machine-learning/studio/what-is-ml-studio</a>

Grandi, R. & Neri, F., 2014. Sentiment Analysis and City Branding. *New Trends in Databases and Information Systems: 17th East European Conference on Advances in Databases and Information Systems,* pp. 339-344.

Gupte, A., Joshi, S., Gadgul, P. & Kadam, A., 2014. Comparative Study of Classification Algorithms used in Sentiment Analysis. *International Journal of Computer Science and Information Technologies*, pp. 6261 - 6264.

IBM, 2018. IBM SPSS Software. [Online]

Available at: <a href="https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software">https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software</a>

Kalaria, A. & Prajapati, Z., 2016. Opinion Mining for Information Retrieval: Survey. *International Journal of Computer Science and Network*, pp. 934 - 940.

Kharde, V. A. & Sonawane, S., 2016. Sentiment Analysis of Twitter Data: A Survey of Techniques. *International Journal of Computer Applications* (.

Kolchyna, O., Souza, T. T. P., Treleaven, P. C. & Ast, T., 2015. *Twitter Sentiment Analysis: Lexicon Method, Machine, London: Department of Computer Science, UCL, Gower Street,*.

Liu, B., 2011. Web Data Mining, Exploring Hyperlinks, Contents, and Usage Data. s.l.:Springer.

Liu, B., 2012. Sentiment Analysis and Opinion Mining. *Synthesis Lectures on Human Language Technologies*, p. 167.

Luo, Z., Osborne, M. & Wang, T., 2013. An effective approach to tweets opinion. *World Wide Web*, 5-6 November.

Microsoft, 2017. Entity Framework Documentation. [Online]

Available at: https://docs.microsoft.com/en-us/ef/#pivot=entityfmwk&panel=entityfmwk1

Microsoft, 2017. Language Understanding (LUIS). [Online]

Available at: <a href="https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/">https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/</a>

[Accessed 12 3 2018].

Ortony, A., Clore, G. L. & Collins, A., 1990. *The Cognitive Structure of Emotions*. Cambridge: Cambridge University Press.

Pak, A. & Paroubek, P., 2010. *Twitter as a Corpus for Sentiment Analysis and Opinion Mining,* B^atiment: Universit´e de Paris-Sud, Laboratoire LIMSI-CNRS.

Paltoglou, G. & Thelwall, M., 2010. A study of Information Retrieval weighting schemes for sentiment analysis. *Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics*, p. 1386–1395.

Pang, B. & Lee, L., 2004.. A sentimental education: Sentiment analysis using. *In Proceedings of the 42nd annual meeting on Association for Computational Linguistics*, p. 271.

Parikh, R. & Movassate, M., 2009. Sentiment Analysis of User-Generated Twitter Updates using Various Classification Techniques, s.l.: s.n.

RapidMiner, 2018. [Online]

Available at: <a href="https://rapidminer.com/us/">https://rapidminer.com/us/</a>

Sumathi, S. & Sivanandam, S., 2006. *Introduction to Data Mining Principles, Studies in Computational*. s.l.:Springer-Verlag Berlin Heidelberg.

Turney, P. D., 2002. *Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews*. Philadelphia, s.n., pp. 417-424.

Twitter, 2017. *Twitter Developer Portal*. [Online] Available at: <a href="https://developer.twitter.com/">https://developer.twitter.com/</a>

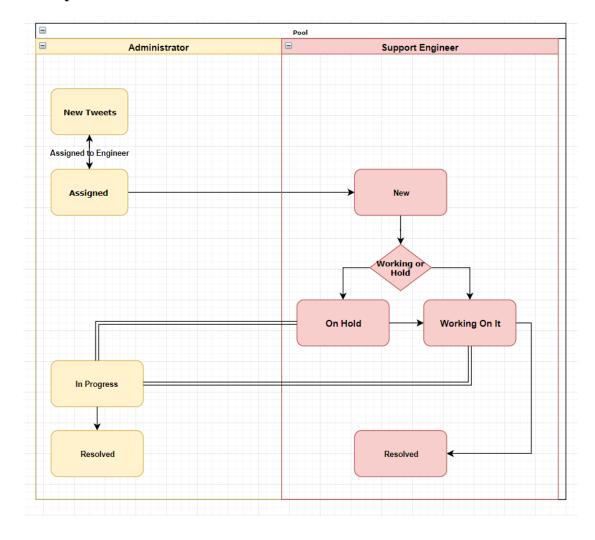
Twitter, 2017. *Twitter Developer Portal*. [Online] Available at: <a href="https://developer.twitter.com/">https://developer.twitter.com/</a>

Wilson, T., Wiebe, J. & Hoffmann, P., 2005. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. *Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language*, pp. 347 - 354.

## **Appendixes**

### 1.0 Acronyms and their meaning used in preprocessing

- UGC: User Generated Content
- WWW: World Wide Web
- ASAP: As soon as possible
- 3G: Third Generation (mobile communication system)
- 4G : Fourth Generation
- ADSL: Asymmetric Digital Subscriber Line
- CCTV: Closed Circuit Television
- CRUD: Create, read, update and delete
- AML : Azure Machine Learning
- LUIS: Microsoft Language Understanding Intelligent Services
- API : Application Programming Interface


## 2.0 Stopwords

| а       | did     | herself | not       | the        | we've    |
|---------|---------|---------|-----------|------------|----------|
| about   | didn't  | him     | of        | their      | were     |
| above   | do      | himself | off       | theirs     | weren't  |
| after   | does    | his     | on        | them       | what     |
| again   | doesn't | how     | once      | themselves | what's   |
| against | doing   | how's   | only      | then       | when     |
| all     | don't   | i       | or        | there      | when's   |
| am      | down    | i'd     | other     | there's    | where    |
| an      | during  | i'll    | ought     | these      | where's  |
| and     | each    | i'm     | our       | they       | which    |
| any     | few     | i've    | ours      | they'd     | while    |
| are     | for     | if      | ourselves | they'll    | who      |
| aren't  | from    | in      | out       | they're    | who's    |
| as      | further | into    | over      | they've    | whom     |
| at      | had     | is      | own       | this       | why      |
| be      | hadn't  | isn't   | same      | those      | why's    |
| because | has     | it      | shan't    | through    | with     |
| been    | hasn't  | it's    | she       | to         | won't    |
| before  | have    | its     | she'd     | too        | would    |
| being   | haven't | itself  | she'll    | under      | wouldn't |
| below   | having  | let's   | she's     | until      | you      |
| between | he      | me      | should    | up         | you'd    |
| both    | he'd    | more    | shouldn't | very       | you'll   |
| but     | he'll   | most    | so        | was        | you're   |
| by      | he's    | mustn't | some      | wasn't     | you've   |

| can't    | her    | my     | such   | we    | yours      |
|----------|--------|--------|--------|-------|------------|
| cannot   | here   | myself | than   | we'd  | your       |
| could    | here's | no     | that   | we'll | yourself   |
| couldn't | hers   | nor    | that's | we're | yourselves |

(Doyle, n.d.)

# 3.0 Cycle of an Issue

