
Improving Query Processing Performance in

Database Management Systems

Suren Dilanka Gamage

149210D

Faculty of Information Technology

University of Moratuwa

May 2018

Improving Query Processing Performance in

Database Management Systems

Suren Dilanka Gamage

Index no: 149210D

Dissertation submitted to the Faculty of Information Technology, University of
Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Master of

Science in Information Technology.
May 2018

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institution of tertiary education.
Information derived from the published or unpublished work of others has been
acknowledged in the text and a list of references is given.

…………………………………...... ……………………………
Name of Student (s) Signature of Student (s)

Date:

Supervised by

…………………………………… …………………………...
Name of Supervisor(s) Signature of Supervisor(s)

Date:

Dedication

This thesis is dedicated to my wife, Mrs. U. Kumarapeli for her endless love,
encouragement, and support.

Acknowledgments

First and foremost I would like to offer my sincere gratitude to my research
supervisor, lecturer Mr.Chaman Wijesiriwardana, for his guidance, supervision,
encouragement, and support throughout this study.
I would not know what research is and how to do research if the lecture series of
thesis writing and research methodologies are not offered. So I would like to offer my
sincere gratitude to the Prof. Asoka S. Karunananda for feeding the knowledge and
guidance for doing researches in the proper way.
I would also like to thank my lecturer S. Premaratne and all the lecturers of Faculty of
Information Technology – University of Moratuwa, for their guidance and
encouragement to get maximum use of knowledge and capabilities.
I am grateful to the management and Softlogic Holdings PLC for their kind support
and understanding during this work.
Finally, I would like to extend my deepest gratitude to my parents and family, for
their continuous support given in every possible way to make this project successful.

i

Abstract

Improving Query Processing Performance in Database Management Systems has been
a research challenge. This is the most important and is a real problem, this happens to
be very crucial in large organizations with heterogeneous data, online system, billing
systems and so on. Among other issues in the query optimization problem, faced by
everyday query optimizers, get more and more complex with the server increasing
complexity of user queries. During the last decade, database management systems have
become important information processing system supporting business activities of
geographically decentralized organizations.
The Performance monitoring has been evaluated and used by various tools. Most DBA's
agreed that these tools are valuable. Our research also tried to identify how performance
problems could be reduced and which methods were used in practice. Besides hardware
upgrades, the following areas in tuning are known to have major impacts.
The main aim of this thesis is to produce flexible database monitoring tool and query
optimization techniques that is capable of get basic idea of database server, database
log, missing indexes, graphical user interface of currently running queries, optimizing
large queries in a complex database. Among other issues in a database, such as
deadlock, expensive query, primary key missing places, badly design quarries can be
simply identified.
This database monitoring tool and proposed new optimization techniques will more
helpful to identify database performance issues and provide better solutions. During the
evaluation, it was shown that system was successful more than 70%.

ii

Table of Contents

Chapter 1 –Introduction ….…………………………………………………………1

1.1 Prolegomena ….. …………………………………………………………1
1.2 Background and Motivation … …………………………………………1
1.3 Problem statement …… …………………………………………………1
1.4 Hypothesis …….. …………………………………………………………2
1.5 Objectives ………...………………………………………………………2
1.6 Structure of the Thesis... …………………………………………………2
1.7 Summary ……… …………………………………………………………2

Chapter 2 -Developments and Challenges in Improving Query
 Processing Performance in Database Management Systems ………...3

2.1 Introduction ……...………………………………………………………3
2.1 Early developments ……...………………………………………………3
2.3 Modern trends in Improving Query Processing …… .…...……………4
2.4.1 Future challenges of Improving Query Processing ……….…………4
2.4.2 Big Data Management System …………………………….. …………5
2.4.3 Big Data Service Model ……………………………………. …………5
2.4.4 Non-structural and Semi-structured Data Storage ……… …………6
2.4.5 Data Virtualization Platform ……………………………… …………6
2.4.6 Distributed Applications …………………………………... …………6
2.4.7 Map Reduce ………………………………………………… …………6
2.4.8 Map Reduce Optimization ………………………………… …………7
2.4.9 Data Transfer Bottlenecks ………………………………… …………7
2.4.10 Index Optimization ……………………………………….. …………8
2.4.11 Iterative Optimization ……………………………………. …………8
2.5 Summary …………………………………………………………………8

Chapter 3 - Technology Adopted for Improving Query Processing
 Performance in Database Management Systems……………………..9

3.1 Introduction …...…………………………………………………………9
3.2 Technologies available …...……………………………………………...9
3.2.1 Database Monitoring ………………………………. .…...……………9
3.2.2 Query Analyzing and Optimization ………………………. …………9
3.3 Technology Stack …………………………………………….. ………..10
3.4 Summary ……………………………………………………… ………..10

Chapter 4 -An approach to on Improving Query Processing Performance in
Database Management Systems ……. ………………………………..11

4.1 Introduction …... ………………………………………………………..11
4.2 Hypothesis …….. ………………………………………………………..11
4.3 Users …... ………………………………………………………………..11
4.4 Input …... ………………………………………………………………..12
4.5 Output..... ………………………………………………………………..12
4.6 Process………………………………………………………………..12
4.7 Features...………………………………………………………………..20

iii

4.8 Summary.………………………………………………………………..20

Chapter 5 - Design and Implementation of Database monitoring app and
 Database query optimizing the prototype…………………………...21

5.1 Introduction ………………………………………………………….....21
5.2 Design Database Monitoring Application ….……………………….....21
5.3 Implementation of Database Monitoring Application ….…………....21
5.4 Query Optimization Techniques (Prototype) …..………………….....22
5.5 Implementation of Query Optimization Techniques.....................…...29
5.6 Overall System ……………………………………………………….....33
5.7 Summary ………….………………………………………………….....33

Chapter 6 - Evaluation...........…..34

6.1 Introduction ………………………………………………………….....34
6.2 Setup ……………………………………………………………….…....34
6.3 Evaluation Methodology for Database Monitor Application ………..34
6.4 Evaluation Methodology for Proposed
 New Optimization Techniques………...……………………………….34
6.5 Participants …………….………………………………………….…....50
6.6 Data Collection…………………………………………………….…....50
6.7 Discussion ………………………………………………………….…....50
6.8 Summary......……………………………………………………….…....50

Chapter 7- Conclusion and Further Work………………………………………..51

7.1 Introduction ………………………………………………………….....51
7.2 Overall Conclusion……………………………………………………...51
7.3 Objective Wise Conclusion..51
7.4 Further Work…………………………………………………………...51
7.5 Summary…………………...51

References … ………………………………………………………………………..52

iv

Appendixes………………………………………………………………………..54

Appendix A - User Interface and Architecture Diagram of the System…...........54

Security Module – Authentication…………………………………………………54

Control Module-Server and Database
Information………………………………………………………………….………54

Server Configuration……………………………………………………………….55

Database Server Performance Analyzer…………………………………………..55

Database Log Information and Suggestions………………………………………56

Database Performance Improvement Suggestions………………………………..56

Database Waiting

Tasks…………………………………………………………………………………57

Database Missing Index Details and
Suggestions………………………………..57

Database IO
Operations…………………………………………………………………………...58

Database Objects and Details………………………………………………………58

Database Monitoring Application Options………………………………………..59

Appendix B – Evaluation of Database Monitoring
Application...….……………60

Appendix C – Evaluation of proposed optimization techniques…………………65

v

List of Figures

Figure 3.1 – Technology Stack……………………………………………………..10

Figure 4.6.1 - Query cost……………………………………………………………16

Figure 4.6.2 - Execution plan……………………………………………………….17

Figure 4.6.2 - Execution plan……………………………………………………….24

Figure 5.2 find the 20 worst performing queries………………………………….25

Figure 5.3 How many times execution plan is re-used……………………………26

Figure 5.4 Find unnecessary indexes……………………………………………....28

Figure 5.5-Index creation process………………………………………………….30

Figure 5.6-Union operators………………………………………………………...31

Figure 5.7-Group by clause……………………………………………………...…32

Figure 5.8-Group by clause with count……………………………………………33

Figure 5.9-Group by clause with more column…………………………………...33

Figure 7.4.1.1 - Database server information from newly developed
Database Monitoring Application………………………………………….....…...61

Figure 7.4.1.2 - Database server information……………………………………..61

Figure 7.4.1.3 - Database server statistics from newly developed database
monitoring application……………………………………………………………..62

Figure 7.4.1.4 - Database server statistics…………………………………………62

Figure 7.4.1.5 – Missing index suggestions from newly developed database
monitoring application……………………………………………………………...63

Figure 7.4.1.6 – Missing index suggestions by manually…………………………63

Figure 7.4.1.7 – Database memory utilization details…………………………….64

Figure 7.4.1.7 – Database lock……………………………………………………...64

Figure 7.4.1.8 - Currently running Processors …………………………………...64

Figure 6.1 - Database Configuration……………………...……………………….65

Figure 6.1.2 - Complex SQL Query……………..…………………………………34

vi

Figure 6.2 - Complex Query
Execution Time…………………………………… ……….............……………….65

Figure 6.3 - QEP Plan………………………………………………………………66

Figure 6.3.1 - Proper Index………………………………………………………...36

Figure 6.4 – Query Execution Time after Index………………………………….66

Figure 6.4.1 - Difference between before and after indexes……………………...36

Figure 6.5 – SQL Profiler…………………………………………………………..67

Figure 6.5.1 – Take high execution query by SQL Profiler……………………...37

Figure 6.6 - SQL Profiler result……………………………………………………67

Figure 6.6.1 - Difference between before and after query optimized…………....37

Figure 6.7.1 – Traditional Query…………………………………………………..38

Figure 6.7 – SQL Server Execution time for Traditional query………………...68

Figure 6.8 – SQL Server Execution time for our new proposed query…………68

Figure 6.9 - Analyze by using Sentry Plan explore with IN…………………..….69

Figure 6.10 - Analyze by using Sentry Plan explore without IN…………………69

Figure 6.11.1 – Query with temp table…………………………………………….40

Figure 6.11 – Query cost with temp table……………………………...………….70

Figure 6.11.2 – Query with #temp table…………………………...………………41

Figure 6.12 - Figure 6.11 – Query cost with #temp table…………………………70

Figure 6.13.1 - Query with @temp table…………………………………………..42

Figure 6.13 - Query cost with @temp table……………………………….………71

Figure 6.14 - Sentry plan with #temp table………………………………………..71

Figure 6.15 - Sentry plan with @temp table………………………………………72

Figure 6.15.1 - #Table and @Table Difference….…………………………...……43

Figure 6.16 - How to find missing index………….………………………………..72

Figure 6.17.1 - Best practice for IN and Where…………………………………...44

Figure 6.17 - Analyzed best practice IN and Where Clause……….……………..73

vii

Figure 6.18.1 - Bad practice for IN and Where………….………………..............44

Figure 6.18 - Analyzed Bad practice IN and Where Clause…………….………..73

Figure 6.19.1 - Bad practice for IN and Where……………….…………………..45

Figure 6.19 - Analyzed bad practice IN and Where Clause………….…………..74

Figure 6.20.1 - Correlated SQL subqueries……………………………………….46

Figure 6.20 - QEP plan and Cost of Correlated SQL subqueries……………..…74

Figure 6.21- QEP plan and Cost of Correlated
SQL subqueries in Sentry planner………………………………………………...75

Figure 6.22.1 – Solution for Correlated SQL subqueries……………………..….46

Figure 6.22- Our Query QEP plan and Cost of Correlated SQL subqueries…..75

Figure 6.23 - Our Query QEP plan and Cost of Correlated
SQL subqueries in Sentry planner …..76

Figure 6.24.1 – Query with Cursor………………………………………………..47

Figure 6.24 – QEP in Cusror………………………………………………………76

Figure 6.25.1 - Alternative solution for cursor……………………………………48

Figure 6.25 - Alternative solutinon QEP plan and query cost…………………...76

Figure 6.26.1 - Using User Defined Functions..…...49

Figure 6.26 - Set no count on execution time……………………………………...77

Figure 6.27 - Without no count execution time...77

Figure 6.27.1 - Difference between set no count and without no count................50

List of Tables

Table 7.1 – Evaluation functionality in database monitoring
application…………………………………………………………………………...60

Table 6.8.1 – Differences between with IN and Remove IN……………………...39

Table 6.5 – Difference between set no count and without no count……………...49

 1

Chapter 1

Introduction

1.1 Prolegomena

This chapter presents the background and motivation of the research, hypothesis, objectives,
problem statement, our database performance improvements approach and the structure of the
rest of the thesis. Here we describe some of the key problem areas currently exist in the
world. Especially, database performance problems will be identified and solutions will be
proposed to address those problems.

1.2 Background and Motivation

Although the Database Management System has become a de-facto standard, its main
strengths have to be found in its ease-of-use and querying capabilities, rather than its
efficiency in terms of hardware and system overhead. With the constantly growing amount of
data being accumulated and processed by companies’ information systems, database
performance issues become more likely. In the meantime, user requirements and expectations
are constantly arising, and delay in response time could considerably affect the company's
operations. Database performance tuning, or database performance optimization, is the
activity of making a database system run faster. SQL optimization attempts to optimize the
SQL queries at the application Level, and typically offers the biggest potential for database
performance optimization.
The query optimizer is widely considered to be the most important part of a database system.
The main aim of the optimizer is to take a user query and provide a detailed plan called a
Query Execution Plan (QEP), then indicate to the executer exactly how the query should be
executed. The problem that the optimizer faces is, for a given user query, a large amount of
different equivalent QEPs exists, and each of them has a corresponding execution cost.

1.3 Problem statement

In the modern era, digital data are considered as the most valuable asset of an organization,
and the organizations assign more significance to it than the software and hardware assets.
Database systems are computer-based record keeping systems, which have been developed to
store data for efficient retrieval and processing. Since data is produced and shared every day,
data volumes could be large enough for the database performance to become an issue. In
order to maintain database performance, identification, and diagnosis of the root cause that
may cause delayed queries is done. Poor query design can be one of the major causes of
delayed queries. There are various methods available to deal with the performance issues.
Database administrator decides the method or a combination of methods that work best.

 2

1.4 Hypothesis

We hypothesize that simple and cost-effective Database monitoring app and proposed
database performance techniques would address problems in database performance issues,
can be developed using Microsoft Visual Studio, SQL, and best practices.

1.5 Objectives

(i) To study the current database performance issues related to SQL server applications.

(ii) To critically review the available methods for query performance analysis and
 Fine - tuning large complex SQL queries.

(iii) To do an in-depth study of database behaviors with a large amount of data.

(iv) To develop a new Database monitoring application.

(v) To provide a solution to database performance issues.

(vi) To allow third parties to use the system and techniques.

(vii) To evaluate the performance of the system.

1.6 Structure of the Thesis.

The rest of the thesis is organized as follows. Chapter 2 critically reviews the literature on
Improving Query Processing Performance in Database Management Systems and identify the
research problems. Chapter 3 includes the technology for Improving Query Processing
Performance in Database Management Systems. Chapter 4 presents our new approach to use
Improving Query Processing Performance in Database Management Systems. Chapter 5 and
Chapter 6 describe the design and implementation respectively. Chapter 7 is an evaluation of
the new method. Chapter 8 concludes the research with a note on further work.

1.7 Summary.

This chapter gave an overall picture of the entire project presented in this thesis. Further, we
described the background/motivation, problem definition, hypothesis, objectives, and a brief
overview of the solution. Next chapter presents a critical review of the literature on
improving the query processing performance in database management systems.

 3

Chapter 2

Developments and Challenges in Improving Query Processing
Performance in Database Management Systems.

2.1 Introduction

Chapter 1 gave a comprehensive description of the overall project described in this thesis.
This chapter provides a critical review of the literature in relation to Improve Query
Processing Performance in Database Management Systems developments and its challenges.

For this purpose, the review of the past researchers has been presented under five major
sections, such as Database optimization techniques, tools used to find database performance,
hardware configurations, proper database designing techniques and future challenges and find
out unsolved problems.

2.2 Early developments

With the rapid development of science and technology, information systems have become a
necessity in people's day to day life. Optimization of database systems plays an important
role and runs throughout the entire lifecycle of the database application, however,
performance for most database systems is only assessed after the completion of the entire
system at an early stage. Mostly, performance assessment for some database systems is
performed after system deployment [1]. The earlier optimization work starts, the less cost.
Database system performance tuning should be taken into consideration in design stage [2].
Andrew proposed a novel approach to database performance optimization meeting the
requirements of the query process [3].

A distributed relational database is a distributed database consisting of multiple physical
locations or sites and a number of relations. Relations may be replicated and/or fragmented at
different sites in the system. The placement of data in the system is determined by factors
such as local ownership and availability concerns. A distributed database management system
should not be confused with a parallel Database management system, which is a system
where the distribution of data is determined entirely by performance considerations. When
every site in the system runs the same DBMS software, the system is called ‘homogenous’.
Otherwise, the system is called a ’heterogeneous’ system or a multi-database system [4].

To achieve database tuning, it is important to understand the causes of the problems and find
the current bottlenecks as there can be various possible factors affecting the database
performance. A first category targets ‘hardware’ factors which include memory, processor,
and disk and network performance. Other category includes the database related factors such
as the database design, indexing, partitioning or locking. And sometimes application level
problems can also be the cause of performance degradation. [2]

 4

D. Kossmann et al[5] presented four different architectures based on classic multi-tier
database application architecture which includes partitioning, replication, distributed control
and caching architecture. It is clear that alternative providers have different business models
and target different kinds of applications: Google seems to be more interested in small
applications with light workload whereas Azure is currently the most affordable service for
medium to large services. Most of recent cloud service providers are utilizing hybrid
architecture which is capable of satisfying their actual service requirements. In this section,
we mainly discuss big data architecture from four key aspects such as; big data service
models, distributed file system, non-structural and semi-structured data storage and data
virtualization platform.

2.3 Modern trends in improving Query Processing

Performance tuning of database management system means enhancing the performance of the
database, i.e., minimizing the response time at a very optimum cost. As query response time
is the number one metrics when it comes to database performance, query optimization is one
of the important aspects of performance tuning. [15]

Column-oriented database systems (column-stores) have attracted a lot of attention in the past
few years. Column-stores, in a nutshell, store each database table column separately, with
attribute values belonging to the same column stored contiguously, compressed, and densely
packed, as opposed to traditional database systems that store entire records (rows) one after
the other. Reading a subset of a table's columns becomes faster, at the potential expense of
excessive disk-head seeking from column to column for scattered reads or updates. After
several dozens of research papers and at least a dozen of new column-store startups, several
questions remained. Is there a new breed of systems or simply old wine in new bottles? How
easily can a major row-based system achieve column-store performance? Is column-stores
the answer to effortlessly support large-scale data-intensive applications? What are the new,
exciting system research problems to tackle? What are the new applications that can be
potentially enabled by column-stores? In this tutorial, we present an overview of column-
oriented database system technology and address these and other related questions.

2.4.1 Future challenges of Improving Query Processing

Data processing is a common part of the processes inside every organization. Critical
challenges of these days come with well-known characters defined mostly for big data –
velocity, variety, and volume. Even new technologies exist, traditional data sources and
processes require a variety of different approaches. Current research and development in the
field of data processing accommodates knowledge from different areas including algorithms,
hardware, software, engineering, and social issues. Applications usually combine high-
performance computers for computation, high-performance databases and cloud servers for
data storage and management, and desktop computers for human-computer interaction source
for processing often comes from models or observations based on different scientific,
engineering, social, and cyber applications.

 5

Massive sets of data in pet bytes (1015) or terabytes (1012) are available for analytical and
transactional processing. Main application areas are medicine, large sensor networks, social
networks, and other industrial-based sources of data. The common factor is the existence of
connections between data which on the other hand leads to increased complexity of data sets.
In our paper, we will define some of our observations and selected experimental results to
describe basic challenges of data processing. We are dealing with three different approaches
such as relational, semantic, and graph based. All of these require accommodation of
different techniques.

2.4.2 Big Data Management System

According to a recent survey by Gartner in 2010g, 47% of survey respondents ranked data
growth in their top three challenges, followed by system performance and scalability at 37%,
and network congestion and connectivity architecture at 36%. Many researchers have
suggested that commercial Data Base Management Systems (DBMSs) are not suitable for
processing extremely big data. Classic architecture’s potential bottleneck is the database
server while facing peak workloads. One database server has the restriction of scalability and
cost [22], which are two important goals of big data processing in order to adapt various large
data processing models.

2.4.3 Big Data Service Model

As we all know, cloud computing is a kind of information and communication [29]
technology, which delivers valuable resources to people as a service, such as Software as a
Service (SaaS), Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) [24].
There are several leading Information Technology (IT) solution providers, who offer these
services to the customers. Now, as the concept of the big data came up, the cloud computing
service model is gradually transferring into big data service models, which are DaaS
(Database as a Service), AaaS (Analysis as a Service) and BDaaS (Big data as a Service). The
detailed descriptions are as follows: Database as a Service means that database services are
available applications deployed in any execution [28] environment, including on a PaaS. But
in the big data context, these would optimally be scale-out architectures such as No SQL data
stress and in-memory databases.

Analysis as a Service would be more familiar with interacting with an analytics platform on a
higher abstraction level. They would typically execute scripts and queries that data scientists
or programmers developed for them.

Big data as a Service coupled with Big Data platforms are for users that need to customize or
create new big data stacks, however, readily available solutions do not yet exist. Users must
first acquire the necessary cloud computing infrastructure, and manually install the big data
processing software. For complex distributed services, this can be a daunting challenge.

 6

2.4.4 Non-structural and Semi-structured Data Storage

With the success of the Web 2.0, most IT companies increasingly need to store and analyze
the ever-growing data, such as search logs, crawled web content and click streams collected
from a variety of web services, which are usually in the range of petabytes. However, web
datasets are usually non-relational or less structured and processing such semi-structured data
sets at scale poses another challenge. Moreover, simple distributed file systems mentioned
above cannot satisfy service providers like Google, Yahoo!, Microsoft and Amazon. All
providers have their purpose to serve potential users and own their relevant state-of-the-art of
big data management systems in the cloud environment. Big table [7] is a distributed storage
system of Google for managing structured data that is designed to a scale of a very large size
(petabytes of data) across thousands of commodity servers. Big table does not support a full
relational data model. However, it provides clients with a simple data model that supports
dynamic control over data layout and format. PNUTS [8] is a massive scale hosted database
system designed to support Yahoo! web applications.

2.4.5 Data Virtualization Platform

Data virtualization describes the process of abstracting disparate systems. It can be described
as conceptual building of abstract layers of resources. In short, big data and cloud computing
refer to a convergence of technologies and trends that are making IT infrastructures and
applications more dynamic, more modular and more consumable. Currently, the technology
of constructing virtualization platform is just in the primary phase, which mainly depends on
the cloud data center integration technology.

2.4.6 Distributed Applications

In this age of data explosion, parallel processing is essential to perform a massive volume of
data in a timely manner. In contrast, the use of distributed techniques and algorithms is the
key to achieve better scalability and performance in processing big data. At present, there are
a lot of popular parallel and distributed processing models, including MPI, General Purpose
GPU (GPGPU), Map Reduce and Map Reduce-like. We will focus on the last two processing
models.

2.4.7 Map Reduce

Map Reduce proposed by Google, is a very popular big data processing model that has
rapidly been studied and applied by both industry and academia [9]. Map Reduce has two
major advantages: it hides details related to the data storage, distribution, replication, load
balancing and so on. Furthermore, it is so simple that programmers only specify two
functions, such as ‘map function’ and ‘reduce function’. We divide existing Map-Reduce
applications into three categories as, partitioning sub-space, decomposing sub-processes and
approximate overlapping calculations. While Map Reduce is referred to as a new approach of

 7

processing big data in cloud computing environments, it is also criticized as a “major step
backwards” compared with DBMS. As the debate continues, the final result shows that
neither of them is good at what the other does well, and the two technologies are
complementary [19]. Recently, some DBMS vendors have integrated Map Reduce front-ends
into their systems including Aster, HadoopDB[14], Greenplum[15]. Most of those are still
databases, which simply provide a MapReduce front-end to a DBMS. HadoopDB is a hybrid
system which efficiently takes the best features from the scalability of Map Reduce and the
performance of DBMS. Lately, J. Dittrich et al. proposed a new type of system named
Hadoop++ which indicates that HadoopDB also has severe drawbacks, including forcing user
to use DBMS, changing the interface to SQL and so on.

2.4.8 Map Reduce Optimization

Previous works have shown that Map-Reduce systems are inefficient in utilizing computing
resources. In this section, we present details of approaches for improving the performance of
processing big data with Map Reduce.

 2.4.9 Data Transfer Bottlenecks

It is a big challenge that cloud users must consider how to minimize the cost of data
transmission. Consequently, researchers have begun to propose variety of approaches. Map-
Reduce-Merge[17] is a new model that adds a Merge phase after Reduce phase that combines
two reduce outputs from two different MapReduce jobs into one, which can efficiently merge
data that is already partitioned and sorted (or hashed) by Map and Reduce modules. Map-
Join-Reduce [18] is a system that extends and improves MapReduce runtime framework by
adding Join stage before Reduce stage to perform complex data analysis [19] tasks on large
clusters. The authors presented a new data processing strategy which runs filtering-join
aggregation tasks with two consecutive MapReduce jobs. It adopts one-to-many shuffling
[20] scheme to avoid frequent check pointing and shuffling of intermediate results. Moreover,
different jobs often perform similar work, thus sharing similar work reduces overall amount
of data transfer between jobs. MRShare[21] is a sharing framework proposed by T. Nykiel et
al. that transforms a batch of queries into a new batch that can be executed more efficiently
by Merging jobs into groups and evaluating each group as a single query.

 8

2.4.10 Index Optimization

Many researchers have implemented the traditional and optimized index structures on
MapReduce to obtain better performance. In, T. Liu et al. built hybrid spill trees in parallel
and implemented a scalable image searching algorithm which can be used efficiently to find
near duplicates among over billions of images using MapReduce. However, the tree-based
approaches have some problems. They did not scale due to traditional top-down search that
overloaded the nodes near the tree root, and failed to provide full decentralization. Whereas
Voronoi based index [22] made clusters highly scalable by its loose coupling and shared
nothing architecture. Till now, Voronoi based index cannot process multidimensional data.
Hence, the index structure which is simple, scalable and we’ll be used for distributed
processing mode is a best choice for the effective store and processing of the data. Later,
Menon et al. presented a novel parallel algorithm for constructing suffix array and BWT of a
sequence leveraging the unique features of MapReduce and reduced the end to end runtime
from hours to mere minutes. [22] There are also some papers adapting inverted index, which
is a simple but practical index structure and appropriate for MapReduce to process big data,
such as in[22] etc. We did a research on large-scale spatial data environment and designed a
distributed inverted grid index by combining inverted index and spatial grid partition with
MapReduce model, which is simple, dynamic, scalable and fits for processing high
dimensional spatial data.[23]While most kinds of large data are high dimensional, so in[24],
J.Wang et al. designed a new system, epic, in which different types of indexes were built to
provide efficient query processing for different applications.

2.4.11 Iterative Optimization

Classic parallel applications are developed using message passing runtimes such as MPI
(Message Passing Interface) and PVM (Parallel Virtual Machine), where parallel algorithms
are developed using above techniques to utilize the rich set of communication and
synchronization constructs offered which are to create diverse communication topologies
[29]. In contrast, MapReduce and similar high-level programming models support simple
communication topologies and synchronization constructs. MapReduce also is a popular
platform in which the data flow takes the form of a directed acyclic graph of operators.
However, it requires lots of I/Os and unnecessary computations while solving the problem of
iterations with MapReduce.

2.5 Summary

This chapter presented a comprehensive literature review on Improving Query Processing
Performance in Database Management Systems and identified the research problem as the
inadequate attention to reliability of Improving Query Processing Performance Techniques.
We also identified the various Methods to address the above problem. Next chapter will
discuss about the technology to be used for our solution.

 9

Chapter 3

Technology Adopted for Improving Query Processing Performance in
Database Management Systems

3.1 Introduction

In the previous chapter, various researchers to address the same issues were critically
reviewed. Advantages, disadvantages, and features of existing systems and proposed systems
were analyzed and listed.

In this chapter, technologies regarding database performance system will be described. Also,
technologies and methods and tools used in development, testing and implementation will be
discussed.

3.2 Technologies Available

3.2.1 Database Monitoring

Database monitoring app was developed under Microsoft Visual Studio .net framework 4.0
and language used C#, also background running tested large queries and will pop up all
details to the front end.

Database query fine tuning porotype was developed under SQL.it is all are precompiled.

3.2.2 Query Analyzing and Optimization

Microsoft SQL server comes with inbuilt Profiler. So we can use this for analyzing SQL
queries in some level. But its need more knowledge to use it.

SQL Sentry plan explore is another tool which I used in this research.it is analyze the query
and will give the performance statics, such as log write, read, idle time, index analyze.

Database Tuning Engine Advisor analyzes the query and provides a graphical report and it
shows index analysis. But it is a little bit difficult to handle and use.

 10

3.3 Technology Stack

Our Technology stack is C#, SQL database, and SQL Profiler. The overall technology stack
can be illustrated as Figure 3.1 – Technology Stack.

Figure 3.1 – Technology Stack.

3.4 Summary

In this chapter, the technologies used for our Database performance improvement techniques
were described. Further, the reasons for selecting relevant technologies were also explained.
And some advantages and disadvantages of technologies were briefly discussed.
In next chapter, the approach to implement our Database performance improvement
techniques will be described.

 11

Chapter 4

An approach to Improving Query Processing Performance in Database
Management Systems

4.1 Introduction

Having defined the problem in Chapter 2 we presented technology required for the proposed
solution in chapter 3. This chapter presents our novel approach to use C# and SQL
technology to address our research problem. The approach is described under the headings of
hypothesis, users, input to the system, output of the system, process to convert the input to the
output and overall features of the system.
One of the first tasks in database tuning is to understand the causes of the problem and find
the current bottlenecks. This is already challenging in itself, given the very diverse factor
affecting the overall database performance. A first category can be grouped under
"Hardware" and includes the processor, memory, and disk and network performance. Other
factors are more directly related to database systems itself, such as the database design,
indexing, partitioning or locking. Finally, the problem can also arise at the application level.

4.2 Hypothesis

We hypothesize that simple and cost-effective Database monitoring app and proposed
database performance techniques would address problems in database performance issues,
can be developed using Microsoft Visual Studio, SQL, and best practices.

4.3 Users

The number of users can be benefited by the Database performance monitoring system and
proposed performance improvement prototype. More importantly, Database administrator,
Database developers, System users, Customers and organizational management can be
directly benefited by the system.
University students who interested in Database systems and data analyzing can use the
system for learning purposes.
Software developing company who interesting product in Database systems and data
analyzing can use the system for business purposes.

4.4 Input

The system can accept any version of SQL server database from multiple servers which has
location any place and any remote servers. The input could be as,
Any user accessing the system data should go through an authentication process

 SQL Login Username, password (Authentication details)
 Complex SQL queries
 The large volume of a data table

 12

4.5 Output

4.5.1 Database Monitoring application output

 Database installation information

 Database version information

 The graphical graph with displaying all running query count(DB read, write, log read)

 Database allocated memory

 Performance improvement suggestion

 Currently, running process id's in SQL server

 Disk space analysis information

 Locked objects

 Waiting for task analysis

 Missing index details

4.5.2 Database Performance improvement prototype (suggested techniques)

 Reduce execution time

 Rich response time

 High throughput

 Faster processing of the query

 Lesser cost per query

 The high performance of the system

 lesser stress on the database

 Efficient usage of the database engine

 Lesser memory is consumed

4.6 Process

We have divided the entire process into two major parts which are the development of
databases monitoring app and proposed the new prototype for optimizing SQL queries.

4.6.2 Developed database monitoring app

A Database monitoring app consists of all the database retrieving, analysis, and suggestion
and provides graph and statistics of the database.

Graphs would be used for identifying the performance of current database and database
server.

 13

4.6.3 Queries Optimization techniques.

4.6.3.1 Introducing new Queries Optimization techniques.

Here we introduce our own two techniques to optimize complex queries which were found
during this research. Also, it was well tested and evaluated by using various types of
databases.

Technique 01: Avoid IN Operator in WHERE clause

Solution: Create the temp table and insert needed data and JOIN to the main query

If problematic query consists IN Operator then you must remove that and apply new method
as below mentioned way.

 Remove IN operator and create a #temp table instead of that and then insert necessary
data to that table

 After that create an index to the temp table.
 Then temp table will join with the base table.

This technique may be questioned for a first time user, but in deeply I have verified this new
technique and tested a large number of times, spending a longer period.

This technique would not be found in any research paper or any web reference since last
April.

Technique 02: Avoid temp tables as much as you can, but if you need a temp table, create it
explicitly using Create Table #temp

Solution: Create #temp table

4.6.3 Queries Optimization techniques (Prototype)

Writing efficient queries in SQL Server is more an exercise in writing elegant relational
queries than in knowing specific tricks and syntax tips. Generally, a well-written, relationally
correct query written against a well-designed relationally correct database model that uses the
correct indexes produces a system that performs fairly well and that is scalable. The
following guidelines may help you create efficient queries:

 Know the performance and scalability characteristics of queries.
 Write correctly formed queries.
 Return only the rows and columns needed.
 Avoid expensive operators such as NOT LIKE.
 Avoid explicit or implicit functions in WHERE clauses.
 Use locking and isolation level hints to minimize locking.
 Use stored procedures or parameterized queries.
 Minimize cursor use.
 Avoid long actions in triggers.

 14

 Use temporary tables and table variables appropriately.
 Limit query and index hints use.
 Fully qualify database objects.
 Avoid operators such as IN.
 Know the Performance and Scalability Characteristics of Queries

The best way to achieve performance and scalability is to know the characteristics of your
queries. Although it is not realistic to monitor every query, you should measure and
understand your most commonly used queries. Do not wait until you have a problem to
perform this exercise. Measure the performance of your application throughout the life cycle
of your application.

Good performance and scalability also require the cooperation of both developers and
database administrators. The process depends on both query development and index
development. These areas of development typically are found in two different job roles. Each
organization has to find a process that allows developers and database administrators to
cooperate and to exchange information with each other. Some organizations require
developers to write appropriate indexes for each query and to submit an execution plan to the
database architect. The architect is responsible for evaluating the system as a whole, for
removing redundancies, for finding efficiencies of scale, and for acting as the liaison between
the developer and the database administrator The database administrator can then get
information on what indexes might be needed and how queries might be used. The database
administrator can then implement optimal indexes.
In addition, the database administrator should regularly monitor the SQL query that
consumes the most resources and submits that information to the architect and developers.
This allows the development team to stay ahead of performance issues.

4.6.3.1 Write Correctly Formed Queries

Ensure that your queries are correctly formed. Ensure that your joins are correct, that all parts
of the keys are included in the ON clause, and that there is a predicate for all queries. Pay
extra attention to ensure that no cross products result from missing ON or WHERE clauses
for joined tables. Cross products are also known as Cartesian products.

Do not automatically add a DISTINCT clause to SELECT statements. There is no need to
include a DISTINCT clause by default. If you find that you need it because duplicate data is
returned, the duplicate data may be the result of an incorrect data model or an incorrect join.
For example, a join of a table with a composite primary key against a table with a foreign key
that is referencing only part of the primary key results in duplicate values. You should
investigate queries that return redundant data for these problems.

 15

4.6.3.2 Return Only the Rows and Columns Needed

One of the most common performance and scalability problems are queries that return too
many columns or too many rows. One query in particular that returns too many columns are
the often-abused SELECT * FROM construct. Columns in the SELECT clause are also
considered by the optimizer when it identifies indexes for execution plans. Using a SELECT
query not only returns unnecessary data, but it also can force clustered index scans for the
query plan, regardless of the WHERE clause restrictions. This happens because the cost of
going back to the clustered index to return the remaining data from the row after using a non-
clustered index to limit the result set is actually more resource-intensive than scanning the
clustered index.
The query shown in Figure 4.6.1 shows the difference in query cost for a SELECT *
compared to selecting a column. The first query uses a clustered index scan to resolve the
query because it has to retrieve all the data from the clustered index, even though there is an
index on the OrderDate column. The second query uses the OrderDate index to perform an
index seek operation. Because the query returns only the OrderID column, and because
the OrderID column is the clustering key, the query is resolved by using only that index. This
is much more efficient; the query cost relative to the batch is 33.61 percent rather than 66.39
percent. These numbers may be different on your computers.

 16

 Figure 4.6.1 - Query cost

4.6.3.3 Use Indexed Views for De-normalization

When you have joins across multiple tables that do not change frequently, such as domain or
lookup tables, you can define an indexed view for better performance. An indexed view is a
view that is physically stored like a table. The indexed view is updated by SQL Server when
any of the tables that the indexed view is based on are updated. This has the added benefit of
pulling I/O away from the main tables and indexes.

4.6.3.4 Partition Tables Vertically and Horizontally

You can use vertical table partitioning to move infrequently used columns into another table.
Moving the infrequently used columns makes the main table narrower and allows more rows
to fit on a page.
Horizontal table partitioning is a bit more complicated. But when tables that use horizontal
table partitioning are designed correctly, you may obtain huge scalability gains. One of the
most common scenarios for horizontal table partitioning is to support history or archive

 17

databases where partitions can be easily delineated by date. A simple method that you can use
to view the data is to use partitioned views in conjunction with check constraints.

Data-dependent routing is even more effective for very large systems. With this approach,
you use tables to hold partition information. Access is then routed to the appropriate partition
directly so that the overhead of the partitioned view is avoided.

If you use a partitioned view, make sure that the execution plan shows that only the relevant
partitions are being accessed. Figure 4.6.2 shows an execution plan over a partitioned view
on three orders tables that have been horizontally partitioned by the OrderDate column. There
is one table per year for 1996, 1997, and 1998. Each table has a PartitionID column that has a
check constraint. There is also a partition table that includes a PartitionID and the year for
that partition. The query then uses the partition table to get the appropriate PartitionID for
each year and to access only the appropriate partition.

Figure 4.6.2 - Execution plan

 18

4.6.3.5 Avoid Explicit or Implicit Functions in WHERE Clauses

The optimizer cannot always select an index by using columns in a WHERE clause that are
inside functions. Columns in a WHERE clause is seen as an expression rather than a column.
Therefore, the columns are not used in the execution plan optimization. A common problem
is date functions around date time columns. If you have a date time column in a WHERE
clause, and you need to convert it or use a data function, try to push the function to the literal
expression.
The following query with a function on the date time column causes a table scan in the
NorthWind database, even though there is an index on the OrderDate column:
SELECT OrderID FROM NorthWind.dbo.Orders WHERE DATEADD (day, 15,
OrderDate) = '07/23/1996'
However, by moving the function to the other side of the WHERE equation, an index can be
used on the datetime column. This is shown in the following example:
SELECT OrderID FROM NorthWind.dbo.Orders WHERE OrderDate = DATEADD (day, -
15, '07/23/1996')

4.6.3.6 SQL Tuning

SQL tuning is believed to have the largest impact on performance (more than 50%).SQL is a
declarative language which only requires the user to specify what data is wanted. There might
be hundreds or thousands of different ways to correctly process the query. Hence, it’s very
hard for the DBMS query optimizer to decide which access path should be used. The best
execution plan chosen by the query optimizer is called the query execution plan (QEP).

4.6.3.6.1 List of methods for SQL query tuning

4.6.3.6.1.1 Gather statistics

It is for Oracle DB. It relies on up to date statistics to generate the best execution plan.
Updated statistics help the optimizer to select perfect execution plan for a query.
It can be resource consuming. It must plan accordingly before executing. [3]

4.6.3.6.1.2 Index Management

Indexes are optional structures associated with tables and clusters that allow SQL statements
to execute more quickly against these tables. Index created columns help queries to select
using index instead of doing the full table scan, which is usually expensive.
DML statements can be slow if there is a lot of indexes on the table. [5]

 19

4.6.3.6.1.3 Table Reorganization

It is used to improve the performance of queries or DML operations performed against these
tables. All data blocks will be moved to be together and prevent fragmentation which can
cause slowness.
It is usually time-consuming and needs downtime. [6]

4.6.3.6.1.4 Prediction

It involves estimating the space used of a table, estimating the space use of an index and
obtaining Object Growth Trends. It is able to predict the problem before it happened.
Sometimes the predictions are not accurate because the data consumed is not increased in
sequence. [5]

4.6.3.6.1.5 Data Mart

A data warehouse is designed for data to be collected directly from the various sources. The
database will be grouped according to schemas and departments. It is easy to maintain and
improve the database performance.
It is applicable only to the schemas which are less than 100 GB. It is not optimum to use data
mart for the bigger database. [5]

4.6.3.6.1.6 Materialized View

It provides access to table data by storing the results of a query in separate schema object. It
results in fast synchronization between source and target. Data can be refreshed on preferred
method.
Complex queries on Materialized View tables perform badly, especially if there are joins with
other tables. [5]

4.6.3.6.1.7 Partition Table

It splits the table into smaller parts that can be accessed, stored and maintained independently
of one another. It improves performance when selecting data. It can be used easily for data
pruning.
It is hard for the DBAs to do maintenance on a partitioned table if it involves lots of partition
in a table. Index creation will be slow if a hash partition is used. [4]

 20

4.6.3.6.1.8 Query Rewriting

It consists of the compilation of an ontological query into an equivalent query against the
underlying relational database. It improves the way, data are being selected. By adding hints
in the SQL, it sometimes enhances the performance of individual queries.
It can be a troublesome job to change hardcoded queries. Queries that are tested thoroughly
could cause slowness.

4.6.3.6.1.9 Monitoring Performance

It is used to determine possible problems, locate the root cause and provide recommendations
for correcting them. It is able to identify the root cause of the problem.
Only DBA is able to do monitoring.

4.6.3.6.2.0 Optimization

Query optimization is the process of choosing the most efficient way to execute an SQL
statement. It helps queries to run faster. Data retrieval can be improved. Parameter tuning and
memory tuning enable the database to perform an optimum level.
It must be done with supervision and wrong parameter set can cause the database to go down
or perform badly. Memory leak is also possible.

4.7 Features

In connection with the input, output, users, and process, the over features of the system
include the following characteristics.

 Online database server analysis
 Online database analysis
 Easy to use
 High level of accuracy
 User-friendly
 Easy to install
 Easy to maintains.

4.8 Summary

In connection with the input, output, users, and process, the over features of the system
include the following characteristics.

 21

 Chapter 5

Design and Implementation of Database monitoring app and Database
query optimizing the prototype

5.1 Introduction

The previous chapter gave the full picture of the entire solution. This chapter describes the
design of the solution for the process presented in the approach. We design the solution as a
client-server system with a backend database and administration interface. Separate SQL
performance analysis and optimizing techniques designed to capture database performance
issues and solve them. Here we describe the top-level architecture of the design by
elaborating on the role of each component of the architecture.

To retain its users, any application or website must run fast. For mission-critical
environments, a couple of milliseconds delay in getting information might create big
problems. As database sizes grow day by day, we need to fetch data as fast as possible and
write the data back into the database as fast as possible. To make sure all operations are
executing smoothly, we have to tune our database server for performance.

The overall solution has been implemented as Microsoft based application running on SQL
server. A C# application is implemented as the main analyze source for the system. The
algorithms, hardware, software, pseudo codes and relevant code segments of the
implementation are presented in this chapter.

5.2 Design Database Monitoring Application

The architecture of Database monitoring app consists layered architecture.it consists of UI,
Logic, Controls, common and security layered.

Appendix A illustrates User interface of the system.

Database monitoring app consists of five main modules, namely, Performance analyzes, and
Server analyzes, Database connectivity and Activities of the database.

5.3 Implementation of Database Monitoring Application

The main application is developed on C# which is an object oriented languages with many
features. Its efficiency is high since it consumes few of system resources. It is cross-platform
and has object oriented features. C# is cross-platform since it is running on LINUX, UNIX
and WINDOWS. This was used considering the stability, security and further scalability

 22

5.4 Query Optimization Techniques (Prototype)

5.4.1 Finding the Culprits

Tools used to find culprits: Server Profiler / Tuning advisory / DB Monitor App

As with any other software, we need to understand that Database server (SQL) is a complex
computer program. If we have a problem with it, we need to discover why it is not running as
we expect.

From SQL Server we need to pull and push data as fast and as accurately as possible. If there
are issues, a couple of basic reasons, and the first two things to check, are:

The hardware and installation settings, which may need correcting since SQL Server needs
are specific

If we have provided the correct T-SQL code for SQL Server to implement

Even though SQL Server is proprietary software, Microsoft has provided a lot of ways to
understand it and use it efficiently.

If the hardware is OK and the installation has been done properly, but the SQL Server is still
running slowly, then first we need to find out if there are any software related errors. To
check what is happening, we need to observe how different threads are performing. This is
achieved by calculating wait statistics of different threads. SQL server uses threads for every
user request, and the thread is nothing but another program inside our complex program
called SQL Server. It is important to note that this thread is not an operating system thread on
which SQL server is installed; it is related to the SQLOS thread, which is a pseudo operating
system for the SQL Server.

Wait statistics can be calculated using sys.dm_os_wait_stats Dynamic Management View
(DMV), which gives additional information about its current state. There are many scripts
online to query this view, but my favorite is Paul Randal’s script because it is easy to
understand and has all the important parameters to observe wait statistics: Please refer the
Figure 5.1 for wait statistics

WITH [Waits] AS
(SELECT
[wait_type],
[wait_time_ms] / 1000.0 AS [WaitS],
([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
[signal_wait_time_ms] / 1000.0 AS [SignalS],
[waiting_tasks_count] AS [WaitCount],
100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
FROM sys.dm_os_wait_stats
WHERE [wait_type] NOT IN (

 23

N'BROKER_EVENTHANDLER', N'BROKER_RECEIVE_WAITFOR',
N'BROKER_TASK_STOP', N'BROKER_TO_FLUSH',
N'BROKER_TRANSMITTER', N'CHECKPOINT_QUEUE',
N'CHKPT', N'CLR_AUTO_EVENT',
N'CLR_MANUAL_EVENT', N'CLR_SEMAPHORE',
N'DBMIRROR_DBM_EVENT', N'DBMIRROR_EVENTS_QUEUE',
N'DBMIRROR_WORKER_QUEUE', N'DBMIRRORING_CMD',
N'DIRTY_PAGE_POLL', N'DISPATCHER_QUEUE_SEMAPHORE',
N'EXECSYNC', N'FSAGENT',
N'FT_IFTS_SCHEDULER_IDLE_WAIT', N'FT_IFTSHC_MUTEX',
N'HADR_CLUSAPI_CALL', N'HADR_FILESTREAM_IOMGR_IOCOMPLETION',
N'HADR_LOGCAPTURE_WAIT', N'HADR_NOTIFICATION_DEQUEUE',
N'HADR_TIMER_TASK', N'HADR_WORK_QUEUE',
N'KSOURCE_WAKEUP', N'LAZYWRITER_SLEEP',
N'LOGMGR_QUEUE', N'ONDEMAND_TASK_QUEUE',
N'PWAIT_ALL_COMPONENTS_INITIALIZED',
N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',
N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP',
N'REQUEST_FOR_DEADLOCK_SEARCH', N'RESOURCE_QUEUE',
N'SERVER_IDLE_CHECK', N'SLEEP_BPOOL_FLUSH',
N'SLEEP_DBSTARTUP', N'SLEEP_DCOMSTARTUP',
N'SLEEP_MASTERDBREADY', N'SLEEP_MASTERMDREADY',
N'SLEEP_MASTERUPGRADED', N'SLEEP_MSDBSTARTUP',
N'SLEEP_SYSTEMTASK', N'SLEEP_TASK',
N'SLEEP_TEMPDBSTARTUP', N'SNI_HTTP_ACCEPT',
N'SP_SERVER_DIAGNOSTICS_SLEEP', N'SQLTRACE_BUFFER_FLUSH',
N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',
N'SQLTRACE_WAIT_ENTRIES', N'WAIT_FOR_RESULTS',
N'WAITFOR', N'WAITFOR_TASKSHUTDOWN',
N'WAIT_XTP_HOST_WAIT', N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG',
N'WAIT_XTP_CKPT_CLOSE', N'XE_DISPATCHER_JOIN',
N'XE_DISPATCHER_WAIT', N'XE_TIMER_EVENT')
AND [waiting_tasks_count] > 0
)
SELECT
MAX ([W1].[wait_type]) AS [WaitType],
CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource_S],
CAST (MAX ([W1].[SignalS]) AS DECIMAL (16,2)) AS [Signal_S],
MAX ([W1].[WaitCount]) AS [WaitCount],
CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
CAST ((MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS
[AvgWait_S],

 24

CAST ((MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS
[AvgRes_S],
CAST ((MAX ([W1].[SignalS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS
[AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX ([W1].[Percentage]) < 95;
GO

Figure 5.1 wait statistics

When we execute this script, we need to concentrate on the top rows of the result because
they are set first and represent the maximum wait type.

We need to understand wait types so we can make the correct decisions. Let's take an
example where we have too much PAGEIOLATCH_XX. This means a thread is waiting for
data page reads from the disk into the buffer, which is nothing but a memory block. We must
be sure we understand what's going on. This does not necessarily mean a poor I/O subsystem
or not enough memory and increasing the I/O subsystem and memory will solve the problem,
but only temporarily. To find a permanent solution we need to see why so much data is being
read from the disk: What types of SQL commands are causing this? Are we reading too much
data instead of reading less data by using filters, such as where clauses? Are too many data
reads happening because of table scans or index scans? Can we convert them to index seeks
by implementing or modifying existing indexes? Are we writing SQL queries that are
misunderstood by SQL Optimizer (another program inside our SQL server program)?
We need to think from different angles and use different test cases to come up with solutions.
Each of the above wait types needs a different solution. A database administrator needs to
research them thoroughly before taking any action. But most of the time, finding problematic
T-SQL queries and tuning them will solve 60 to 70 percent of the problems.

5.4.2 Finding Problematic Queries

As mentioned above, the first thing we can do is to search problematic queries. The following
T-SQL code will find the 20 worst performing queries. Please refer Figure 5.2

SELECT TOP 20

total_worker_time/execution_count AS Avg_CPU_Time

,Execution_count

,total_elapsed_time/execution_count as AVG_Run_Time

,total_elapsed_time

 25

,(SELECT

SUBSTRING(text,statement_start_offset/2+1,statement_end_offset

) FROM sys.dm_exec_sql_text(sql_handle)

) AS Query_Text

FROM sys.dm_exec_query_stats

ORDER BY Avg_CPU_Time DESC

Figure 5.2 find the 20 worst performing queries

We need to be careful with the results; even though a query can have a maximum average
runtime, if it runs only once, the total effect on the server is low compared to a query which
has a medium average runtime and runs lots of times in a day.

5.4.3 Fine Tuning Queries

The fine-tuning of a T-SQL query is an important concept. The fundamental thing to
understand is how well we can write T-SQL queries and implement indexes so that the SQL
optimizer can find an optimized plan to do what we wanted it to do. With every new release
of SQL Server, we get a more sophisticated optimizer that will cover our mistakes in writing
not optimized SQL queries, and will also fix any bugs related to the previous optimizer. But,
no matter how intelligent the optimizer may be, if we can't tell it what we want (by writing
proper T-SQL queries), the SQL optimizer won't be able to do its job.
SQL Server uses advanced search and sorting algorithms. If we are good at search and sorting
algorithms, then most of the time we can guess why SQL Server is taking the particular
action.

The best book for learning more and understanding such algorithms is the art of the computer
by Donald Knuth.

When we examine queries that need to be fine-tuned, we need to use the execution plan of
those queries so that we can find out how SQL server is interpreting them.
I can't cover all the aspects of the execution plan here, but on a basic level, I can explain the
things we need to consider.

First, we need to find out which operators take most of the query cost.
If the operator is taking a lot of costs, we need to learn the reason why. Most of the time,
scans will take up more cost than seeks. We need to examine why a particular scan (table
scan or index scan) is happening instead of an index seek. We can solve this problem by
implementing proper indexes on table columns, but as with any complex program, there is no
fixed solution. For example, if the table is small then scans are faster than seeks.

 26

There are approximately 78 operators, which represent the various actions and decisions of
the SQL Server execution plan. We need to study them in-depth by consulting the Microsoft
documentation so that we can understand them better and take proper action.

5.4.4 Execution Plan Re-Use

Even if we implement proper indexes on tables and write good T-SQL code, if the execution
plan is not reused, we will have performance issues. After fine-tuning the queries, we need to
make sure that the execution plan may be re-used when necessary. Most of the CPU time will
be spent on calculating execution plan that can be eliminated if we re-use the plan.

We can use the query below to find out how many times execution plan is re-used,
where usecounts represents how many times the plan is re-used. Please refer Figure 5.3

SELECT [ecp].[refcounts]

, [ecp].[usecounts]

, [ecp].[objtype]

, DB_NAME([est].[dbid]) AS [db_name]

, [est].[objectid]

, [est].[text] as [query_ext]

, [eqp].[query_plan]

FROM sys.dm_exec_cached_plans ecp

CROSS APPLY sys.dm_exec_sql_text (ecp.plan_handle) est

CROSS APPLY sys.dm_exec_query_plan (ecp.plan_handle) eqp

Figure 5.3 How many times execution plan is re-used

The best way to re-use the execution plan is by implementing parameterized stored
procedures. When we are not in a position to implement stored procedures, we can

use sp_executesql , which can be used instead to execute T-SQL statements when the only

change to the SQL statements are parameter values. SQL Server most likely will reuse the
execution plan that is generated in the first execution.
Again, as with any complex computer program, there is no fixed solution. Sometimes it is
better to compile the plan again.

Let’s examine following two example queries:

 select name from table where name = 'Sri';

 select name from table where name = 'pal';

 27

Let us assume we have a non-clustered index on the name column and half of the table has

value Sri and few rows have the pal in the name column. For the first query, SQL Server

will use the table scan because half of the table has the same values. But for the second query,

it is better to use the index scan because only a few rows have pal value.

Even though queries are similar, the same execution plan may not be the good solution. Most
of the time it will be a different case, so we need to carefully analyze everything before we
decide. If we don't want to re-use the execution plan, we can always use the "recompile"
option in stored procedures.

Keep in mind that even after using stored procedures or sp_executesql , there are times when

the execution plan won’t be re-used. They are:
 When indexes used by the query change or are dropped
 When the statistics, structure or schema of a table used by the query changes
 When we use the “recompile” option
 When there are a large number of insertions, updates or deletes
 When we mix DDL and DML within a single query

5.4.5 Removing Unnecessary Indexes

After fine-tuning the queries, we need to check how the indexes are used. Index maintenance
requires lots of CPU and I/O. Every time we insert data into a database, SQL Server also
needs to update the indexes, so it is better to remove them if they are not used.

SQL server provides us dm_db_index_usage_stats DMV to find index statistics. When we

run the T-SQL code below, we get usage statistics for different indexes. If we find indexes
that are not used at all or used rarely, we can drop them to gain performance.
Please refer figure 5.4

SELECT

OBJECT_NAME(IUS.[OBJECT_ID]) AS [OBJECT NAME],

DB_NAME(IUS.database_id) AS [DATABASE NAME],

I.[NAME] AS [INDEX NAME],

USER_SEEKS,

USER_SCANS,

USER_LOOKUPS,

USER_UPDATES

FROM SYS.DM_DB_INDEX_USAGE_STATS AS IUS

 28

INNER JOIN SYS.INDEXES AS I

ON I.[OBJECT_ID] = IUS.[OBJECT_ID]

AND I.INDEX_ID = IUS.INDEX_ID

Figure 5.4 Find unnecessary indexes

5.4.6 There are several considerations when writing a query using the IN operator that
can have an effect on performance

IN clauses are generally internally rewritten by most databases to use the OR logical
connective. So col IN ('a','b','c') is rewritten to: (COL = 'a') OR (COL = 'b') or (COL = 'c').
The execution plan for both queries will likely be equivalent assuming that you have an index
on col.

When using either IN or OR with a variable number of arguments, you are causing the
database to have to re-parse the query and rebuild an execution plan each time the arguments
change.

Building the execution plan for a query can be an expensive step. Most databases cache the
execution plans for the queries they run using the EXACT query text as a key. If you execute
a similar query but with different argument values in the predicate - you will most likely
cause the database to spend a significant amount of time parsing and building execution
plans.

This is why Join Temp table or bind variables are strongly recommended as a way to ensure
optimal query performance.

Many databases have a limit on the complexity of queries they can execute - one of those
limits is the number of logical connectives that can be included in the predicate. In your case,
a few dozen values are unlikely to reach the built-in limit of the database, but if you expect to
pass hundreds or thousands of value to an IN clause - it can definitely happen. In which case
the database will simply cancel the query request.

Queries that include IN and OR in the predicate cannot always be optimally rewritten in a
parallel environment. There are various cases where parallel server optimization does not get
applied - MSDN has a decent introduction to optimizing queries for parallelism. Generally,
though, queries that use the UNION ALL operator are trivially parallelizable in most
databases - and are preferred to logical connectives (like OR and IN) when possible.

 29

5.4.7 Avoid Cursors

SQL Server cursors are notoriously bad for performance. In any good development
environment, people will talk about cursors as if they were demons to be avoided at all costs.
The reason for this is plain and simple; they are the best way to slow down an application.
This is because SQL Server, like any good relational database management system
(RDBMS), is optimized for set-based operations.

5.5 Implementation of Query Optimization Techniques

Below is my list of the top 17 things I believe developers should do as a matter, of course, to
tune performance when coding. These are the low hanging fruit of SQL Server performance –
they are easy to do and often have a substantial impact. Doing these won't guarantee lightning
fast performance, but it won't be slow either.

1. Create a primary key on each table you create and unless you are really
knowledgeable enough to figure out a better plan, make it the clustered index (note
that if you set the primary key in Enterprise Manager it will cluster it by default).

2. Create an index on any column that is a foreign key. If you know it will be unique, set
the flag to force the index to be unique. I recommend using below diagram table
(Figure 5.5) when structuring your indexes.

 30

Figure 5.5-Index creation process

3. Don’t index anything else (yet).

 4. UNION matchup

SQL's UNION operator lets you combine records from different sources using the
following form. Please refer the figure 5.6

 31

SELECT1 list|*
UNION
SELECT2 list|*

Figure 5.6-Union operators

The important thing to remember with a UNION is that the column order in both
SELECT statements must match. The column names don't have to match, but each list
must contain the same number of columns and their data types must be compatible. If
the data types don't match, the engine sometimes chooses the most compatible for
you. The results might work, but then again, they might not.

By default, UNION sorts records by the values in the first column because UNION
uses an implicit DISTINCT predicate to omit duplicate records. To include all
records, including duplicates, use UNION ALL, which eliminates the implicit sort. If
you know there are no duplicate records, but there are a lot of records, you can use
UNION ALL to improve performance because the engine will skip the comparison
that's necessary to sort (to find duplicates).

4. Unless you need a different behavior, always owner qualify your objects when you
reference them in TSQL. Use dbo.sysdatabases instead of just sysdatabases.

5. Use set nocount on at the top of each stored procedure (and set nocount off) at the
bottom.

6. Think hard about locking. If you’re not writing banking software, would it matter that
you take a chance on a dirty read? You can use the NOLOCK hint, but it’s often
easier to use SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
at the top of the procedure, then reset to READ COMMITTED at the bottom.

7. I know you’ve heard it a million times, but only return the columns and the rows you
need.

8. Use transactions when appropriate, but allow zero user interaction while the
transaction is in progress. I try to do all my transactions inside a stored procedure.

9. Avoid temp tables as much as you can, but if you need a temp table, create it
explicitly using Create Table #temp.

10. Avoid NOT IN, instead use a left outer join – even though it’s often easier to visualize
the NOT IN.

11. If you insist on using dynamic SQL (executing a concatenated string), use named
parameters and sp_executesql (rather than EXEC) so you have a chance of reusing the

 32

query plan. While it's simplistic to say that stored procedures are always the right answer,
it's also close enough that you won't go wrong using them.

12. Get in the habit of profiling your code before and after each change. While you should
keep in mind the depth of the change, if you see more than a 10-15% increase in CPU,
Reads, or Writes it probably needs to be reviewed.

13. Look for every possible way to reduce the number of round trips to the server.
Returning multiple result sets is one way to do this.

14. Avoid index and join hints.

15. When you’re done coding, set Profiler to monitor statements from your machine only,
then run through the application from start to finish once. Take a look at the number of
reads and writes, and the number of calls to the server. See anything that looks unusual?
It’s not uncommon to see calls to procedures that are no longer used, or to see duplicate
calls. Impress your DBA by asking him to review those results with you.

16. GROUP BY considerations

SQL's GROUP BY clause defines subsets of data. The most important thing to remember
when including a GROUP BY clause is to include only those columns that define the
subset or summarize data for the subset. In other words, a GROUP BY can't include
extraneous data. For instance, to learn the number of orders placed on a specific date,
you'd use a statement similar to the following.Please refer the figure 5.7

SELECT OrderDate, Count(OrderID)
FROM Orders
GROUP BY OrderDate

Figure 5.7-Group by clause

This query would return one record for each date. Each record would display the date and
the number of orders for that date. You can't include any other columns.

GROUP BY is versatile. You don't need to specify a column in the SELECT clause to
group by it. For instance, you could omit OrderDate from the above query and return just
the count for each date (although the results wouldn't make much sense). As long as the
GROUP BY column is in the source, SQL doesn't require it in the SELECT clause. On
the other hand, if you refer to a column in the SELECT clause, you must also include it in
the GROUP BY clause or in an aggregate function. For instance, the following statement
doesn't work because the freight column isn't part of an aggregate or the GROUP BY
clause. Please refer the figure 5.8

 33

 SELECT OrderDate, Count(OrderID) AS TotalForDate, Freight
 FROM Orders
 GROUP BY OrderDate

Figure 5.8-Group by clause with count

In truth, it doesn't really make sense to try to include a column in this way. If you
want the Freight data within the context of a GROUP BY query, you probably want a
summary of the freight values in the group, as follows:

SELECT OrderDate, Count(OrderID) Max(Freight)
FROM Orders
GROUP BY OrderDate

Figure 5.9-Group by clause with more column

Jet can't group a Memo or OLE Object column. In addition, you can't include a
GROUP BY clause in an UPDATE statement, which makes sense. SQL would have
no way of knowing which record to update.

 17. Retrieving only what you need

It's tempting to use the asterisk character (*) when retrieving data via a SELECT
clause, but don't, unless you really need to retrieve all columns. The more data you
retrieve, the slower your application will perform. For optimum performance, retrieve
only the columns you need.

5.6 Overall System

The overall solution has been implemented as windows application and SQL server scripts
that can be accessed by any Windows SQL servers. This is primarily client-server
architecture. The application is primarily C# based solution with additional use of SQL server
data as the main input source.

5.7 Summary

This chapter mainly described the overall architecture and the design of each component with
relevant technologies and their interconnections. Reason to use particular component and its
functionality also described. Further use case diagrams, sequence diagrams, and database
diagrams also listed in this section.
The following chapter is mainly discussed the evaluation details of the Database monitoring
application and optimization techniques. It will present some important code segments and
related implementation details.

 34

Chapter 6

Evaluation

6.1 Introduction

In this chapter, we will evaluate using the large volume of the database and show the
proposed new techniques and developed existing techniques, for the purpose of increasing
database performance.

6.2 Setup

Checked with real-time data and more than 250,000 data records have been retrieved.

Analyzed new queries by using SQL Sentry Plan Explorer tool and compare with old queries.

Analyze new queries by using query execution plan. (QEP)

Check with the different type of database.

6.3 Evaluation Methodology for Database Monitor Application

For proper evaluation of the system functionality, the system should be deployed in an actual
production environment. Since selected server and a database chosen for the demonstration
purposes, selected set of scripts were running under the selected database and check the result
by using database monitoring application. Also, check the values by using SQL query
analyzer.

Please refer Appendix B for evaluation of database monitoring application.

6.4 Evaluation Methodology for Proposed New Optimization Techniques.

Scenario 01

Step 01
Create two databases in SQL server. Restore database backup to created two databases and
name as "Database_before_optimized" and "Database_after_optimized"

Please refer figure 6.1 of Appendix C for database configuration.

 35

Step 02
Create a complex query. Please refer figure 6.1.2 for SQL query.

SELECT DISTINCT 'Doctor fees' AS TrnTypeCode, DFRH.ReceiptNo, DFRH.BHTNo,
DFRH.ReferenceNo, DFRH.ReceiptAmount, 0.00 AS PaidAmount,
DFRH.MachineCode,DFRH.MachineBillNo,'D'AS AdvanceReceiptType, DFRH.CreateUser,
DFRH.CreateDate,DFRH.ModifiedUser,DFRH.IsVoid,DFRH.SessionID,
DFRP.PaymentType, PT.[Description] AS [PaymentTypeName],
DFRP.PaymentNo,DFRP.CardType,DFRP.BankCode,DFRP.ChequeDate,
DFRP.CommonReferanceDetails, DFRP.SettledAmount,
CEL.dLogDate, CEL.dLogOutDate, (TL.Description + ' ' + PA.FirstName + ' ' +
PA.LastName) AS PatientName
,'' as DoctorCode , DFRP.SettledAmount as DocAmount, '' AS ProfessionalName
FROM [HMS].[BILL_TRN_DoctorFeeReceiptHeader] AS DFRH
JOIN [HMS].[BILL_TRN_DoctorFeeReceiptPayment] AS DFRP ON DFRH.ReceiptNo =
DFRP.ReceiptNo
JOIN [HMS].[Sys_Audit_TRN_CashierEventLog] AS CEL ON DFRH.SessionID =
CEL.nLogRecId
JOIN [HMS].[BILL_Comm_MST_PaymentType] AS PT ON
LTRIM(RTRIM(DFRP.PaymentType)) = LTRIM(RTRIM(PT.PaymentCode))
JOIN [HMS].[BILL_Comm_MST_PatientAdmissionHeader] AS PA ON PA.BHTNo =
DFRH.BHTNo
 JOIN [HMS].[BILL_TRN_DoctorFeeHeader] AS DFH ON DFRH.BHTNo = DFH.BHTNo
AND DFH.DocReceiptNo = DFRH.ReceiptNo
LEFT OUTER JOIN (SELECT * FROM [HMS].[BILL_Comm_MST_ReferenceData]
WHERE Modulecode ='BILL_COMM_MST_TITLE') AS TL
ON LTRIM(RTRIM(PA.Title)) = LTRIM(RTRIM(TL.ReferenceCode))

Figure 6.1.2 – Complex SQL Query
Step 03
Run this in "Database_before_optimized"

Check execution time.

Execution time = 3 seconds. It is too much.

Please refer figure 6.2 of Appendix C for check the query execution time

Step 04

Now run the QEP plan.

Please refer the Figure 6.3 of Appendix C for QEP Plan

Identify the query cost.

 36

Step 05

Create proper index to the database, “Database_after_optimized ". Please refer figure 6.3.1
for SQL query.

USE [Database_after_optimized]
GO
CREATE NONCLUSTERED INDEX [IX_cashiereventlog]
ON [HMS].[Sys_Audit_TRN_CashierEventLog] ([nLogRecId])
INCLUDE ([dLogDate],[dLogOutDate])
GO

Figure 6.3.1 – Proper Index.

Step 06

Now run again the query in “Database_after_optimized”

Check the execution time and you will see that it has been reduced by 1 second.

Please refer the figure 6.4 of Appendix C for check the query execution time

The difference between before and after indexes are shown in figure 6.4.1

0

0.5

1

1.5

2

2.5

3

execution time

Before index

After index

Figure 6.4.1 - Difference between before and after indexes

Scenario 02.

Step 01

Find bad queries and optimize it.

Using SQL profiler, find out the high execution time queries.

Please refer the Figure 6.5 – SQL Profiler of Appendix C

Take high execution query and optimize it. The query in below specified will take more
execution time.

 37

select a.BHTNo,a.FirstName,a.LastName,* from hms.INV_TRN_BillEntryDetails as s
inner join hms.INV_TRN_BillEntryHeader as d on s.EntryNo=d.EntryNo
inner join hms.BILL_Comm_MST_PatientAdmissionHeader as a on a.BHTNo=d.BHTNo
where ItemCode in (select itemcode from hms.BILL_Comm_MST_Item)
andcostcentercode in
(select costcentercode from hms.BILL_Comm_MST_CostCenterHeader)
and a.roomno in (select roomno from hms.BILL_Comm_MST_Room)

Figure 6.5.1 – Take high execution query by SQL Profiler

New Solution found by me:
Avoid use IN Keyword, by using the temp table and join with the query.

Optimized query

CREATE TABLE #TempTable(ID varchar(50)) INSERT INTO #TempTable (ID)
select distinct itemcode from hms.BILL_Comm_MST_Item
select a.BHTNo,a.FirstName,a.LastName,* from hms.INV_TRN_BillEntryDetails as s
inner join #TempTable as t on t.ID=s.ItemCode
inner join hms.INV_TRN_BillEntryHeader as d on s.EntryNo=d.EntryNo
inner join hms.BILL_Comm_MST_PatientAdmissionHeader as a on a.BHTNo=d.BHTNo
where --ItemCode in (select itemcode from hms.BILL_Comm_MST_Item)--and
costcentercode in (select costcentercode from hms.BILL_Comm_MST_CostCenterHeader)
and a.roomno in (select roomno from hms.BILL_Comm_MST_Room)
drop table #TempTable

Please refer the figure 6.6 of Appendix C or SQL Profiler result

The difference between before and after is shown in figure 6.6.1

 Elapsed time(duration)mille seconds

Query With IN operator 25809

After optimizing the query 19673

0

10000

20000

30000

Duration

Query with IN

After optimize

Figure 6.6.1 - Difference between before and after query optimized

 38

Scenario 03.

If problematic query consists IN Operator then you must remove that and apply new
method as below mentioned way.

Below Example will be showing the accuracy of this new technique.

Optimization technique - Remove IN operator and create a #temp table instead of that and
then insert necessary data to that table.

Step 01

Traditional Query. Please refer the 6.7.1 for Traditional query

SELECT S.*
FROM hms.INV_TRN_BillEntryDetails AS s
INNER JOIN hms.INV_TRN_BillEntryHeader AS d
 ON s.EntryNo = d.EntryNo
INNER JOIN hms.BILL_Comm_MST_PatientAdmissionHeader AS a
 ON a.BHTNo = d.BHTNo
WHERE ItemCode IN (SELECT DISTINCT
 itemcode
FROM hms.BILL_Comm_MST_Item)
AND costcentercode IN (SELECT
 costcentercode
FROM hms.BILL_Comm_MST_CostCenterHeader)
AND a.roomno IN (SELECT
 roomno
FROM hms.BILL_Comm_MST_Room)

Figure 6.7.1 – Traditional Query

Please refer the figure 6.7 of Appendix C

The proposed new technique to optimize the query.

 Carefully analyze and find whether the below query consists of the join, nested loop,
IN, where, group by, order by...

 If IN operator found, then aim to that place.
 Remove IN operator, create #temp table and insert data into the temp table
 Then join the temp table to the main query. Be careful to create an index to that temp

table.

 39

Proposed New Query

set statistics time on
CREATE TABLE #TempTable (
 ID varchar(50)
)
INSERT INTO #TempTable (ID)
 SELECT DISTINCT
 itemcode
 FROM hms.BILL_Comm_MST_Item

create nonclustered index IX_Itemcode on #TempTable(ID)
SELECTS.*
FROM hms.INV_TRN_BillEntryDetails AS s
INNER JOIN hms.INV_TRN_BillEntryHeader AS d
 ON s.EntryNo = d.EntryNo
INNER JOIN hms.BILL_Comm_MST_PatientAdmissionHeader AS a
 ON a.BHTNo = d.BHTNo
INNER JOIN #TempTable AS t
 ON t.ID = s.ItemCode
WHERE costcentercode IN (SELECT
 costcentercode
FROM hms.BILL_Comm_MST_CostCenterHeader)
AND a.roomno IN (SELECT
 roomno
FROM hms.BILL_Comm_MST_Room)
DROP TABLE #TempTable
set statistics time off

Please refer the figure 6.8 - SQL Server Execution time for our new proposed query of
Appendix C

See the difference. The new technique will be faster than 10 times compared to the old
technique. Please refer the Table 6.8.1 for Differences between with IN and Remove IN.

 CPU TIME ELAPSED TIME Operators Waits

01.With IN 2906 56886 15 2

02.After optimized 4141 5446 4 0

Table 6.8.1 – Differences between with IN and Remove IN

 40

Step 02

Analyze by using Sentry Plan explore

With in - Traditional Query

Please refer the Figure 6.9 - Analyze by using Sentry Plan explore with IN of Appendix C

After optimized- Remove in operator and create the #temp table, then create the internal
index

Please refer the Figure 6.10 -Analyze by using Sentry Plan explore without IN of Appendix C

See the difference. The new technique will be faster than more compared to the old technique

Scenario 03.

If Problematic query consists temp tables then avoid them as much as you can, but if
you need a temp table, create it explicitly using Create Table #temp

Create it explicitly using Create Table #temp. Please refer the Figure 6.11.1 – Query with
temp table

SET STATISTICS time ON
WITH BASE
AS (SELECT ProductID,
 YEAR(TransactionDate) AS TransCurrYear,
 COUNT(1) AS NoTrans
FROM Production.TransactionHistory
GROUP BY ProductID,
 YEAR(TransactionDate))
SELECT
 CurrYear.ProductID,
 CurrYear.NoTrans AS CurrTransCnt,
 PrevYear.NoTrans AS PrevTransCnt,
 Prev2Year.NoTrans AS Prev2YearCnt
FROM BASE AS CurrYear
CROSS APPLY (SELECT *
FROM BASE PrevYear
WHERE CurrYear.ProductID = PrevYear.ProductID
AND CurrYear.TransCurrYear = PrevYear.TransCurrYear - 1) AS PrevYear
OUTER APPLY (SELECT *
FROM BASE Prev2Year
WHERE CurrYear.ProductID = Prev2Year.ProductID
AND CurrYear.TransCurrYear = Prev2Year.TransCurrYear - 2) AS Prev2Year
SET STATISTICS time OFF

Figure 6.11.1 – Query with temp table

Please refer the figure 6.11 – Query cost with temp table of Appendix C

 41

Observations from Query 1
There were over 27 scans with logical reads of 1998
Although we used a CTE Operation, we could see that similar aggregations are being
repeated in the plan.

Let’s now use a Temporary Table. Please refer the figure 6.11.2 – Query with #temp table

set statistics time on
CREATE TABLE #T1
 (ProductID int
 ,TransCurrYear int
 ,NoTrans int
);
 CREATE CLUSTERED INDEX CI_#T1 ON #T1 (TransCurrYear)
 INSERT INTO #T1
 SELECT ProductID, YEAR(TransactionDate) AS TransCurrYear, COUNT(1) AS NoTrans
 FROM Production.TransactionHistory
 GROUP BY ProductID, YEAR(TransactionDate)
 ORDER BY YEAR(TransactionDate)
 ;With BASE AS
 (
 SELECT * FROM #T1
)
 SELECT CurrYear.ProductID, CurrYear.NoTrans AS CurrTransCnt, PrevYear.NoTrans AS
PrevTransCnt, Prev2Year.NoTrans AS Prev2YearCnt
 FROM BASE AS CurrYear
 CROSS APPLY (SELECT *
 FROM BASE PrevYear
 WHERE CurrYear.ProductID = PrevYear.ProductID
 AND CurrYear.TransCurrYear = PrevYear.TransCurrYear - 1) AS PrevYear
 OUTER APPLY (SELECT *
 FROM BASE Prev2Year
 WHERE CurrYear.ProductID = Prev2Year.ProductID
 AND CurrYear.TransCurrYear = Prev2Year.TransCurrYear - 2) AS Prev2Year
 drop table #T1
 set statistics time off

Figure 6.11.2 – Query with #temp table

Please refer the figure 6.12 - Query cost with #temp table of Appendix C

Observations from Query 2:
Logical Reads are down when compared to Query1.
No Repetition of computation of Aggregated Values.
SQL Server uses statistics as can be seen from the properties above which is good when data
is more.

Great. Let’s now do it with a table variable.

 42

Please refer the figure 6.13.1 - Query with @temp table

set statistics time on
DECLARE @T1 AS TABLE
 (ProductID int
 ,TransCurrYear int
 ,NoTrans int
 , INDEX [IX_TransactionYear] CLUSTERED (ProductID,TransCurrYear)
);

 INSERT INTO @T1
 SELECT ProductID, YEAR(TransactionDate) AS TransCurrYear, COUNT(1) AS NoTrans
 FROM Production.TransactionHistory
 GROUP BY ProductID, YEAR(TransactionDate)
 ORDER BY YEAR(TransactionDate)
 ;With BASE AS
 (
 SELECT * FROM @T1
)
 SELECT CurrYear.ProductID, CurrYear.NoTrans AS CurrTransCnt, PrevYear.NoTrans AS
PrevTransCnt, Prev2Year.NoTrans AS Prev2YearCnt
 FROM BASE AS CurrYear
 CROSS APPLY (SELECT *
 FROM BASE PrevYear
 WHERE CurrYear.ProductID = PrevYear.ProductID
 AND CurrYear.TransCurrYear = PrevYear.TransCurrYear - 1) AS PrevYear
 OUTER APPLY (SELECT *
 FROM BASE Prev2Year
 WHERE CurrYear.ProductID = Prev2Year.ProductID
 AND CurrYear.TransCurrYear = Prev2Year.TransCurrYear - 2) AS Prev2Year
 set statistics time off

Figure 6.13.1 - Query with @temp table

Please refer the figure 6.13 - Query cost with @temp table of Appendix C

Scan Count and Logical Reads are slightly up.
There are no statistics associated with Clustered Key Creation in Table Variable which can be
seen from the Estimated Number of Rows Value. This could be bad when data is more.

One reason why the Optimizer could not sniff the “Estimated Number of Rows” is because
the entire batch query populates the variable table followed by querying on it. And hence, it is
not able to figure out the cardinality. If we add the RECOMPILE Option to the query, SQL
Server is able to detect the cardinality like so,

Conclusion: Temporary Table is better.

 43

Let’s now do it with Sentry plan

Create it explicitly using Create Table #temp
 Please refer the figure 6.14 - Sentry plan with #temp table of Appendix C

Temporary Table.
Please refer the figure 6.15 - Sentry plan with @temp table of Appendix C

See the difference in Total time.

Please refer the figure 6.15.1 – #Table and @Table Difference

0

50

100

150

200

Before

optimize

Total time

Figure 6.15.1 – #Table and @Table Difference

Scenario 04.

How to find the Missing index.

Please refer the figure 6.16 – How to find missing index of Appendix C

 44

Scenario 05.

Best practice for IN and Where.

Please refer the Figure 6.17.1 - Best practice for IN and Where.

 SELECT top 2000 [CostPrice]
 ,[Quantity]
 ,[DiscountAmount]
 ,[CreditAmount]
 ,[DebitAmount]
 ,[WardNo]
 ,[RoomNo]
 ,[ProcessDate]
 ,[IsDayEnd]
 ,[IsAdditionalItem]
 ,[UniqueID]
 ,[IsVoid]
 ,[IsPackageEntry]
 ,[IsPackageBillProcessed]
 ,[RateType]
 ,[RecordMode]
 FROM [Database_before_optimized].[HMS].[INV_TRN_BillEntryDetails]
 where ItemCode ='ITM0001552'

Figure 6.17.1 - Best practice for IN and Where.

Please refer the Figure 6.17 – Analyzed best practice IN and Where Clause. Of Appendix C

Bad practice for IN and Where

Please refer the Figure 6.18.1 – Bad practice for IN and Where.

SELECT top 2000 [EntryNo]
 ,[CostCenterCode]
 ,[SortSequence]
 ,[ItemCode]
 ,[UnitPrice]
 ,[CostPrice]
 ,[Quantity]
 ,[DiscountAmount]
 ,[CreditAmount]
 ,[DebitAmount]
 ,[WardNo]
 ,[RoomNo]
 ,[ProcessDate]
 ,[IsDayEnd]
 ,[IsAdditionalItem]
 ,[UniqueID]

 45

 ,[IsVoid]
 ,[IsPackageEntry]
 ,[IsPackageBillProcessed]
 ,[RateType]
 ,[RecordMode]
 ,[AdditionalQuantity]
 ,[IsOldEntry]
 ,[PackageId]
 FROM [Database_before_optimized].[HMS].[INV_TRN_BillEntryDetails]
 where ItemCode in ('ITM0001554')

Figure 6.18.1 - Bad practice for IN and Where.

Please refer the figure 6.18 - Analyzed Bad practice IN and Where Clause of Appendix C

Scenario 06.

Bad practice IN and Where clause.

Please refer the Figure 6.19.1 – Bad practice for IN and Where.

 SELECT top 2000 [EntryNo]
 ,[CostCenterCode]
 ,[SortSequence]
 ,[ItemCode]
 ,[UnitPrice]
 ,[CostPrice]
 ,[Quantity]
 ,[DiscountAmount]
 ,[CreditAmount]
 ,[DebitAmount]
 ,[WardNo]
 ,[RoomNo]
 ,[ProcessDate]
 ,[IsDayEnd]
 ,[IsAdditionalItem]
 ,[UniqueID]
 ,[IsVoid]
 ,[IsPackageEntry]
 ,[IsPackageBillProcessed]
 ,[RateType]
 ,[RecordMode]
FROM [Database_before_optimized].[HMS].[INV_TRN_BillEntryDetails]
where ItemCode in (select itemcode from
[Database_before_optimized].[HMS].[BILL_Comm_MST_Item] where
itemcode='ITM0001554')

Figure 6.19.1 – Bad practice for IN and Where

Please refer the Figure 6.19 – Bad practice for IN and Where of Appendix C

 46

Scenario 07.

Please refer the Figure 6.20.1 – Correlated SQL subqueries

Avoid Correlated SQL Subqueries

SELECT c.FirstName,
 c.LastName,
 (SELECT top 1 ConsultantCode FROM
[HMS].[BILL_Comm_MST_PatientAdmissionDetail] WHERE [BHTNo] = c.[BHTNo]) AS
Consultant
FROM [HMS].[BILL_Comm_MST_PatientAdmissionHeader] c

Figure 6.20.1 – Correlated SQL subqueries

Please refer the figure 6.20 -QEP plan and Cost of Correlated SQL subqueries of Appendix C

Please refer the figure 6.21- QEP plan and Cost of Correlated
SQL subqueries in Sentry planner of Appendix C

Solution Correlated SQL Subqueries.

Please refer the Figure 6.22.1 – Correlated SQL subqueries

 SELECT c.FirstName,
 c.LastName,
 co.ConsultantCode
FROM [HMS].[BILL_Comm_MST_PatientAdmissionHeader] c
 LEFT JOIN [HMS].[BILL_Comm_MST_PatientAdmissionDetail] co
 ON c.[BHTNo] = co.[BHTNo]

Figure 6.22.1 – Solution for Correlated SQL subqueries

Please refer the figure 6.22- Our Query QEP plan and Cost of Correlated SQL subqueries of
Appendix C

Please refer the figure 6.23 - Our Query QEP plan and Cost of Correlated SQL subqueries in
Sentry planner of Appendix C

 47

Scenario 08.

Avoid Cursor

Please refer the figure 6.24.1 – Query with Cursor

DECLARE @BHTNo varchar(30)
DECLARE @FirstName varchar(30), @LastName varchar(30)
-- declare cursor called
DECLARE ActivePatient Cursor FOR
 SELECT BHTNo, FirstName, LastName
 FROM [HMS].[BILL_Comm_MST_PatientAdmissionHeader]
 WHERE IsDischarge = 1
-- Open the cursor
OPEN ActivePatient
-- Fetch the first row of the cursor and assign its values into variables
FETCH NEXT FROM ActivePatient INTO @BHTNo, @FirstName, @LastName
-- perform action whilst a row was found
WHILE @@FETCH_STATUS = 0
BEGIN
 -- get next row of cursor
 Print @BHTNo
 print @FirstName
 print @LastName

 FETCH NEXT FROM ActivePatient INTO @BHTNo, @FirstName, @LastName
END
-- Close the cursor to release locks
CLOSE ActivePatient
-- Free memory used by cursor
DEALLOCATE ActivePatient

Figure 6.24.1 – Query with Cursor

Please refer the figure 6.24 - QEP in Cusror of Appendix C

Alternatives for Cursors.

Create a temporary table, note the IDENTITY column that will be used to loop through
The rows of this table

Please refer the figure 6.25.1 – Alternative solution for cursor

CREATE TABLE #ActivePatient (
 RowID int IDENTITY(1, 1),
 BHTNo varchar(30),
 FirstName varchar(130),
 LastName varchar(130)
)

 48

DECLARE @NumberRecords int, @RowCount int
DECLARE @BHTNo varchar(50), @FirstName varchar(130), @LastName varchar(130)

-- Insert the resultset we want to loop through
-- into the temporary table
INSERT INTO #ActivePatient (BHTNo, FirstName, LastName)
SELECT BHTNo, FirstName, LastName
FROM [HMS].[BILL_Comm_MST_PatientAdmissionHeader]
WHERE IsDischarge = 1
-- Get the number of records in the temporary table
SET @NumberRecords = @@ROWCOUNT
SET @RowCount = 1
-- loop through all records in the temporary table
-- using the WHILE loop construct
WHILE @RowCount <= @NumberRecords
BEGIN
SELECT @BHTNo = BHTNo, @FirstName = FirstName, @LastName = LastName
FROM #ActivePatient
WHERE RowID = @RowCount
Print @BHTNo
 print @FirstName
 print @LastName
SET @RowCount = @RowCount + 1
END
-- drop the temporary table
DROP TABLE #ActivePatient

6.25.1 – Alternative solution for cursor

We can see the above code gives the same functionality as the first code example but without
using a cursor. This gives us the benefits that the Customer table is not locked as we are
looping through our result set so other queries on the Customer table that are submitted by
other users will execute much faster. We will also have a faster-operating SQL script by
avoiding cursors which are slow in themselves.

Please refer the figure 6.25 - Alternative solutinon QEP plan and query cost
Of Appendix C

Cursor Alternative 2: Using User Defined Functions

Cursors are sometimes used to perform a calculation on values that come from each row in its
row set. This scenario can also be achieved by replacing a Cursor with a User Defined
Function. An example of a User Defined Function performing a calculation is given below:
Please refer the figure 6.26.1 - Using User Defined Functions

CREATE FUNCTION dbo.GetDiscountLevel(
 @CustomerID int
)
RETURNS int

 49

AS
BEGIN
DECLARE @DiscountPercent int
DECLARE @NumberOrders int, @SalesTotal float
SELECT @NumberOrders = COUNT(OrderID),
 @SalesTotal = SUM(TotalCost)
FROM Sales WHERE CustomerID = @CustomerID
 IF @SalesTotal > 5000.00 AND @NumberOrders > 5
 SET @DiscountPercent = 5
 ELSE
 BEGIN
 IF @SalesTotal > 3000.00 AND @NumberOrders > 3
 SET @DiscountPercent = 3
 ELSE
 SET @DiscountPercent = 0
 END

 Return @DiscountPercent
END

Figure 6.26.1 - Using User Defined Functions

Scenario 09.

SET NO COUNT ON

Please refer the figure 6.26 – Set no count on execution time of Appendix C

WITHOUT NO COUNT

Please refer the figure 6.27 -– Without no count execution time of Appendix C

See the difference. The new technique will be faster than 10 times compared to the old
technique. Please refer the Table 6.5 – Difference between set no count and without no count

 Execution time
With no count on 27
Without no count 40

Table 6.5 – Difference between set no count and without no count

 50

Please refer the figure 6.27.1 – Difference between set no count and without no count

0

5

10

15

20

25

30

35

40

Execution time

With no count
on

Without no
count on

Figure 6.27.1 - Difference between set no count and without no count

6.5 Participants

Basically will involving database administrator, software developers, and end users.

6.6 Data Collection

Large volume database backup from the hospital.

Created database with more records. (Bulk insert)

6.7 Discussion

The party who are mainly benefited by this Database monitoring application and proposed
techniques system is the database administrator's, developers, users, and clients. With
currently available systems, they are only capable to see the graphical interface of system
status. Also currently there is no proper single system to get both database activity and fine
tune query techniques. This system facilitates to view both database and database server
issues. Limitation on this Support only for Microsoft products.

6.8 Summary

According to the evaluation done in this chapter, the system has maintained its evaluation
above the critical line in all evaluation features for both database monitoring application and
the proposed query optimization techniques. In next chapter, the conclusion and the further
possible enhancements for database performance improvement will be discussed.

 51

Chapter 7

Conclusion and Further Work

7.1 Introduction

In this paper, an attempt is made to present a review of database performance tuning
techniques is made. This paper focuses on tuning techniques which are directly related to
database design. The main purpose of this study is to understand major factors
That can lead to database performance improvement. As query response time is the number
one metrics when it comes to database performance, SQL tuning is one of the widely used
tuning technique. SQL tuning aims to decrease response time and increase
System throughput.

7.2 Overall Conclusion

The evaluation evident that the database monitoring application and proposed optimization
techniques to address problems in database performance issues, is in above 70% acceptances
level accordingly our hypothesis is proven to be true.

7.3 Objective-Wise Conclusion

Objective (i) has been achieved by conducting a comprehensive literature survey comprising
more than 25 research papers related to database performance issues. Here we have
discovered many key problems and defined the research problems of this thesis.

The achievement of objective (ii) has also been supported by the literature review chapter. In
addition, chapter 3 presented a description of each technology selected for developing the
proposed solution which fulfills the achievement of objective (iii).

Achievements in objectives (iv), (v) and (vi) are evident from the details in chapters for
approach, design, and implementation.

The objective related to the evaluation of the hypothesis is presented in chapter 6. The overall
success of the solution has been 70%.

7.4 Further Work

Database monitoring application should be able to work with open source products.

7.5 Summary

In this chapter, the overview of Database performance improvement project was discussed
along with the evaluation results and identified limitations. Further possible enhancements
were also discussed together with possible practical applications.

 52

References

[1] G. Ramakrishnan. Database Management Systems, Third Edition. McGraw-
Hill, 2003

[2] Fox, B. 2011. “Leveraging Big Data for Big Impact”, Health Management Technology,
http://www.healthmgttech.com/.

[3] A. Hameurlain, “Evolution of Query Optimization Methods: From Centralized Database
Systems to Data Grid Systems”, Proceedings of the 20th International Conference on
Database and Expert Systems Applications.

[4]. Andrew N.K. Chen. Robust optimization for performance tuning of modern database
 Systems, European Journal of Operational Research. 171, 412--429 (2006)

[5] The State of the Art in Distributed Query Processing DONALD KOSSMANN,
University of Passau, ACM Computing Surveys, Vol. 32, No. 4, December 2000.

[6] Jacobs, A. 2009. “Pathologies of Big Data”, Communications of the ACM, 52(8):36-44.

[7] JASON. 2008. “Data Analysis Challenges”, The Mitre Corporation, McLean, VA, JSR-
08-142

[8] Kaisler, S. 2012. “Advanced Analytics”, CATALYST Technical Report, i_SW Corporation,
Arlington, VA

[9]. Rasha Osman, Irfan Awan, Michael E. et al.: QuePED-Revisiting queuing networks for
the Performance evaluation of database designs. Simulation Modeling Practice and Theory,
19, 251--270 (2011)

[10]. Balsamo, S., A. Di Marco, P. Inverardi and M. Simeoni, Model-based performance
Prediction in software development: a survey, IEEE Transactions on Software Engineering.
30 ,5, 295--310 (2004)

 [11] K. Ono and G.M.Lohman. Measuring the complexity of join enumeration in query
optimization. In D.McLeod, R Sacks-Davis, and J.-J. schek, editors,16th International
Conference on Very Large Data Bases, August 13-16,1990, Brisbane, Queensland, Australia,
Proceedings, pages 314-325. Morgan Kaufmann, 1990.

[12] A. Hameurlain, “Evolution of Query Optimization Methods: From Centralized Database
Systems to Data Grid Systems”, Proceedings of the 20th International Conference on
Database and Expert Systems Applications.

 53

[13] Fox, B. 2011. “Leveraging Big Data for Big Impact”, Health Management Technology,
http://www.healthmgttech.com/.

[14] https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

[15] Gantz, J. and E. Reinsel. 2011. “Extracting Value from Chaos”, IDC’s Digital Universe
Study, sponsored by EMC.

[16] https://cs.uwaterloo.ca/~kmsalem/courses/.../Chalamalla-HadoopDB.pdf

[17] https://en.wikipedia.org/wiki/Greenplum

[18] https://pig.apache.org/

[19] www.cs.rutgers.edu/~zz124/cs671.../srikanth_mapreducemerge.pdf. Map-Reduce-Merge:
Simplified Relational Data. Processing on Large. Clusters. Hung-chih Yang, Ali Dasdan.
Yahoo! Ruey-Lung Hsiao, D. Sto Parker.

[20] http://www.journalofcloudcomputing.com/content/3/1/12. Improving the performance of
Hadoop Hive by sharing scan and computation tasks Tansel Dokeroglu1, Serkan Ozal1,
Murat Ali BayMuhammetSerkanCinar3 and Ahmet Cosar1.

[21] Liu et al. "An Investigation of Practical Approximate Nearest Neighbor Algorithms",
2004. Carnegie-Mellon University, pp. 1-8.

[22] www.elsevier.com/locate/jcss, Journal of Computer and System Sciences 77 (2011) 637-
651.

[23] Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis,
IJCAI-07 1606, Evgeniy Gabrilovich and Shaul Markovitch Department of Computer
Science Technion—Israel Institute of Technology, 32000 Haifa, Israel

[24] {gabr,shaulm}@cs.technion.ac.il.

[25] https://en.wikipedia.org/wiki/MapReduce.

[26] Applied Spatial Data Analysis with R Authors: Roger S. Bivand, Edzer Pebesma, Virgilio
Gómez-Rubio.

[27] A twelve-analyzer detector system for high-resolution powder diffraction P. L. Lee, D.
Shu, M. Ramanathan, C. Preissner, J. Wang, M. A. Beno, R. B. Von Dreele, L. Ribaud, C.
Kurtz, S. M. Antao, X. Jiao and B. H. Toby. J. Synchrotron Rad. (2008). 15, 427-432.

 54

Appendixes

Appendix A - User interface and architecture diagram of the system.

Security Module - Authentication

Figure 5.1 – Security Module - Authentication

Control Module – Server and Database Information

Figure 5.2 – Control Module-Server and Database Information

 55

Server Configuration

Figure 5.3 – Server Configuration

Database Server Performance Analyzer

Figure 5.4 – Database Server Performance Analyzer

 56

Database Log Information and Suggestions

Figure 5.5 – Database Log Information and Suggestions.

Database Performance Improvement Suggestions

Figure 5.6 – Database Performance Improvement Suggestions.

 57

Database Waiting Tasks

Figure 5.7 – Database Waiting Tasks.

Database Missing Index Details and Suggestions

Figure 5.8 – Database Missing Index Details and Suggestions

 58

Database IO operations

Figure 5.9 – Database IO Operations

Database Objects and Details

Figure 5.10 – Database Objects and Details

 59

Database Monitoring Application Options

Figure 5.11 – Database Monitoring Application Options

 60

Appendix B – Evaluation of Database Monitoring Application

Functionality Result in our
approach

The result from
manually check in

the database

Are the both
results are

same?

Server information Please refer figure
7.4.1.1

Please refer figure
7.4.1.2

Yes

Database Table Count Please refer figure
7.4.1.3

Please refer figure
7.4.1.4

Yes

Database current
reading count

Please refer figure
7.4.1.3

Please refer figure
7.4.1.4

Yes

Database current
writing count

Please refer figure
7.4.1.3

Please refer figure
7.4.1.4

Yes

Missing index details Please refer figure
7.4.1.5

Please refer figure
7.4.1.6

Yes

Database current
reading count

Please refer figure
7.4.1.3

Please refer figure
7.4.1.4

Yes

Database memory
utilization details

Please refer figure
7.4.1.7

Manually checked Yes

Database lock Please refer figure
7.4.1.8

Manually checked Yes

Currently running
Processors

Please refer figure
7.4.1.9

Manually checked Yes

Table 7.1 – Evaluation functionality in database monitoring application

 61

Figure 7.4.1.1 – Database server information from newly developed database monitoring application

Figure 7.4.1.2 – Database server information

 62

Figure 7.4.1.3 ‐ Database server statistics from newly developed database monitoring application

Figure 7.4.1.4 ‐ Database server statistics

 63

Figure 7.4.1.5 – Missing index suggestions from newly developed database monitoring application

Figure 7.4.1.6 – Missing index suggestions by manually

 64

Figure 7.4.1.7 – Database memory utilization details

Figure 7.4.1.7 – Database lock

Figure 7.4.1.8 – Currently running Processors

 65

 Appendix C – Evaluation of proposed optimization techniques

Figure 6.1 – Database Configuration

Figure 6.2 – Complex Query Execution Time

 66

Figure 6.3 - QEP Plan

Figure 6.4 – Query Execution Time After Optimized

 67

Figure 6.5 – SQL Profiler

Figure 6.6 – SQL Profiler result

 68

Figure 6.7 – SQL Server Execution time for Traditional query

Figure 6.8 – SQL Server Execution time for our new proposed query

 69

Figure 6.9 - Analyze by using Sentry Plan explore with IN

Figure 6.10 - Analyze by using Sentry Plan explore without IN

 70

Figure 6.11 – Query cost with temp table

Figure 6.12 - Query cost with #temp table

 71

Figure 6.13 - Query cost with @temp table

6.14 - Sentry plan with #temp table

 72

6.15 - Sentry plan with @temp table

Figure 6.16 – How to find missing index

Figure 6.17 – Analyzed best practice IN and Where Clause.

 73

Figure 6.18 – Analyzed bad practice IN and Where Clause

Figure 6.19 – Bad practice for IN and Where

 74

Figure 6.20 – QEP plan and Cost of Correlated SQL subqueries

Figure 6.21- QEP plan and Cost of Correlated SQL subqueries in Sentry planner

 75

Figure 6.22- Our Query QEP plan and Cost of Correlated SQL subqueries

Figure 6.23- Our Query QEP plan and Cost of Correlated SQL subqueries in Sentry planner

 76

Figure 6.24 – QEP in Cusror

Figure 6.25 – Alternative solutinon QEP plan and query cost

 77

Figure 6.26 – Set no count on execution time

Figure 6.27 - 6.26 – Without no count execution time

