Improving Query Processing Performance in

Database Management Systems

Suren Dilanka Gamage

149210D

Faculty of Information Technology
University of Moratuwa

May 2018

Improving Query Processing Performance in

Database Management Systems

Suren Dilanka Gamage

Index no: 149210D

Dissertation submitted to the Faculty of Information Technology, University of
Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Master of
Science in Information Technology.

May 2018

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institution of tertiary education.
Information derived from the published or unpublished work of others has been
acknowledged in the text and a list of references is given.

Name of Student (s) Signature of Student (s)
Date:

Supervised by

Name of Supervisor(s) Signature of Supervisor(s)

Date:

Dedication

This thesis is dedicated to my wife, Mrs. U. Kumarapeli for her endless love,
encouragement, and support.

Acknowledgments

First and foremost I would like to offer my sincere gratitude to my research
supervisor, lecturer Mr.Chaman Wijesiriwardana, for his guidance, supervision,
encouragement, and support throughout this study.

I would not know what research is and how to do research if the lecture series of
thesis writing and research methodologies are not offered. So I would like to offer my
sincere gratitude to the Prof. Asoka S. Karunananda for feeding the knowledge and
guidance for doing researches in the proper way.

I would also like to thank my lecturer S. Premaratne and all the lecturers of Faculty of
Information Technology — University of Moratuwa, for their guidance and
encouragement to get maximum use of knowledge and capabilities.

I am grateful to the management and Softlogic Holdings PLC for their kind support
and understanding during this work.

Finally, I would like to extend my deepest gratitude to my parents and family, for
their continuous support given in every possible way to make this project successful.

Abstract

Improving Query Processing Performance in Database Management Systems has been
a research challenge. This is the most important and is a real problem, this happens to
be very crucial in large organizations with heterogeneous data, online system, billing
systems and so on. Among other issues in the query optimization problem, faced by
everyday query optimizers, get more and more complex with the server increasing
complexity of user queries. During the last decade, database management systems have
become important information processing system supporting business activities of
geographically decentralized organizations.

The Performance monitoring has been evaluated and used by various tools. Most DBA's
agreed that these tools are valuable. Our research also tried to identify how performance
problems could be reduced and which methods were used in practice. Besides hardware
upgrades, the following areas in tuning are known to have major impacts.

The main aim of this thesis is to produce flexible database monitoring tool and query
optimization techniques that is capable of get basic idea of database server, database
log, missing indexes, graphical user interface of currently running queries, optimizing
large queries in a complex database. Among other issues in a database, such as
deadlock, expensive query, primary key missing places, badly design quarries can be
simply identified.

This database monitoring tool and proposed new optimization techniques will more
helpful to identify database performance issues and provide better solutions. During the
evaluation, it was shown that system was successful more than 70%.

Table of Contents

Chapter 1 —Introductionccoeeiveeiiinieineiieatoraiosstossscssssosssosssossssssssosssons 1
1.1 Prolegomenacocoveiiieiiiniiiiiiiieiiiniiieiiiiiiieiiieieiatcisecsnscenssenns 1
1.2 Background and Motivationcccceivviiiiiiiiniiiiiiiiiieiiinneinnnnns 1
1.3 Problem statement c.cccoiieeiiiiiiieiiieiiiiiiiieiiieiiieiiiniiiieiinninnns 1
1.4 HYPOtRESIS c.uviiinniiiniiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieieiateentcnasssnssnns 2
1.5 ODjJECtiVeS «oouuriiurieinieinioinieinerseetosstosassssssssssssssssssosssossssssssonns 2
1.6 Structure of the ThesiS......cccccviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinae, 2
1.7 SUMIMATY titviiinenioiaiorntossscssesssstosssosssossssssssssasssssosssosssssssssnns 2

Chapter 2 -Developments and Challenges in Improving Query

Processing Performance in Database Management Systems 3

2.1 INtroductionccceeeeiiieiiseeiaeeaas 3
2.1 Early develOPmentsccccvveiieeiiniosaiosnrcsaecssssscssosasosssosnscsssssns 3
2.3 Modern trends in Improving Query Processingccccceeevneinnannn.n. 4
2.4.1 Future challenges of Improving Query Processing 4
2.4.2 Big Data Management SYSteImcccceeiieiiiniiiiniiineiiniiennecinecnnnes 5
2.4.3 Big Data Service Modelcccoiveiiiniiiiiiiiiiiiiiiiiiiiiiii seiennnens 5
2.4.4 Non-structural and Semi-structured Data Storage 6
2.4.5 Data Virtualization Platformccociiiiiiiiiiiiiiiiiiiniiiiiinaen. 6
2.4.6 Distributed Applicationsc.ccovveiiieiiiniiiniiiniiiierione sovearennses 6
2.4.7 MapP ReAUCE ..evivniiiniiinniiiniiiniiieetiestsestosassssscssssssssosssosnsssnsss 6
2.4.8 Map Reduce Optimizationcccceevuieiniiieiiiniocnicraees seosnscsnens 7
2.4.9 Data Transfer Bottlenecksccceveiiiiiiiiiiiiiiiiiiiiies covennnnnn. 7
2.4.10 Index Optimizationcceevvuieireiiieionniosniosnecsersassrosnscsnses 8
2.4.11 Iterative OptimiZationcceeveiiiniiiiiiiiniiiniiieiiieies secineennnes 8
PR TINT 1111 11T 1 o) e 8

Chapter 3 - Technology Adopted for Improving Query Processing

Performance in Database Management Systems........cccoveveeniennenn 9

3.1 INtroduction ...ueeeiieiiiiiiiieiiiiiiiiiiiiiiiieiiiiiiietiieteitiieiiistinnienns 9
3.2 Technologies availablec.cccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinnnn 9
3.2.1 Database MONItOringcoceiiuiiiiiiiiniiiiiiiiiiiieitiiiiieinecinecnnees 9
3.2.2 Query Analyzing and Optimizationccooeeiiiiiiiniieviiinninnen. 9
3.3 Technology Stackcccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii seeeneenan 10
R I 301 11111111 o) 2 10

Chapter 4 -An approach to on Improving Query Processing Performance in

Database Management SYStEISoeevuieireeierorarosnrcsssssrasocnsonase 11

4.1 INtroductionceoveeiieiiiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiiieiieeiiisteinccnnn 11
4.2 HyPOthesis «.ccoueeeiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiatcineennsenne 11
T T 0 11
L B 1)1 12
S T 0 211 1] 1 L 12
I (0 1 12
R L 11D 20

4.8 SUMIMATY..cviiiuiiieiieeioestossessestsssosassosssssssssssssssssssosssssnssss

Chapter 5 - Design and Implementation of Database monitoring app and

Database query optimizing the prototype...........cccceevenaennnen. 21
5.1 INtroductioncceevieeiieiieiiniiieiieiieiiiiiiiiiiieiieiintiieiietintintiin 21
5.2 Design Database Monitoring Applicationccoeevviniiineiininnnnn 21
5.3 Implementation of Database Monitoring Application21
5.4 Query Optimization Techniques (Prototype)ccceeevviiniiinniinnnnn. 22
5.5 Implementation of Query Optimization Techniques.........ccceceerueeernnne. 29
5.6 Overall SYStem ...ccevueiieiiiiieiieiiniiiiiieiieiiiieiieiierietietineeneennnn 33
STRAINT 1111111 T2 o) /2 33
Chapter 6 - Evaluation...........c.ciinniiinsiiisneissencssnnicssnncsssnsssssessssecssssssssssessssncsssses 34
6.1 INtroductioncccoveiieiiiiiniiiiiiiiieiiiiieiiiiieiieiitineeieeierinrenenn 34
0.2 SELUP cuvviiniiiiiiieiiiniiieirteioestossssssssssstosssosassssssssssssssosssessssnns 34
6.3 Evaluation Methodology for Database Monitor Application 34
6.4 Evaluation Methodology for Proposed
New Optimization Techniques.......c.ocvevieiiiniiinieinecinerseniosarosnsons 34
6.5 ParticiPantsoouiviuiiiieiieiinniocniosatcsnscsnassstosntosnscsssssnsnssssnes 50
6.6 Data Collection.......cccevueiiiiiiiiiiiniiiiiiiiiiiiiiiniiiiiieiiieeennnens 50
6.7 DISCUSSION c.uviinniininiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiietinetetstccecacns 50
(RINT 111111 F21 o) 50
Chapter 7- Conclusion and Further WorK......c..cccoviiiiiiiiiiiiiiiiiinnnen. 51
7.1 INtroductioncceeiieiiettineeann 51
7.2 Overall Conclusion.......coeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiiieene 51
7.3 Objective Wise CONCIUSION.......cccveeereeisenssrnssrecsanessnecseeesanssaenssseesansssasnnee 51
7.4 Further Work.....cccvieiiinnaenee, 51
7.5 SUININATY cvteniernetsnatonstmmmosnsmossasssssasssssssossasssssasssssasossasssssasssssassssasssssas 51
L RS) Q) (T s 52

APPENAIXES...uiinniinniiniiiiiiiiiiiiiiiii ettt s ea e e 54

Appendix A - User Interface and Architecture Diagram of the System.............. 54
Security Module — Authentication.........cccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennnen. 54
Control Module-Server and Database
INfOrmation......ccoeieiiiiiiiiiiiiiiiiiiiiiiiiiii ittt ae 54
Server Configuration......ccveveeiiieiiieioinieinieieisserossrossscssssssscssssosassssscses 55
Database Server Performance Analyzer.......ccccoeeviiiiiiieiiiiiiiieiieciecinninnen 55
Database Log Information and Suggestions.........cccevveiieeiiinieinicineiincnnnnens 56
Database Performance Improvement Suggestions........cccoeeviiiiiiniiiniiininnnnn 56
Database Waiting

TASKS . cueineeieiiiiiiiiieiitiiiitiietietittieittiesiaciactaessessassncsssssssssssnssnssnssnnes 57

Database Missing Index Details and

SUGEESLIONS. e iiviiiiiiiniiiiiieiiieiienionmmimmsiosssisssssesssssosssssssssssssasssssasssssssessasssssns 57
Database 10

L 137 10 11) 11 S 58
Database Objects and DetailS.......cccoveiiiiiiiiiiiniiiiiiiiiiiieiiinieiniciicenecsensees 58
Database Monitoring Application Options........cccceeviiiiiiiiiiiiiiiiiiiiiiieiinenn 59
Appendix B — Evaluation of Database Monitoring
APPIICALION..c.c.eveierriicrrniissniessssissssnssssisssssesssssssssssssssssssssssssssssssssesssssassssssssssosassnns 60
Appendix C — Evaluation of proposed optimization techniques..................... 65

List of Figures

Figure 3.1 — Technology StacK......cccieiuiiiieiiiniieniosnrcssetssntosasosssssrsssssosans 10
Figure 4.6.1 - QUErY COSt...cuuiiiniiiniiiieiiieiiieiiieiiiieiiietieetiestoenscsessssssnnsens 16
Figure 4.6.2 - EXeCution Plan.....c.cceeiieeiieiiiaiosaiossicsascssrscssosasossscsssssnases 17
Figure 4.6.2 - EXecution plan.......ccccciiveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiecnanes 24
Figure 5.2 find the 20 worst performing queries..........cceevvveiiinieiniiinecinennnns 25
Figure 5.3 How many times execution plan is re-used..........cccccceiieiiineinnnan. 26
Figure 5.4 Find unnecessary iNdeXes.......cccvveiiieiiiiiiieiiieiiiniiieiieiintonnnnn 28
Figure 5.5-Index creation ProcCess......ccoeeiieeiiieiiiniiineiieiieeiientcsacsenscsesconns 30
Figure 5.6-Union OPerators......ccceeeveiieiiiiiiiiiieiieiieiineeieiiecietinccecnscncen 31
Figure 5.7-Group by clause......cccovveiiinnnees 32
Figure 5.8-Group by clause with count...........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiinne. 33
Figure 5.9-Group by clause with more column..........cccoeeviiiiiiniiiniiinicinecnn 33

Figure 7.4.1.1 - Database server information from newly developed
Database Monitoring Application.........ccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinen. 61

Figure 7.4.1.2 - Database server information..........c.ccccevviiiiiiiiiiiiiiiniiinnnn 61

Figure 7.4.1.3 - Database server statistics from newly developed database
monitoring application.......ccoeeviiir e 62

Figure 7.4.1.4 - Database server statistics........ccovviiiiiiiiiiiiiiiiiiiiiiiieiiinennns 62

Figure 7.4.1.5 — Missing index suggestions from newly developed database

MONItoring apPlication......cciviuiiiniiiiiiieiireiorniosnresretsrstosarosssossscsssssnssones 63
Figure 7.4.1.6 — Missing index suggestions by manually..........ccccvviniiinnnnnens 63
Figure 7.4.1.7 — Database memory utilization detailS..........ccccovviieiineiinnienns 64
Figure 7.4.1.7 — Database 10CK.........cccciiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinaian 64
Figure 7.4.1.8 - Currently running Processorscccvveiviniiinieinicinecinecnne 64
Figure 6.1 - Database Configuration.........c.ccccevveiiiiiiiiiiiiiiiiiiiiiiiiiienenens 65
Figure 6.1.2 - Complex SQL QUerY....cccevuiiiiiiiiieiiniiiiiieiieiieiiiiieciecincincnns 34

Figure 6.2 - Complex Query

Execution Time.....ccooeiieiiiiiiiiiiiiiiiiiiiiiiiiiiies senerntnmmmmmmnmmeecssiscscsacsscnces 65
Figure 6.3 - QEP Plan.......cocoviiiiiiiiiiiniiiiiiiiiiiieiiieioiniciecssscsssssssosnscnnss 66
Figure 6.3.1 - Proper INdeX......coeeieiuieiniiieiiseisraiosnsosascssssssssssssosssosnsssces 36
Figure 6.4 — Query Execution Time after IndeX.........cccooveiiiiiiiniiiiiiiininnnnn, 66
Figure 6.4.1 - Difference between before and after indexes...........cccccevueennnen. 36
Figure 6.5 — SQL Profiler......cccceiiiiiiiiiiiiiiiiiieiieriiiiieiieiieriecieicenecnacencn 67
Figure 6.5.1 — Take high execution query by SQL Profiler..........c..c............. 37
Figure 6.6 - SQL Profiler result.........ccceieiuiiieiienioinieinieiiaissarosasosnscseasons 67
Figure 6.6.1 - Difference between before and after query optimized................ 37
Figure 6.7.1 — Traditional QUery.......cccccviiiiiiiiiiiiiiiiiieiiiiiiiiieiineiiencnn 38
Figure 6.7 — SQL Server Execution time for Traditional query............c......... 68
Figure 6.8 — SQL Server Execution time for our new proposed query............ 68
Figure 6.9 - Analyze by using Sentry Plan explore with IN...........c.cccceeeanen. 69
Figure 6.10 - Analyze by using Sentry Plan explore without IN..................... 69
Figure 6.11.1 — Query with temp table.........ccoiviiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnn, 40
Figure 6.11 — Query cost with temp table.........cccoiviiiiiiiiniiiniiininnieinicinenns 70
Figure 6.11.2 — Query with #temp table.......ccccovviiiiiiiiiiiiiiiiniiiiiiiiiiinnn, 41
Figure 6.12 - Figure 6.11 — Query cost with #temp table.............ccccceeeeenanin. 70
Figure 6.13.1 - Query with @temp table...........ccooieiiiiiiiiiiiiiiiiiiiiiiiiiiiinnn 42
Figure 6.13 - Query cost with @temp table............ccceiviiiiiiiiiiiiiiiiinennnn. 71
Figure 6.14 - Sentry plan with #temp table.........c..ccoeeiiiiiiiiiiiiiiiiiiiiiinnn. 71
Figure 6.15 - Sentry plan with @temp table............ccccoviiiiiiiiiiiiiiiiiiinnnann. 72
Figure 6.15.1 - #Table and @Table Difference............ccccceiiiiiiiiiiiniinnnnnnen. 43
Figure 6.16 - How to find missing indeX........c.ccceeviiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnn 72
Figure 6.17.1 - Best practice for IN and Where........c..ccooviiiiiiiiiiiiiiinniinnnn 44
Figure 6.17 - Analyzed best practice IN and Where Clause.........cccceeievininnenn 73

vi

Figure 6.18.1 - Bad practice for IN and Where........cccccccvvviiiiiiiinnnnnnnennn 44

Figure 6.18 - Analyzed Bad practice IN and Where Clause..........c.cccccevennenn. 73
Figure 6.19.1 - Bad practice for IN and Where........cc.coccviiiiiiiiiiiiiieiinnnnnnn 45
Figure 6.19 - Analyzed bad practice IN and Where Clause.........ccccevieenienaiens 74
Figure 6.20.1 - Correlated SQL subqueries........ccoeeviiiiiiieiiiiiiieiiecieiiennes 46
Figure 6.20 - QEP plan and Cost of Correlated SQL subqueries.................... 74
Figure 6.21- QEP plan and Cost of Correlated

SQL subqueries in Sentry planner........cccoccviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiini. 75
Figure 6.22.1 — Solution for Correlated SQL subqueries........cccceeevieiiniinnnne. 46

Figure 6.22- Our Query QEP plan and Cost of Correlated SQL subqueries.....75

Figure 6.23 - Our Query QEP plan and Cost of Correlated

SQL subqueries in Sentry PIAnnerceciciviensseicscsnissssnsssssisssssesssssssssssssssesssases 76
Figure 6.24.1 — Query with Cursor......ccccceveiieiiieiieniosnecsretssatssssossscsssssnss 47

Figure 6.24 — QEP in CUSIOT....cccuiiiuiiiiiiiiiiiiiiiiiiiiiiiieiiieiiieeietissccneens 76

Figure 6.25.1 - Alternative solution for cursor..........c.cceveeiiiiiiiiiiiiiiiniinnen. 48
Figure 6.25 - Alternative solutinon QEP plan and query cost...........ccccuuee... 76
Figure 6.26.1 - Using User Defined Functions............ccceeeseeseecsnecseecseenssnecsenese s snns 49
Figure 6.26 - Set no count on execution time.........c.oevveiiiiiiiieiiinieeniennccne 77
Figure 6.27 - Without no count execution time........c.ccceervercscarccsarcscsnscsasessassosasees 77
Figure 6.27.1 - Difference between set no count and without no count................ 50

List of Tables

Table 7.1 — Evaluation functionality in database monitoring

1Y 0 0] LT3 1 1) 1 e 60
Table 6.8.1 — Differences between with IN and Remove IN........ccccciviivnnnnn. 39
Table 6.5 — Difference between set no count and without no count.................. 49

vii

Chapter 1

Introduction

1.1 Prolegomena

This chapter presents the background and motivation of the research, hypothesis, objectives,
problem statement, our database performance improvements approach and the structure of the
rest of the thesis. Here we describe some of the key problem areas currently exist in the
world. Especially, database performance problems will be identified and solutions will be
proposed to address those problems.

1.2 Background and Motivation

Although the Database Management System has become a de-facto standard, its main
strengths have to be found in its ease-of-use and querying capabilities, rather than its
efficiency in terms of hardware and system overhead. With the constantly growing amount of
data being accumulated and processed by companies’ information systems, database
performance issues become more likely. In the meantime, user requirements and expectations
are constantly arising, and delay in response time could considerably affect the company's
operations. Database performance tuning, or database performance optimization, is the
activity of making a database system run faster. SQL optimization attempts to optimize the
SQL queries at the application Level, and typically offers the biggest potential for database
performance optimization.

The query optimizer is widely considered to be the most important part of a database system.
The main aim of the optimizer is to take a user query and provide a detailed plan called a
Query Execution Plan (QEP), then indicate to the executer exactly how the query should be
executed. The problem that the optimizer faces is, for a given user query, a large amount of
different equivalent QEPs exists, and each of them has a corresponding execution cost.

1.3 Problem statement

In the modern era, digital data are considered as the most valuable asset of an organization,
and the organizations assign more significance to it than the software and hardware assets.
Database systems are computer-based record keeping systems, which have been developed to
store data for efficient retrieval and processing. Since data is produced and shared every day,
data volumes could be large enough for the database performance to become an issue. In
order to maintain database performance, identification, and diagnosis of the root cause that
may cause delayed queries is done. Poor query design can be one of the major causes of
delayed queries. There are various methods available to deal with the performance issues.
Database administrator decides the method or a combination of methods that work best.

1.4 Hypothesis

We hypothesize that simple and cost-effective Database monitoring app and proposed
database performance techniques would address problems in database performance issues,
can be developed using Microsoft Visual Studio, SQL, and best practices.

1.5 Objectives

(1) To study the current database performance issues related to SQL server applications.

(i) To critically review the available methods for query performance analysis and
Fine - tuning large complex SQL queries.

(iii)) To do an in-depth study of database behaviors with a large amount of data.

(iv) To develop a new Database monitoring application.

(v) To provide a solution to database performance issues.

(vi) To allow third parties to use the system and techniques.

(vii) To evaluate the performance of the system.

1.6 Structure of the Thesis.

The rest of the thesis is organized as follows. Chapter 2 critically reviews the literature on
Improving Query Processing Performance in Database Management Systems and identify the
research problems. Chapter 3 includes the technology for Improving Query Processing
Performance in Database Management Systems. Chapter 4 presents our new approach to use
Improving Query Processing Performance in Database Management Systems. Chapter 5 and
Chapter 6 describe the design and implementation respectively. Chapter 7 is an evaluation of
the new method. Chapter 8 concludes the research with a note on further work.

1.7 Summary.

This chapter gave an overall picture of the entire project presented in this thesis. Further, we
described the background/motivation, problem definition, hypothesis, objectives, and a brief

overview of the solution. Next chapter presents a critical review of the literature on
improving the query processing performance in database management systems.

Chapter 2

Developments and Challenges in Improving Query Processing
Performance in Database Management Systems.

2.1 Introduction

Chapter 1 gave a comprehensive description of the overall project described in this thesis.
This chapter provides a critical review of the literature in relation to Improve Query
Processing Performance in Database Management Systems developments and its challenges.

For this purpose, the review of the past researchers has been presented under five major
sections, such as Database optimization techniques, tools used to find database performance,
hardware configurations, proper database designing techniques and future challenges and find
out unsolved problems.

2.2 Early developments

With the rapid development of science and technology, information systems have become a
necessity in people's day to day life. Optimization of database systems plays an important
role and runs throughout the entire lifecycle of the database application, however,
performance for most database systems is only assessed after the completion of the entire
system at an early stage. Mostly, performance assessment for some database systems is
performed after system deployment [1]. The earlier optimization work starts, the less cost.
Database system performance tuning should be taken into consideration in design stage [2].
Andrew proposed a novel approach to database performance optimization meeting the
requirements of the query process [3].

A distributed relational database is a distributed database consisting of multiple physical
locations or sites and a number of relations. Relations may be replicated and/or fragmented at
different sites in the system. The placement of data in the system is determined by factors
such as local ownership and availability concerns. A distributed database management system
should not be confused with a parallel Database management system, which is a system
where the distribution of data is determined entirely by performance considerations. When
every site in the system runs the same DBMS software, the system is called ‘homogenous’.
Otherwise, the system is called a "heterogeneous’ system or a multi-database system [4].

To achieve database tuning, it is important to understand the causes of the problems and find
the current bottlenecks as there can be various possible factors affecting the database
performance. A first category targets ‘hardware’ factors which include memory, processor,
and disk and network performance. Other category includes the database related factors such
as the database design, indexing, partitioning or locking. And sometimes application level
problems can also be the cause of performance degradation. [2]

D. Kossmann et al[5] presented four different architectures based on classic multi-tier
database application architecture which includes partitioning, replication, distributed control
and caching architecture. It is clear that alternative providers have different business models
and target different kinds of applications: Google seems to be more interested in small
applications with light workload whereas Azure is currently the most affordable service for
medium to large services. Most of recent cloud service providers are utilizing hybrid
architecture which is capable of satisfying their actual service requirements. In this section,
we mainly discuss big data architecture from four key aspects such as; big data service
models, distributed file system, non-structural and semi-structured data storage and data
virtualization platform.

2.3 Modern trends in improving Query Processing

Performance tuning of database management system means enhancing the performance of the
database, i.e., minimizing the response time at a very optimum cost. As query response time
is the number one metrics when it comes to database performance, query optimization is one
of the important aspects of performance tuning. [15]

Column-oriented database systems (column-stores) have attracted a lot of attention in the past
few years. Column-stores, in a nutshell, store each database table column separately, with
attribute values belonging to the same column stored contiguously, compressed, and densely
packed, as opposed to traditional database systems that store entire records (rows) one after
the other. Reading a subset of a table's columns becomes faster, at the potential expense of
excessive disk-head seeking from column to column for scattered reads or updates. After
several dozens of research papers and at least a dozen of new column-store startups, several
questions remained. Is there a new breed of systems or simply old wine in new bottles? How
easily can a major row-based system achieve column-store performance? Is column-stores
the answer to effortlessly support large-scale data-intensive applications? What are the new,
exciting system research problems to tackle? What are the new applications that can be
potentially enabled by column-stores? In this tutorial, we present an overview of column-
oriented database system technology and address these and other related questions.

2.4.1 Future challenges of Improving Query Processing

Data processing is a common part of the processes inside every organization. Critical
challenges of these days come with well-known characters defined mostly for big data —
velocity, variety, and volume. Even new technologies exist, traditional data sources and
processes require a variety of different approaches. Current research and development in the
field of data processing accommodates knowledge from different areas including algorithms,
hardware, software, engineering, and social issues. Applications usually combine high-
performance computers for computation, high-performance databases and cloud servers for
data storage and management, and desktop computers for human-computer interaction source
for processing often comes from models or observations based on different scientific,
engineering, social, and cyber applications.

Massive sets of data in pet bytes (1015) or terabytes (1012) are available for analytical and
transactional processing. Main application areas are medicine, large sensor networks, social
networks, and other industrial-based sources of data. The common factor is the existence of
connections between data which on the other hand leads to increased complexity of data sets.
In our paper, we will define some of our observations and selected experimental results to
describe basic challenges of data processing. We are dealing with three different approaches
such as relational, semantic, and graph based. All of these require accommodation of
different techniques.

2.4.2 Big Data Management System

According to a recent survey by Gartner in 2010g, 47% of survey respondents ranked data
growth in their top three challenges, followed by system performance and scalability at 37%,
and network congestion and connectivity architecture at 36%. Many researchers have
suggested that commercial Data Base Management Systems (DBMSs) are not suitable for
processing extremely big data. Classic architecture’s potential bottleneck is the database
server while facing peak workloads. One database server has the restriction of scalability and
cost [22], which are two important goals of big data processing in order to adapt various large
data processing models.

2.4.3 Big Data Service Model

As we all know, cloud computing is a kind of information and communication [29]
technology, which delivers valuable resources to people as a service, such as Software as a
Service (SaaS), Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) [24].
There are several leading Information Technology (IT) solution providers, who offer these
services to the customers. Now, as the concept of the big data came up, the cloud computing
service model is gradually transferring into big data service models, which are DaaS
(Database as a Service), AaaS (Analysis as a Service) and BDaaS (Big data as a Service). The
detailed descriptions are as follows: Database as a Service means that database services are
available applications deployed in any execution [28] environment, including on a PaaS. But
in the big data context, these would optimally be scale-out architectures such as No SQL data
stress and in-memory databases.

Analysis as a Service would be more familiar with interacting with an analytics platform on a
higher abstraction level. They would typically execute scripts and queries that data scientists
or programmers developed for them.

Big data as a Service coupled with Big Data platforms are for users that need to customize or
create new big data stacks, however, readily available solutions do not yet exist. Users must
first acquire the necessary cloud computing infrastructure, and manually install the big data
processing software. For complex distributed services, this can be a daunting challenge.

2.4.4 Non-structural and Semi-structured Data Storage

With the success of the Web 2.0, most IT companies increasingly need to store and analyze
the ever-growing data, such as search logs, crawled web content and click streams collected
from a variety of web services, which are usually in the range of petabytes. However, web
datasets are usually non-relational or less structured and processing such semi-structured data
sets at scale poses another challenge. Moreover, simple distributed file systems mentioned
above cannot satisfy service providers like Google, Yahoo!, Microsoft and Amazon. All
providers have their purpose to serve potential users and own their relevant state-of-the-art of
big data management systems in the cloud environment. Big table [7] is a distributed storage
system of Google for managing structured data that is designed to a scale of a very large size
(petabytes of data) across thousands of commodity servers. Big table does not support a full
relational data model. However, it provides clients with a simple data model that supports
dynamic control over data layout and format. PNUTS [8] is a massive scale hosted database
system designed to support Yahoo! web applications.

2.4.5 Data Virtualization Platform

Data virtualization describes the process of abstracting disparate systems. It can be described
as conceptual building of abstract layers of resources. In short, big data and cloud computing
refer to a convergence of technologies and trends that are making IT infrastructures and
applications more dynamic, more modular and more consumable. Currently, the technology
of constructing virtualization platform is just in the primary phase, which mainly depends on
the cloud data center integration technology.

2.4.6 Distributed Applications

In this age of data explosion, parallel processing is essential to perform a massive volume of
data in a timely manner. In contrast, the use of distributed techniques and algorithms is the
key to achieve better scalability and performance in processing big data. At present, there are
a lot of popular parallel and distributed processing models, including MPI, General Purpose
GPU (GPGPU), Map Reduce and Map Reduce-like. We will focus on the last two processing
models.

2.4.7 Map Reduce

Map Reduce proposed by Google, is a very popular big data processing model that has
rapidly been studied and applied by both industry and academia [9]. Map Reduce has two
major advantages: it hides details related to the data storage, distribution, replication, load
balancing and so on. Furthermore, it is so simple that programmers only specify two
functions, such as ‘map function’ and ‘reduce function’. We divide existing Map-Reduce
applications into three categories as, partitioning sub-space, decomposing sub-processes and
approximate overlapping calculations. While Map Reduce is referred to as a new approach of

6

processing big data in cloud computing environments, it is also criticized as a “major step
backwards” compared with DBMS. As the debate continues, the final result shows that
neither of them is good at what the other does well, and the two technologies are
complementary [19]. Recently, some DBMS vendors have integrated Map Reduce front-ends
into their systems including Aster, HadoopDB[14], Greenplum[15]. Most of those are still
databases, which simply provide a MapReduce front-end to a DBMS. HadoopDB is a hybrid
system which efficiently takes the best features from the scalability of Map Reduce and the
performance of DBMS. Lately, J. Dittrich et al. proposed a new type of system named
Hadoop++ which indicates that HadoopDB also has severe drawbacks, including forcing user
to use DBMS, changing the interface to SQL and so on.

2.4.8 Map Reduce Optimization

Previous works have shown that Map-Reduce systems are inefficient in utilizing computing
resources. In this section, we present details of approaches for improving the performance of
processing big data with Map Reduce.

2.4.9 Data Transfer Bottlenecks

It is a big challenge that cloud users must consider how to minimize the cost of data
transmission. Consequently, researchers have begun to propose variety of approaches. Map-
Reduce-Merge[17] is a new model that adds a Merge phase after Reduce phase that combines
two reduce outputs from two different MapReduce jobs into one, which can efficiently merge
data that is already partitioned and sorted (or hashed) by Map and Reduce modules. Map-
Join-Reduce [18] is a system that extends and improves MapReduce runtime framework by
adding Join stage before Reduce stage to perform complex data analysis [19] tasks on large
clusters. The authors presented a new data processing strategy which runs filtering-join
aggregation tasks with two consecutive MapReduce jobs. It adopts one-to-many shuffling
[20] scheme to avoid frequent check pointing and shuffling of intermediate results. Moreover,
different jobs often perform similar work, thus sharing similar work reduces overall amount
of data transfer between jobs. MRShare[21] is a sharing framework proposed by T. Nykiel et
al. that transforms a batch of queries into a new batch that can be executed more efficiently
by Merging jobs into groups and evaluating each group as a single query.

2.4.10 Index Optimization

Many researchers have implemented the traditional and optimized index structures on
MapReduce to obtain better performance. In, T. Liu et al. built hybrid spill trees in parallel
and implemented a scalable image searching algorithm which can be used efficiently to find
near duplicates among over billions of images using MapReduce. However, the tree-based
approaches have some problems. They did not scale due to traditional top-down search that
overloaded the nodes near the tree root, and failed to provide full decentralization. Whereas
Voronoi based index [22] made clusters highly scalable by its loose coupling and shared
nothing architecture. Till now, Voronoi based index cannot process multidimensional data.
Hence, the index structure which is simple, scalable and we’ll be used for distributed
processing mode is a best choice for the effective store and processing of the data. Later,
Menon et al. presented a novel parallel algorithm for constructing suffix array and BWT of a
sequence leveraging the unique features of MapReduce and reduced the end to end runtime
from hours to mere minutes. [22] There are also some papers adapting inverted index, which
is a simple but practical index structure and appropriate for MapReduce to process big data,
such as in[22] etc. We did a research on large-scale spatial data environment and designed a
distributed inverted grid index by combining inverted index and spatial grid partition with
MapReduce model, which is simple, dynamic, scalable and fits for processing high
dimensional spatial data.[23]While most kinds of large data are high dimensional, so in[24],
J.Wang et al. designed a new system, epic, in which different types of indexes were built to
provide efficient query processing for different applications.

2.4.11 Iterative Optimization

Classic parallel applications are developed using message passing runtimes such as MPI
(Message Passing Interface) and PVM (Parallel Virtual Machine), where parallel algorithms
are developed using above techniques to utilize the rich set of communication and
synchronization constructs offered which are to create diverse communication topologies
[29]. In contrast, MapReduce and similar high-level programming models support simple
communication topologies and synchronization constructs. MapReduce also is a popular
platform in which the data flow takes the form of a directed acyclic graph of operators.
However, it requires lots of I/Os and unnecessary computations while solving the problem of
iterations with MapReduce.

2.5 Summary

This chapter presented a comprehensive literature review on Improving Query Processing
Performance in Database Management Systems and identified the research problem as the
inadequate attention to reliability of Improving Query Processing Performance Techniques.
We also identified the various Methods to address the above problem. Next chapter will
discuss about the technology to be used for our solution.

Chapter 3

Technology Adopted for Improving Query Processing Performance in
Database Management Systems

3.1 Introduction

In the previous chapter, various researchers to address the same issues were critically
reviewed. Advantages, disadvantages, and features of existing systems and proposed systems
were analyzed and listed.

In this chapter, technologies regarding database performance system will be described. Also,
technologies and methods and tools used in development, testing and implementation will be
discussed.

3.2 Technologies Available
3.2.1 Database Monitoring

Database monitoring app was developed under Microsoft Visual Studio .net framework 4.0
and language used C#, also background running tested large queries and will pop up all
details to the front end.

Database query fine tuning porotype was developed under SQL.it is all are precompiled.
3.2.2 Query Analyzing and Optimization

Microsoft SQL server comes with inbuilt Profiler. So we can use this for analyzing SQL
queries in some level. But its need more knowledge to use it.

SQL Sentry plan explore is another tool which I used in this research.it is analyze the query
and will give the performance statics, such as log write, read, idle time, index analyze.

Database Tuning Engine Advisor analyzes the query and provides a graphical report and it
shows index analysis. But it is a little bit difficult to handle and use.

3.3 Technology Stack

Our Technology stack is C#, SQL database, and SQL Profiler. The overall technology stack

can be illustrated as Figure 3.1 — Technology Stack.

Y rechnoloy stack

Technology Stack

.NET (v4.5)

v CH#

Middle Layer

v EF6.0

Database

v+ SQL Server
v SQL Azure

-

-

Development Environment

Visual Studio

-~

Production Environment

Windows Server

SOL Server / SQL Azure

Figure 3.1 — Technology Stack.

3.4 Summary

In this chapter, the technologies used for our Database performance improvement techniques
were described. Further, the reasons for selecting relevant technologies were also explained.

And some advantages and disadvantages of technologies were briefly discussed.

In next chapter, the approach to implement our Database performance improvement

techniques will be described.

[E

0

Chapter 4

An approach to Improving Query Processing Performance in Database
Management Systems

4.1 Introduction

Having defined the problem in Chapter 2 we presented technology required for the proposed
solution in chapter 3. This chapter presents our novel approach to use C# and SQL
technology to address our research problem. The approach is described under the headings of
hypothesis, users, input to the system, output of the system, process to convert the input to the
output and overall features of the system.

One of the first tasks in database tuning is to understand the causes of the problem and find
the current bottlenecks. This is already challenging in itself, given the very diverse factor
affecting the overall database performance. A first category can be grouped under
"Hardware" and includes the processor, memory, and disk and network performance. Other
factors are more directly related to database systems itself, such as the database design,
indexing, partitioning or locking. Finally, the problem can also arise at the application level.

4.2 Hypothesis

We hypothesize that simple and cost-effective Database monitoring app and proposed
database performance techniques would address problems in database performance issues,
can be developed using Microsoft Visual Studio, SQL, and best practices.

4.3 Users

The number of users can be benefited by the Database performance monitoring system and
proposed performance improvement prototype. More importantly, Database administrator,
Database developers, System users, Customers and organizational management can be
directly benefited by the system.

University students who interested in Database systems and data analyzing can use the
system for learning purposes.

Software developing company who interesting product in Database systems and data
analyzing can use the system for business purposes.

4.4 Input

The system can accept any version of SQL server database from multiple servers which has
location any place and any remote servers. The input could be as,
Any user accessing the system data should go through an authentication process

» SQL Login Username, password (Authentication details)
» Complex SQL queries
» The large volume of a data table

11

4.5 Output

4.5.1 Database Monitoring application output

>

V V. V V V V V VYV V

Database installation information

Database version information

The graphical graph with displaying all running query count(DB read, write, log read)
Database allocated memory

Performance improvement suggestion

Currently, running process id's in SQL server

Disk space analysis information

Locked objects

Waiting for task analysis

Missing index details

4.5.2 Database Performance improvement prototype (suggested techniques)

>

YV V. V V V V VY VY

Reduce execution time

Rich response time

High throughput

Faster processing of the query

Lesser cost per query

The high performance of the system
lesser stress on the database

Efficient usage of the database engine

Lesser memory is consumed

4.6 Process

We have divided the entire process into two major parts which are the development of
databases monitoring app and proposed the new prototype for optimizing SQL queries.

4.6.2 Developed database monitoring app

A Database monitoring app consists of all the database retrieving, analysis, and suggestion
and provides graph and statistics of the database.

Graphs would be used for identifying the performance of current database and database

SCrver.

12

4.6.3 Queries Optimization techniques.

4.6.3.1 Introducing new Queries Optimization techniques.

Here we introduce our own two techniques to optimize complex queries which were found
during this research. Also, it was well tested and evaluated by using various types of
databases.

Technique 01: Avoid IN Operator in WHERE clause
Solution: Create the temp table and insert needed data and JOIN to the main query

If problematic query consists IN Operator then you must remove that and apply new method
as below mentioned way.

» Remove IN operator and create a #temp table instead of that and then insert necessary
data to that table

» After that create an index to the temp table.

» Then temp table will join with the base table.

This technique may be questioned for a first time user, but in deeply I have verified this new
technique and tested a large number of times, spending a longer period.

This technique would not be found in any research paper or any web reference since last
April.

Technique 02: Avoid temp tables as much as you can, but if you need a temp table, create it
explicitly using Create Table #temp

Solution: Create #temp table

4.6.3 Queries Optimization techniques (Prototype)

Writing efficient queries in SQL Server is more an exercise in writing elegant relational
queries than in knowing specific tricks and syntax tips. Generally, a well-written, relationally
correct query written against a well-designed relationally correct database model that uses the
correct indexes produces a system that performs fairly well and that is scalable. The
following guidelines may help you create efficient queries:

Know the performance and scalability characteristics of queries.
Write correctly formed queries.

Return only the rows and columns needed.

Avoid expensive operators such as NOT LIKE.

Avoid explicit or implicit functions in WHERE clauses.

Use locking and isolation level hints to minimize locking.

Use stored procedures or parameterized queries.

Minimize cursor use.

Avoid long actions in triggers.

V VV V V V V V V

13

Use temporary tables and table variables appropriately.

Limit query and index hints use.

Fully qualify database objects.

Avoid operators such as IN.

Know the Performance and Scalability Characteristics of Queries

YV V.V VYV V

The best way to achieve performance and scalability is to know the characteristics of your
queries. Although it is not realistic to monitor every query, you should measure and
understand your most commonly used queries. Do not wait until you have a problem to
perform this exercise. Measure the performance of your application throughout the life cycle
of your application.

Good performance and scalability also require the cooperation of both developers and
database administrators. The process depends on both query development and index
development. These areas of development typically are found in two different job roles. Each
organization has to find a process that allows developers and database administrators to
cooperate and to exchange information with each other. Some organizations require
developers to write appropriate indexes for each query and to submit an execution plan to the
database architect. The architect is responsible for evaluating the system as a whole, for
removing redundancies, for finding efficiencies of scale, and for acting as the liaison between
the developer and the database administrator The database administrator can then get
information on what indexes might be needed and how queries might be used. The database
administrator can then implement optimal indexes.

In addition, the database administrator should regularly monitor the SQL query that
consumes the most resources and submits that information to the architect and developers.
This allows the development team to stay ahead of performance issues.

4.6.3.1 Write Correctly Formed Queries

Ensure that your queries are correctly formed. Ensure that your joins are correct, that all parts
of the keys are included in the ON clause, and that there is a predicate for all queries. Pay
extra attention to ensure that no cross products result from missing ON or WHERE clauses
for joined tables. Cross products are also known as Cartesian products.

Do not automatically add a DISTINCT clause to SELECT statements. There is no need to
include a DISTINCT clause by default. If you find that you need it because duplicate data is
returned, the duplicate data may be the result of an incorrect data model or an incorrect join.
For example, a join of a table with a composite primary key against a table with a foreign key
that is referencing only part of the primary key results in duplicate values. You should
investigate queries that return redundant data for these problems.

14

4.6.3.2 Return Only the Rows and Columns Needed

One of the most common performance and scalability problems are queries that return too
many columns or too many rows. One query in particular that returns too many columns are
the often-abused SELECT * FROM construct. Columns in the SELECT clause are also
considered by the optimizer when it identifies indexes for execution plans. Using a SELECT
query not only returns unnecessary data, but it also can force clustered index scans for the
query plan, regardless of the WHERE clause restrictions. This happens because the cost of
going back to the clustered index to return the remaining data from the row after using a non-
clustered index to limit the result set is actually more resource-intensive than scanning the
clustered index.

The query shown in Figure 4.6.1 shows the difference in query cost for a SELECT *
compared to selecting a column. The first query uses a clustered index scan to resolve the
query because it has to retrieve all the data from the clustered index, even though there is an
index on the OrderDate column. The second query uses the OrderDate index to perform an
index seek operation. Because the query returns only the OrderID column, and because
the OrderID column is the clustering key, the query is resolved by using only that index. This
is much more efficient; the query cost relative to the batch is 33.61 percent rather than 66.39
percent. These numbers may be different on your computers.

15

select * from northwind.dbo.Orders where COrderDate < '"0L/01/19396

select QOrderid from northwind.dbo.Orders where CrderDate < "0L/0L/133&°
mery 1l: Query cost (relative to the kbatch): 66.35%
mery text: SELECT *# FROM [northwind]. [dbo].[Crder=s] WHERE [OrderDate]<El

Cost: 0% Cost: 433 Cost: 51%

Z2: Query cost (relative to the batch): 33.61%
text: SELECT [COrderid]=[Crderid] FRCM [northwind].[dbo].[Crders] WHER

SELECT Crders.OrderDat...
Cost: 0% Cost: 100%

Figure 4.6.1 - Query cost
4.6.3.3 Use Indexed Views for De-normalization

When you have joins across multiple tables that do not change frequently, such as domain or
lookup tables, you can define an indexed view for better performance. An indexed view is a
view that is physically stored like a table. The indexed view is updated by SQL Server when
any of the tables that the indexed view is based on are updated. This has the added benefit of
pulling I/O away from the main tables and indexes.

4.6.3.4 Partition Tables Vertically and Horizontally

You can use vertical table partitioning to move infrequently used columns into another table.
Moving the infrequently used columns makes the main table narrower and allows more rows
to fit on a page.

Horizontal table partitioning is a bit more complicated. But when tables that use horizontal
table partitioning are designed correctly, you may obtain huge scalability gains. One of the
most common scenarios for horizontal table partitioning is to support history or archive

16

databases where partitions can be easily delineated by date. A simple method that you can use
to view the data is to use partitioned views in conjunction with check constraints.

Data-dependent routing is even more effective for very large systems. With this approach,
you use tables to hold partition information. Access is then routed to the appropriate partition
directly so that the overhead of the partitioned view is avoided.

If you use a partitioned view, make sure that the execution plan shows that only the relevant
partitions are being accessed. Figure 4.6.2 shows an execution plan over a partitioned view
on three orders tables that have been horizontally partitioned by the OrderDate column. There
is one table per year for 1996, 1997, and 1998. Each table has a PartitionID column that has a
check constraint. There is also a partition table that includes a PartitionID and the year for
that partition. The query then uses the partition table to get the appropriate PartitionID for
each year and to access only the appropriate partition.

E - (5

Ne=zted Loops/In... Tzkle Scan
Cost: 9% Cost: 50%

z a9

— sl

Concatenation Crders26.FK_Cxd...
Cost: 0% Cost: 0 Cost: 10%

— iy

Crders37.FK Crd...
Cost: O Cost: 21%

S

Crders3E.FK Crd...

Filter
Restricting the set of rows based on a
predicate.
Physical operation: Filter
Logical operation: Filter
Row count: 270
Estimated row size: 253
I/0 cost: 0,00706
CPU cost: 0.000152
Number of executes: 1
Subtree cost: 0.007a80
Estimated row count: 66
Argument:
\WHERE: (STARTUP EXPR{[p]. [PartitionID] =3}

Figure 4.6.2 - Execution plan

17

4.6.3.5 Avoid Explicit or Implicit Functions in WHERE Clauses

The optimizer cannot always select an index by using columns in a WHERE clause that are
inside functions. Columns in a WHERE clause is seen as an expression rather than a column.
Therefore, the columns are not used in the execution plan optimization. A common problem
is date functions around date time columns. If you have a date time column in a WHERE
clause, and you need to convert it or use a data function, try to push the function to the literal
expression.

The following query with a function on the date time column causes a table scan in the
NorthWind database, even though there is an index on the OrderDate column:

SELECT OrderID FROM NorthWind.dbo.Orders WHERE DATEADD (day, 15,

OrderDate) ='07/23/1996'

However, by moving the function to the other side of the WHERE equation, an index can be
used on the datetime column. This is shown in the following example:

SELECT OrderID FROM NorthWind.dbo.Orders WHERE OrderDate = DATEADD (day, -
15,'07/23/1996")

4.6.3.6 SQL Tuning

SQL tuning is believed to have the largest impact on performance (more than 50%).SQL is a
declarative language which only requires the user to specify what data is wanted. There might
be hundreds or thousands of different ways to correctly process the query. Hence, it’s very
hard for the DBMS query optimizer to decide which access path should be used. The best
execution plan chosen by the query optimizer is called the query execution plan (QEP).

4.6.3.6.1 List of methods for SQL query tuning

4.6.3.6.1.1 Gather statistics

It is for Oracle DB. It relies on up to date statistics to generate the best execution plan.
Updated statistics help the optimizer to select perfect execution plan for a query.

It can be resource consuming. It must plan accordingly before executing. [3]

4.6.3.6.1.2 Index Management

Indexes are optional structures associated with tables and clusters that allow SQL statements
to execute more quickly against these tables. Index created columns help queries to select

using index instead of doing the full table scan, which is usually expensive.
DML statements can be slow if there is a lot of indexes on the table. [5]

18

4.6.3.6.1.3 Table Reorganization

It is used to improve the performance of queries or DML operations performed against these
tables. All data blocks will be moved to be together and prevent fragmentation which can
cause slowness.

It is usually time-consuming and needs downtime. [6]

4.6.3.6.1.4 Prediction

It involves estimating the space used of a table, estimating the space use of an index and
obtaining Object Growth Trends. It is able to predict the problem before it happened.
Sometimes the predictions are not accurate because the data consumed is not increased in
sequence. [5]

4.6.3.6.1.5 Data Mart

A data warehouse is designed for data to be collected directly from the various sources. The
database will be grouped according to schemas and departments. It is easy to maintain and
improve the database performance.

It is applicable only to the schemas which are less than 100 GB. It is not optimum to use data
mart for the bigger database. [5]

4.6.3.6.1.6 Materialized View

It provides access to table data by storing the results of a query in separate schema object. It
results in fast synchronization between source and target. Data can be refreshed on preferred
method.

Complex queries on Materialized View tables perform badly, especially if there are joins with
other tables. [5]

4.6.3.6.1.7 Partition Table

It splits the table into smaller parts that can be accessed, stored and maintained independently
of one another. It improves performance when selecting data. It can be used easily for data
pruning.

It is hard for the DBAs to do maintenance on a partitioned table if it involves lots of partition
in a table. Index creation will be slow if a hash partition is used. [4]

19

4.6.3.6.1.8 Query Rewriting

It consists of the compilation of an ontological query into an equivalent query against the
underlying relational database. It improves the way, data are being selected. By adding hints
in the SQL, it sometimes enhances the performance of individual queries.

It can be a troublesome job to change hardcoded queries. Queries that are tested thoroughly
could cause slowness.

4.6.3.6.1.9 Monitoring Performance

It is used to determine possible problems, locate the root cause and provide recommendations
for correcting them. It is able to identify the root cause of the problem.
Only DBA is able to do monitoring.

4.6.3.6.2.0 Optimization

Query optimization is the process of choosing the most efficient way to execute an SQL
statement. It helps queries to run faster. Data retrieval can be improved. Parameter tuning and
memory tuning enable the database to perform an optimum level.

It must be done with supervision and wrong parameter set can cause the database to go down
or perform badly. Memory leak is also possible.

4.7 Features

In connection with the input, output, users, and process, the over features of the system
include the following characteristics.

» Online database server analysis
Online database analysis

Easy to use

High level of accuracy
User-friendly

Easy to install

Easy to maintains.

YV VVYY

4.8 Summary

In connection with the input, output, users, and process, the over features of the system
include the following characteristics.

20

Chapter 5

Design and Implementation of Database monitoring app and Database
query optimizing the prototype

5.1 Introduction

The previous chapter gave the full picture of the entire solution. This chapter describes the
design of the solution for the process presented in the approach. We design the solution as a
client-server system with a backend database and administration interface. Separate SQL
performance analysis and optimizing techniques designed to capture database performance
issues and solve them. Here we describe the top-level architecture of the design by
elaborating on the role of each component of the architecture.

To retain its users, any application or website must run fast. For mission-critical
environments, a couple of milliseconds delay in getting information might create big
problems. As database sizes grow day by day, we need to fetch data as fast as possible and
write the data back into the database as fast as possible. To make sure all operations are
executing smoothly, we have to tune our database server for performance.

The overall solution has been implemented as Microsoft based application running on SQL
server. A C# application is implemented as the main analyze source for the system. The
algorithms, hardware, software, pseudo codes and relevant code segments of the
implementation are presented in this chapter.

5.2 Design Database Monitoring Application

The architecture of Database monitoring app consists layered architecture.it consists of UI,
Logic, Controls, common and security layered.

Appendix A illustrates User interface of the system.

Database monitoring app consists of five main modules, namely, Performance analyzes, and
Server analyzes, Database connectivity and Activities of the database.

5.3 Implementation of Database Monitoring Application
The main application is developed on C# which is an object oriented languages with many
features. Its efficiency is high since it consumes few of system resources. It is cross-platform

and has object oriented features. C# is cross-platform since it is running on LINUX, UNIX
and WINDOWS. This was used considering the stability, security and further scalability

21

5.4 Query Optimization Techniques (Prototype)
5.4.1 Finding the Culprits

Tools used to find culprits: Server Profiler / Tuning advisory / DB Monitor App

As with any other software, we need to understand that Database server (SQL) is a complex
computer program. If we have a problem with it, we need to discover why it is not running as
we expect.

From SQL Server we need to pull and push data as fast and as accurately as possible. If there
are issues, a couple of basic reasons, and the first two things to check, are:

The hardware and installation settings, which may need correcting since SQL Server needs
are specific

If we have provided the correct T-SQL code for SQL Server to implement

Even though SQL Server is proprietary software, Microsoft has provided a lot of ways to
understand it and use it efficiently.

If the hardware is OK and the installation has been done properly, but the SQL Server is still
running slowly, then first we need to find out if there are any software related errors. To
check what is happening, we need to observe how different threads are performing. This is
achieved by calculating wait statistics of different threads. SQL server uses threads for every
user request, and the thread is nothing but another program inside our complex program
called SQL Server. It is important to note that this thread is not an operating system thread on
which SQL server is installed; it is related to the SQLOS thread, which is a pseudo operating
system for the SQL Server.

Wait statistics can be calculated using sys.dm_os_wait_stats Dynamic Management View
(DMV), which gives additional information about its current state. There are many scripts
online to query this view, but my favorite is Paul Randal’s script because it is easy to
understand and has all the important parameters to observe wait statistics: Please refer the
Figure 5.1 for wait statistics

WITH [Waits] AS

(SELECT

[wait_type],

[wait_time ms]/ 1000.0 AS [WaitS],

([wait_time ms] - [signal wait_time ms]) / 1000.0 AS [ResourceS],
[signal wait time ms]/ 1000.0 AS [SignalS],

[waiting_tasks count] AS [WaitCount],

100.0 * [wait time ms]/ SUM ([wait_time ms]) OVER() AS [Percentage],
ROW_NUMBER() OVER(ORDER BY [wait_time _ms] DESC) AS [RowNum]
FROM sys.dm_os_wait_stats

WHERE [wait_type] NOT IN (

22

N'BROKER_EVENTHANDLER', NBROKER RECEIVE WAITFOR/,
N'BROKER TASK STOP', NBROKER TO FLUSH',
N'BROKER TRANSMITTER', NNCHECKPOINT QUEUE,
N'CHKPT', N'CLR_AUTO_EVENT",
N'CLR_MANUAL EVENT', N'CLR SEMAPHORE/,
N'DBMIRROR_DBM_ EVENT', NDBMIRROR EVENTS QUEUE',
N'DBMIRROR_ WORKER QUEUE', NDBMIRRORING CMD/',
N'DIRTY_PAGE POLL', N'DISPATCHER QUEUE_SEMAPHORE',
N'EXECSYNC', NFSAGENT",
N'FT_IFTS SCHEDULER IDLE WAIT', N'FT IFTSHC MUTEX',
N'HADR CLUSAPI CALL', NHADR FILESTREAM IOMGR IOCOMPLETION',
N'HADR LOGCAPTURE WAIT', NHADR NOTIFICATION DEQUEUE,
N'HADR TIMER TASK', NNHADR WORK QUEUE/,
N'KSOURCE WAKEUP', NNLAZYWRITER_SLEEP',
N'LOGMGR_QUEUE', NNONDEMAND TASK QUEUE),
N'PWAIT ALL COMPONENTS INITIALIZED',
N'QDS_PERSIST TASK _MAIN LOOP_SLEEP',
N'QDS_CLEANUP_STALE QUERIES TASK MAIN LOOP_SLEEP',
N'REQUEST FOR DEADLOCK SEARCH', NRESOURCE QUEUE',
N'SERVER IDLE CHECK', N'SLEEP BPOOL FLUSH',
N'SLEEP DBSTARTUP', N'SLEEP DCOMSTARTUP',
N'SLEEP MASTERDBREADY', N'SLEEP MASTERMDREADY",
N'SLEEP. MASTERUPGRADED', N'SLEEP MSDBSTARTUP',
N'SLEEP SYSTEMTASK', N'SLEEP_TASK,
N'SLEEP TEMPDBSTARTUP', N'SNI_HTTP_ACCEPT,
N'SP_ SERVER DIAGNOSTICS SLEEP', N'SQLTRACE BUFFER FLUSH',
N'SQLTRACE INCREMENTAL FLUSH SLEEP',
N'SQLTRACE WAIT ENTRIES', NWAIT FOR RESULTS',
N'WAITFOR', NWAITFOR_TASKSHUTDOWN',
N'WAIT_XTP_HOST WAIT', NWAIT XTP_OFFLINE CKPT NEW LOG',
N'WAIT XTP CKPT CLOSE', N'XE DISPATCHER JOIN',
N'XE DISPATCHER WAIT', N'XE TIMER EVENT")
AND [waiting_tasks count] >0
)
SELECT
MAX ([W1].[wait_type]) AS [WaitType],
CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource S],
CAST (MAX (JW1].[SignalS]) AS DECIMAL (16,2)) AS [Signal _S],
MAX ([W1].[WaitCount]) AS [WaitCount],
CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
CAST (MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS
[AvgWait S],

23

CAST (MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS
[AvgRes S],
CAST ((MAX ([W1].[SignalS]) / MAX ([WI1].[WaitCount])) AS DECIMAL (16,4)) AS
[AvgSig S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [WI1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX ([W1].[Percentage]) < 95;
GO
Figure 5.1 wait statistics

When we execute this script, we need to concentrate on the top rows of the result because
they are set first and represent the maximum wait type.

We need to understand wait types so we can make the correct decisions. Let's take an
example where we have too much PAGEIOLATCH XX. This means a thread is waiting for
data page reads from the disk into the buffer, which is nothing but a memory block. We must
be sure we understand what's going on. This does not necessarily mean a poor I/O subsystem
or not enough memory and increasing the I/O subsystem and memory will solve the problem,
but only temporarily. To find a permanent solution we need to see why so much data is being
read from the disk: What types of SQL commands are causing this? Are we reading too much
data instead of reading less data by using filters, such as where clauses? Are too many data
reads happening because of table scans or index scans? Can we convert them to index seeks
by implementing or modifying existing indexes? Are we writing SQL queries that are
misunderstood by SQL Optimizer (another program inside our SQL server program)?

We need to think from different angles and use different test cases to come up with solutions.
Each of the above wait types needs a different solution. A database administrator needs to
research them thoroughly before taking any action. But most of the time, finding problematic
T-SQL queries and tuning them will solve 60 to 70 percent of the problems.

5.4.2 Finding Problematic Queries

As mentioned above, the first thing we can do is to search problematic queries. The following
T-SQL code will find the 20 worst performing queries. Please refer Figure 5.2

SELECT TOP 20
total worker time/execution_count AS Avg CPU Time
,Execution_count
,jtotal elapsed time/execution count as AVG_Run_ Time

,jtotal elapsed time

24

,(SELECT

SUBSTRING(text,statement_start offset/2+1,statement_end offset
) FROM sys.dm_exec sql text(sql handle)

) AS Query_ Text

FROM sys.dm_exec query_stats

ORDER BY Avg CPU Time DESC

Figure 5.2 find the 20 worst performing queries

We need to be careful with the results; even though a query can have a maximum average
runtime, if it runs only once, the total effect on the server is low compared to a query which
has a medium average runtime and runs lots of times in a day.

5.4.3 Fine Tuning Queries

The fine-tuning of a T-SQL query is an important concept. The fundamental thing to
understand is how well we can write T-SQL queries and implement indexes so that the SQL
optimizer can find an optimized plan to do what we wanted it to do. With every new release
of SQL Server, we get a more sophisticated optimizer that will cover our mistakes in writing
not optimized SQL queries, and will also fix any bugs related to the previous optimizer. But,
no matter how intelligent the optimizer may be, if we can't tell it what we want (by writing
proper T-SQL queries), the SQL optimizer won't be able to do its job.

SQL Server uses advanced search and sorting algorithms. If we are good at search and sorting
algorithms, then most of the time we can guess why SQL Server is taking the particular
action.

The best book for learning more and understanding such algorithms is the art of the computer
by Donald Knuth.

When we examine queries that need to be fine-tuned, we need to use the execution plan of
those queries so that we can find out how SQL server is interpreting them.

I can't cover all the aspects of the execution plan here, but on a basic level, I can explain the
things we need to consider.

First, we need to find out which operators take most of the query cost.

If the operator is taking a lot of costs, we need to learn the reason why. Most of the time,
scans will take up more cost than seeks. We need to examine why a particular scan (table
scan or index scan) is happening instead of an index seek. We can solve this problem by
implementing proper indexes on table columns, but as with any complex program, there is no
fixed solution. For example, if the table is small then scans are faster than seeks.

25

There are approximately 78 operators, which represent the various actions and decisions of
the SQL Server execution plan. We need to study them in-depth by consulting the Microsoft
documentation so that we can understand them better and take proper action.

5.4.4 Execution Plan Re-Use

Even if we implement proper indexes on tables and write good T-SQL code, if the execution
plan is not reused, we will have performance issues. After fine-tuning the queries, we need to
make sure that the execution plan may be re-used when necessary. Most of the CPU time will
be spent on calculating execution plan that can be eliminated if we re-use the plan.

We can use the query below to find out how many times execution plan is re-used,
where usecounts represents how many times the plan is re-used. Please refer Figure 5.3

SELECT [ecp].[refcounts]

, [ecp].[usecounts]

, [ecp].[objtype]

, DB_NAME([est].[dbid]) AS [db_name]

, [est].[objectid]

, [est].[text] as [query ext]

, [eqp].[query_plan]

FROM sys.dm_exec cached plans ecp

CROSS APPLY sys.dm_exec_sql text (ecp.plan_handle) est
CROSS APPLY sys.dm_exec_query plan (ecp.plan_handle) eqp

Figure 5.3 How many times execution plan is re-used

The best way to re-use the execution plan is by implementing parameterized stored
procedures. When we are not in a position to implement stored procedures, we can

use sp_executesql , which can be used instead to execute T-SQL statements when the only

change to the SQL statements are parameter values. SQL Server most likely will reuse the
execution plan that is generated in the first execution.

Again, as with any complex computer program, there is no fixed solution. Sometimes it is
better to compile the plan again.

Let’s examine following two example queries:

> select name from table where name = 'Sri';

> select name from table where name = 'pal’;

26

Let us assume we have a non-clustered index on the name column and half of the table has

value Sri and few rows have the pal in the name column. For the first query, SQL Server
will use the table scan because half of the table has the same values. But for the second query,
it is better to use the index scan because only a few rows have pal value.

Even though queries are similar, the same execution plan may not be the good solution. Most
of the time it will be a different case, so we need to carefully analyze everything before we
decide. If we don't want to re-use the execution plan, we can always use the "recompile"
option in stored procedures.

Keep in mind that even after using stored procedures or sp_executesql , there are times when

the execution plan won’t be re-used. They are:
> When indexes used by the query change or are dropped
When the statistics, structure or schema of a table used by the query changes
When we use the “recompile” option
When there are a large number of insertions, updates or deletes

>
>
>
> When we mix DDL and DML within a single query

5.4.5 Removing Unnecessary Indexes

After fine-tuning the queries, we need to check how the indexes are used. Index maintenance
requires lots of CPU and I/O. Every time we insert data into a database, SQL Server also
needs to update the indexes, so it is better to remove them if they are not used.

SQL server provides us dm db index usage stats DMV to find index statistics. When we

run the T-SQL code below, we get usage statistics for different indexes. If we find indexes
that are not used at all or used rarely, we can drop them to gain performance.
Please refer figure 5.4

SELECT

OBJECT NAME(IUS.[OBJECT ID]) AS [OBJECT NAME],
DB NAME(IUS.database id) AS [DATABASE NAME],
LINAME] AS [INDEX NAME],

USER_SEEKS,

USER_SCANS,

USER_LOOKUPS,

USER_UPDATES

FROM SYS.DM DB INDEX USAGE STATS AS IUS

27

INNER JOIN SYS.INDEXES AS
ON L[OBJECT ID] = IUS.[OBJECT ID]
AND LINDEX_ID = [US.INDEX_ID

Figure 5.4 Find unnecessary indexes

5.4.6 There are several considerations when writing a query using the IN operator that
can have an effect on performance

IN clauses are generally internally rewritten by most databases to use the OR logical
connective. So col IN (‘a','b','c") is rewritten to: (COL = 'a') OR (COL ='b") or (COL = '¢").
The execution plan for both queries will likely be equivalent assuming that you have an index
on col.

When using either IN or OR with a variable number of arguments, you are causing the
database to have to re-parse the query and rebuild an execution plan each time the arguments
change.

Building the execution plan for a query can be an expensive step. Most databases cache the
execution plans for the queries they run using the EXACT query text as a key. If you execute
a similar query but with different argument values in the predicate - you will most likely
cause the database to spend a significant amount of time parsing and building execution
plans.

This is why Join Temp table or bind variables are strongly recommended as a way to ensure
optimal query performance.

Many databases have a limit on the complexity of queries they can execute - one of those
limits is the number of logical connectives that can be included in the predicate. In your case,
a few dozen values are unlikely to reach the built-in limit of the database, but if you expect to
pass hundreds or thousands of value to an IN clause - it can definitely happen. In which case
the database will simply cancel the query request.

Queries that include IN and OR in the predicate cannot always be optimally rewritten in a
parallel environment. There are various cases where parallel server optimization does not get
applied - MSDN has a decent introduction to optimizing queries for parallelism. Generally,
though, queries that use the UNION ALL operator are trivially parallelizable in most
databases - and are preferred to logical connectives (like OR and IN) when possible.

28

5.4.7 Avoid Cursors

SQL Server cursors are notoriously bad for performance. In any good development
environment, people will talk about cursors as if they were demons to be avoided at all costs.
The reason for this is plain and simple; they are the best way to slow down an application.
This is because SQL Server, like any good relational database management system
(RDBMS), is optimized for set-based operations.

5.5 Implementation of Query Optimization Techniques

Below is my list of the top 17 things I believe developers should do as a matter, of course, to
tune performance when coding. These are the low hanging fruit of SQL Server performance —
they are easy to do and often have a substantial impact. Doing these won't guarantee lightning
fast performance, but it won't be slow either.

1. Create a primary key on each table you create and unless you are really
knowledgeable enough to figure out a better plan, make it the clustered index (note
that if you set the primary key in Enterprise Manager it will cluster it by default).

2. Create an index on any column that is a foreign key. If you know it will be unique, set
the flag to force the index to be unique. I recommend using below diagram table
(Figure 5.5) when structuring your indexes.

29

Dwoss you S0L
have Join 7

Do thoas tablas
hawve indsx on their Forsign
keya?

Check thoas tablas

e

Cheack your Wherel
clauss

-

primary kayz forsign kays

S e

Creats index on J Craats indsx on

Clusry returns lot of data?

Creata indsx on
filtsred columng

A

Ara thoza
aggrsgats functions 7

Creats indsx on
aggragats column
o

¥ Creats indsx on
ordersd columng

"

Cirdar by 7

Figure 5.5-Index creation process
3. Don’t index anything else (yet).

4. UNION matchup

SQL's UNION operator lets you combine records from different sources using the
following form. Please refer the figure 5.6

30

SELECT! list|*
UNION
SELECT? list|*

Figure 5.6-Union operators

The important thing to remember with a UNION is that the column order in both
SELECT statements must match. The column names don't have to match, but each list
must contain the same number of columns and their data types must be compatible. If
the data types don't match, the engine sometimes chooses the most compatible for
you. The results might work, but then again, they might not.

By default, UNION sorts records by the values in the first column because UNION
uses an implicit DISTINCT predicate to omit duplicate records. To include all
records, including duplicates, use UNION ALL, which eliminates the implicit sort. If
you know there are no duplicate records, but there are a lot of records, you can use
UNION ALL to improve performance because the engine will skip the comparison
that's necessary to sort (to find duplicates).

. Unless you need a different behavior, always owner qualify your objects when you
reference them in TSQL. Use dbo.sysdatabases instead of just sysdatabases.

. Use set nocount on at the top of each stored procedure (and set nocount off) at the
bottom.

Think hard about locking. If you’re not writing banking software, would it matter that
you take a chance on a dirty read? You can use the NOLOCK hint, but it’s often
easier to use SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
at the top of the procedure, then reset to READ COMMITTED at the bottom.

I know you’ve heard it a million times, but only return the columns and the rows you
need.

. Use transactions when appropriate, but allow zero user interaction while the
transaction is in progress. I try to do all my transactions inside a stored procedure.

. Avoid temp tables as much as you can, but if you need a temp table, create it
explicitly using Create Table #temp.

10. Avoid NOT IN, instead use a left outer join — even though it’s often easier to visualize
the NOT IN.

11. If you insist on using dynamic SQL (executing a concatenated string), use named
parameters and sp_executesql (rather than EXEC) so you have a chance of reusing the

31

query plan. While it's simplistic to say that stored procedures are always the right answer,
it's also close enough that you won't go wrong using them.

12. Get in the habit of profiling your code before and after each change. While you should
keep in mind the depth of the change, if you see more than a 10-15% increase in CPU,
Reads, or Writes it probably needs to be reviewed.

13. Look for every possible way to reduce the number of round trips to the server.
Returning multiple result sets is one way to do this.

14. Avoid index and join hints.

15. When you’re done coding, set Profiler to monitor statements from your machine only,
then run through the application from start to finish once. Take a look at the number of
reads and writes, and the number of calls to the server. See anything that looks unusual?
It’s not uncommon to see calls to procedures that are no longer used, or to see duplicate
calls. Impress your DBA by asking him to review those results with you.

16. GROUP BY considerations

SQL's GROUP BY clause defines subsets of data. The most important thing to remember
when including a GROUP BY clause is to include only those columns that define the
subset or summarize data for the subset. In other words, a GROUP BY can't include
extraneous data. For instance, to learn the number of orders placed on a specific date,
you'd use a statement similar to the following.Please refer the figure 5.7

SELECT OrderDate, Count(OrderID)
FROM Orders
GROUP BY OrderDate
Figure 5.7-Group by clause

This query would return one record for each date. Each record would display the date and
the number of orders for that date. You can't include any other columns.

GROUP BY is versatile. You don't need to specify a column in the SELECT clause to
group by it. For instance, you could omit OrderDate from the above query and return just
the count for each date (although the results wouldn't make much sense). As long as the
GROUP BY column is in the source, SQL doesn't require it in the SELECT clause. On
the other hand, if you refer to a column in the SELECT clause, you must also include it in
the GROUP BY clause or in an aggregate function. For instance, the following statement
doesn't work because the freight column isn't part of an aggregate or the GROUP BY
clause. Please refer the figure 5.8

32

SELECT OrderDate, Count(OrderID) AS TotalForDate, Freight
FROM Orders
GROUP BY OrderDate

Figure 5.8-Group by clause with count

In truth, it doesn't really make sense to try to include a column in this way. If you
want the Freight data within the context of a GROUP BY query, you probably want a
summary of the freight values in the group, as follows:

SELECT OrderDate, Count(OrderID) Max(Freight)
FROM Orders
GROUP BY OrderDate
Figure 5.9-Group by clause with more column

Jet can't group a Memo or OLE Object column. In addition, you can't include a
GROUP BY clause in an UPDATE statement, which makes sense. SQL would have
no way of knowing which record to update.

17. Retrieving only what you need

It's tempting to use the asterisk character (*) when retrieving data via a SELECT
clause, but don't, unless you really need to retrieve all columns. The more data you
retrieve, the slower your application will perform. For optimum performance, retrieve
only the columns you need.

5.6 Overall System

The overall solution has been implemented as windows application and SQL server scripts
that can be accessed by any Windows SQL servers. This is primarily client-server
architecture. The application is primarily C# based solution with additional use of SQL server
data as the main input source.

5.7 Summary

This chapter mainly described the overall architecture and the design of each component with
relevant technologies and their interconnections. Reason to use particular component and its
functionality also described. Further use case diagrams, sequence diagrams, and database
diagrams also listed in this section.

The following chapter is mainly discussed the evaluation details of the Database monitoring
application and optimization techniques. It will present some important code segments and

related implementation details.

33

Chapter 6

Evaluation
6.1 Introduction

In this chapter, we will evaluate using the large volume of the database and show the
proposed new techniques and developed existing techniques, for the purpose of increasing
database performance.

6.2 Setup

Checked with real-time data and more than 250,000 data records have been retrieved.
Analyzed new queries by using SQL Sentry Plan Explorer tool and compare with old queries.
Analyze new queries by using query execution plan. (QEP)

Check with the different type of database.

6.3 Evaluation Methodology for Database Monitor Application

For proper evaluation of the system functionality, the system should be deployed in an actual
production environment. Since selected server and a database chosen for the demonstration
purposes, selected set of scripts were running under the selected database and check the result
by using database monitoring application. Also, check the values by using SQL query
analyzer.

Please refer Appendix B for evaluation of database monitoring application.
6.4 Evaluation Methodology for Proposed New Optimization Techniques.
Scenario 01

Step 01
Create two databases in SQL server. Restore database backup to created two databases and
name as "Database before optimized" and "Database after optimized"

Please refer figure 6.1 of Appendix C for database configuration.

34

Step 02
Create a complex query. Please refer figure 6.1.2 for SQL query.

SELECT DISTINCT 'Doctor fees' AS TrnTypeCode, DFRH.ReceiptNo, DFRH.BHTNo,
DFRH.ReferenceNo, DFRH.ReceiptAmount, 0.00 AS PaidAmount,

DFRH.MachineCode, DFRH.MachineBillNo,'D'AS AdvanceReceiptType, DFRH.CreateUser,
DFRH.CreateDate, DFRH.ModifiedUser, DFRH.IsVoid, DFRH.SessionID,
DFRP.PaymentType, PT.[Description] AS [PaymentTypeName],
DFRP.PaymentNo,DFRP.CardType, DFRP.BankCode, DFRP.ChequeDate,
DFRP.CommonReferanceDetails, DFRP.Settled Amount,

CEL.dLogDate, CEL.dLogOutDate, (TL.Description + ' ' + PA FirstName + ' ' +
PA LastName) AS PatientName

,"as DoctorCode , DFRP.Settled Amount as DocAmount, " AS ProfessionalName

FROM [HMS].[BILL_TRN DoctorFeeReceiptHeader] AS DFRH

JOIN [HMS].[BILL TRN DoctorFeeReceiptPayment] AS DFRP ON DFRH.ReceiptNo =

DFRP.ReceiptNo
JOIN [HMS].[Sys Audit TRN CashierEventLog] AS CEL ON DFRH.SessionlD =
CEL.nLogRecld
JOIN [HMS].[BILL Comm MST PaymentType] AS PT ON

LTRIM(RTRIM(DFRP.PaymentType)) = LTRIM(RTRIM(PT.PaymentCode))

JOIN [HMS].[BILL Comm_ MST PatientAdmissionHeader] AS PA ON PA.BHTNo =
DFRH.BHTNo

JOIN [HMS].[BILL TRN DoctorFeeHeader] AS DFH ON DFRH.BHTNo = DFH.BHTNo
AND DFH.DocReceiptNo = DFRH.ReceiptNo

LEFT OUTER JOIN (SELECT * FROM [HMS].[BILL Comm MST ReferenceData]
WHERE Modulecode ='BILL. COMM_MST TITLE') AS TL

ON LTRIM(RTRIM(PA.Title)) = LTRIM(RTRIM(TL.ReferenceCode))

Figure 6.1.2 — Complex SQL Query
Step 03
Run this in "Database before optimized"

Check execution time.

Execution time = 3 seconds. It is too much.

Please refer figure 6.2 of Appendix C for check the query execution time
Step 04

Now run the QEP plan.

Please refer the Figure 6.3 of Appendix C for QEP Plan

Identify the query cost.

35

Step 05

Create proper index to the database, “Database after optimized ". Please refer figure 6.3.1
for SQL query.

USE [Database_after optimized]

GO

CREATE NONCLUSTERED INDEX [IX cashiereventlog]
ON [HMS].[Sys_Audit TRN CashierEventLog] ([nLogRecld])
INCLUDE ([dLogDate],[dLogOutDate])

GO

Figure 6.3.1 — Proper Index.
Step 06
Now run again the query in “Database after optimized”
Check the execution time and you will see that it has been reduced by 1 second.
Please refer the figure 6.4 of Appendix C for check the query execution time

The difference between before and after indexes are shown in figure 6.4.1

3 /
2.5
2
O Before index
1.5
M After index
1
0.5
0

execution time

Figure 6.4.1 - Difference between before and after indexes
Scenario 02.
Step 01
Find bad queries and optimize it.
Using SQL profiler, find out the high execution time queries.
Please refer the Figure 6.5 — SQL Profiler of Appendix C

Take high execution query and optimize it. The query in below specified will take more
execution time.

36

select a. BHTNo,a.FirstName,a.LastName,* from hms.INV_TRN_BillEntryDetails as s
inner join hms.INV_TRN_BillEntryHeader as d on s.EntryNo=d.EntryNo

inner join hms.BILL Comm_MST PatientAdmissionHeader as a on a.BHTNo=d.BHTNo
where ItemCode in (select itemcode from hms.BILL Comm_ MST Item)
andcostcentercode in

(select costcentercode from hms.BILL. Comm_ MST CostCenterHeader)

and a.roomno in (select roomno from hms.BILL Comm MST Room)

Figure 6.5.1 — Take high execution query by SQL Profiler

New Solution found by me:
Avoid use IN Keyword, by using the temp table and join with the query.

Optimized query

CREATE TABLE #TempTable(ID varchar(50)) INSERT INTO #TempTable (ID)

select distinct itemcode from hms.BILL Comm_MST _Item

select a. BHTNo.a.FirstName.a.LastName,* from hms.INV_TRN_BillEntryDetails as s
inner join #TempTable as t on t.ID=s.ItemCode

inner join hms.INV_TRN_BillEntryHeader as d on s.EntryNo=d.EntryNo

inner join hms.BILL Comm_MST_PatientAdmissionHeader as a on a. BHTNo=d.BHTNo
where --ItemCode in (select itemcode from hms.BILL. Comm MST Item)--and
costcentercode in (select costcentercode from hms.BILL Comm MST CostCenterHeader)
and a.roomno in (select roomno from hms. BILL. Comm MST Room)

drop table #TempTable

Please refer the figure 6.6 of Appendix C or SQL Profiler result
The difference between before and after is shown in figure 6.6.1

Elapsed time(duration)mille seconds

Query With IN operator 25809
After optimizing the query 19673
30000
20000 O Query with IN
10000 B After optimize

Duration

Figure 6.6.1 - Difference between before and after query optimized

37

Scenario 03.

If problematic query consists IN Operator then you must remove that and apply new
method as below mentioned way.

Below Example will be showing the accuracy of this new technique.

Optimization technique - Remove IN operator and create a #temp table instead of that and
then insert necessary data to that table.

Step 01
Traditional Query. Please refer the 6.7.1 for Traditional query

SELECT S.*

FROM hms.INV_TRN BillEntryDetails AS s

INNER JOIN hms.INV_TRN_BillEntryHeader AS d
ON s.EntryNo = d.EntryNo

INNER JOIN hms.BILL Comm_MST PatientAdmissionHeader AS a
ON a.BHTNo = d. BHTNo

WHERE ItemCode IN (SELECT DISTINCT
itemcode

FROM hms.BILL Comm_MST Item)

AND costcentercode IN (SELECT
costcentercode

FROM hms.BILL Comm_MST CostCenterHeader)

AND a.roomno IN (SELECT
roomno

FROM hms.BILL Comm_MST Room)

Figure 6.7.1 — Traditional Query

Please refer the figure 6.7 of Appendix C
The proposed new technique to optimize the query.

» Carefully analyze and find whether the below query consists of the join, nested loop,
IN, where, group by, order by...

If IN operator found, then aim to that place.

Remove IN operator, create #temp table and insert data into the temp table

Then join the temp table to the main query. Be careful to create an index to that temp
table.

YV V

38

Proposed New Query

set statistics time on
CREATE TABLE #TempTable (
ID varchar(50)
)
INSERT INTO #TempTable (ID)
SELECT DISTINCT
itemcode
FROM hms.BILL Comm_MST Item

create nonclustered index IX Itemcode on #TempTable(ID)
SELECTS.*
FROM hms.INV_TRN _BillEntryDetails AS s
INNER JOIN hms.INV_TRN_BillEntryHeader AS d
ON s.EntryNo = d.EntryNo
INNER JOIN hms.BILL Comm_MST PatientAdmissionHeader AS a
ON a.BHTNo = d. BHTNo
INNER JOIN #TempTable AS t
ON t.ID = s.ItemCode
WHERE costcentercode IN (SELECT
costcentercode
FROM hms.BILL Comm_MST CostCenterHeader)
AND a.roomno IN (SELECT
roomno
FROM hms.BILL Comm_ MST Room)
DROP TABLE #TempTable
set statistics time off

Please refer the figure 6.8 - SQL Server Execution time for our new proposed query of

Appendix C

See the difference. The new technique will be faster than 10 times compared to the old
technique. Please refer the Table 6.8.1 for Differences between with IN and Remove IN.

CPU TIME | ELAPSED TIME | Operators | Waits
01.With IN 2906 56886 15 2
02.After optimized 4141 5446 4 0

Table 6.8.1 — Differences between with IN and Remove IN

39

Step 02

Analyze by using Sentry Plan explore

With in - Traditional Query

Please refer the Figure 6.9 - Analyze by using Sentry Plan explore with IN of Appendix C

After optimized- Remove in operator and create the #temp table, then create the internal
index

Please refer the Figure 6.10 -Analyze by using Sentry Plan explore without IN of Appendix C

See the difference. The new technique will be faster than more compared to the old technique
Scenario 03.

If Problematic query consists temp tables then avoid them as much as you can, but if
you need a temp table, create it explicitly using Create Table #temp

Create it explicitly using Create Table #temp. Please refer the Figure 6.11.1 — Query with
temp table

SET STATISTICS time ON
WITH BASE
AS (SELECT ProductID,
YEAR(TransactionDate) AS TransCurrYear,
COUNT(1) AS NoTrans
FROM Production. TransactionHistory
GROUP BY ProductID,
YEAR(TransactionDate))
SELECT
CurrYear.ProductID,
CurrYear.NoTrans AS CurrTransCnt,
PrevYear.NoTrans AS PrevTransCnt,
Prev2Year.NoTrans AS Prev2YearCnt
FROM BASE AS CurrYear
CROSS APPLY (SELECT *
FROM BASE PrevYear
WHERE CurrYear.ProductID = PrevYear.ProductID
AND CurrYear. TransCurrYear = PrevYear. TransCurrYear - 1) AS PrevYear
OUTER APPLY (SELECT *
FROM BASE Prev2Year
WHERE CurrYear.ProductID = Prev2Year.ProductID
AND CurrYear. TransCurrYear = Prev2Year. TransCurrYear - 2) AS Prev2Year
SET STATISTICS time OFF

Figure 6.11.1 — Query with temp table

Please refer the figure 6.11 — Query cost with temp table of Appendix C
40

Observations from Query 1

There were over 27 scans with logical reads of 1998

Although we used a CTE Operation, we could see that similar aggregations are being
repeated in the plan.

Let’s now use a Temporary Table. Please refer the figure 6.11.2 — Query with #temp table

set statistics time on
CREATE TABLE #T1

(ProductID int

,TransCurrYear int

,NoTrans int

)

CREATE CLUSTERED INDEX CI_#T1 ON #T1 (TransCurrYear)

INSERT INTO #T1

SELECT ProductID, YEAR(TransactionDate) AS TransCurrYear, COUNT(1) AS NoTrans
FROM Production. TransactionHistory

GROUP BY ProductID, YEAR(TransactionDate)

ORDER BY YEAR(TransactionDate)

;With BASE AS

(

SELECT * FROM #T1

)

SELECT CurrYear.ProductID, CurrYear.NoTrans AS CurrTransCnt, PrevYear.NoTrans AS
PrevTransCnt, Prev2Year.NoTrans AS Prev2YearCnt

FROM BASE AS CurrYear

CROSS APPLY (SELECT *

FROM BASE PrevYear

WHERE CurrYear.ProductID = PrevYear.ProductID

AND CurrYear. TransCurrYear = PrevYear. TransCurrYear - 1) AS PrevYear
OUTER APPLY (SELECT *

FROM BASE Prev2Year

WHERE CurrYear.ProductID = Prev2Year.Product]D

AND CurrYear. TransCurrYear = Prev2Year. TransCurrYear - 2) AS Prev2Year
drop table #T1

set statistics time off

Figure 6.11.2 — Query with #temp table

Please refer the figure 6.12 - Query cost with #temp table of Appendix C

Observations from Query 2:

Logical Reads are down when compared to Queryl.

No Repetition of computation of Aggregated Values.

SQL Server uses statistics as can be seen from the properties above which is good when data
is more.

Great. Let’s now do it with a table variable.

41

Please refer the figure 6.13.1 - Query with @temp table

set statistics time on

DECLARE @T1 AS TABLE

(ProductID int

,TransCurrYear int

,NoTrans int

, INDEX [IX TransactionYear] CLUSTERED (ProductID,TransCurrYear)
);

INSERT INTO @T1
SELECT ProductID, YEAR(TransactionDate) AS TransCurrYear, COUNT(1) AS NoTrans
FROM Production. TransactionHistory
GROUP BY ProductlD, YEAR(TransactionDate)
ORDER BY YEAR(TransactionDate)
;With BASE AS
(
SELECT * FROM @T1
)
SELECT CurrYear.ProductID, CurrYear.NoTrans AS CurrTransCnt, PrevYear NoTrans AS
PrevTransCnt, Prev2Year.NoTrans AS Prev2YearCnt
FROM BASE AS CurrYear
CROSS APPLY (SELECT *
FROM BASE PrevYear
WHERE CurrYear.ProductID = PrevYear.ProductID
AND CurrYear.TransCurrYear = PrevYear. TransCurrYear - 1) AS PrevYear
OUTER APPLY (SELECT *
FROM BASE Prev2Year
WHERE CurrYear.ProductID = Prev2Year.ProductID
AND CurrYear. TransCurrYear = Prev2Year. TransCurrYear - 2) AS Prev2Year
set statistics time off

Figure 6.13.1 - Query with @temp table
Please refer the figure 6.13 - Query cost with @temp table of Appendix C
Scan Count and Logical Reads are slightly up.
There are no statistics associated with Clustered Key Creation in Table Variable which can be
seen from the Estimated Number of Rows Value. This could be bad when data is more.
One reason why the Optimizer could not sniff the “Estimated Number of Rows” is because
the entire batch query populates the variable table followed by querying on it. And hence, it is
not able to figure out the cardinality. If we add the RECOMPILE Option to the query, SQL

Server is able to detect the cardinality like so,

Conclusion: Temporary Table is better.

42

Let’s now do it with Sentry plan

Create it explicitly using Create Table #temp
_Please refer the figure 6.14 - Sentry plan with #temp table of Appendix C

Temporary Table.
Please refer the figure 6.15 - Sentry plan with @temp table of Appendix C

See the difference in Total time.

Please refer the figure 6.15.1 — #Table and @Table Difference

200

150 o

50 o

—
100 4 —— Botal time

Before

optimize

Figure 6.15.1 — #Table and @Table Difference

Scenario 04.

How to find the Missing index.

Please refer the figure 6.16 — How to find missing index of Appendix C

43

Scenario 05.
Best practice for IN and Where.
Please refer the Figure 6.17.1 - Best practice for IN and Where.

SELECT top 2000 [CostPrice]
,[Quantity]
,[DiscountAmount]
,[CreditAmount]

.[DebitAmount]

,[WardNo]

,JRoomNo]

,[ProcessDate]

,[IsDayEnd]

,[IsAdditionalltem]

,[UniquelD]

J[IsVoid]

,[IsPackageEntry]

,[IsPackageBillProcessed]

,[RateType]

,[RecordMode]

FROM [Database before optimized].[HMS].[INV_TRN BillEntryDetails]

where ItemCode ='TM0001552'

Figure 6.17.1 - Best practice for IN and Where.
Please refer the Figure 6.17 — Analyzed best practice IN and Where Clause. Of Appendix C

Bad practice for IN and Where

Please refer the Figure 6.18.1 — Bad practice for IN and Where.

SELECT top 2000 [EntryNo]
,[CostCenterCode]
,[SortSequence]
J[ItemCode]
,[UnitPrice]
,[CostPrice]
,[Quantity]
,[DiscountAmount]
,[CreditAmount]
,[DebitAmount]
,[WardNo]
,JRoomNo]
[ProcessDate]
[IsDayEnd]
[IsAdditionalltem]
[UniquelD]

N
N

44

JIsVoid]
,[IsPackageEntry]
.[IsPackageBillProcessed]
,[RateType]
,[RecordMode]
,[AdditionalQuantity]
,[IsOldEntry]
,[Packageld]
FROM [Database before optimized].[HMS].[INV_TRN BillEntryDetails]
where ItemCode in ('ITM0001554")

Figure 6.18.1 - Bad practice for IN and Where.
Please refer the figure 6.18 - Analyzed Bad practice IN and Where Clause of Appendix C
Scenario 06.
Bad practice IN and Where clause.
Please refer the Figure 6.19.1 — Bad practice for IN and Where.

SELECT top 2000 [EntryNo]
,[CostCenterCode]
,[SortSequence]
J[ItemCode]

[UnitPrice]

[CostPrice]

[Quantity]

[DiscountAmount]

[CreditAmount]

,[DebitAmount]

,[WardNo]

,[RoomNo]

[
[
[
[
[
[
[
[

N
N

,[ProcessDate]
,[IsDayEnd]
J[IsAdditionalltem]
UniquelD]
IsVoid]
IsPackageEntry]
IsPackageBillProcessed]
RateType]
,[RecordMode]
FROM [Database before optimized].[HMS].[INV_TRN BillEntryDetails]
where ItemCode in (select itemcode from
[Database before optimized].[HMS].[BILL Comm MST Item] where
itemcode="TTM0001554")

N
N
N

Figure 6.19.1 — Bad practice for IN and Where

Please refer the Figure 6.19 — Bad practice for IN and Where of Appendix C
45

Scenario 07.
Please refer the Figure 6.20.1 — Correlated SQL subqueries
Avoid Correlated SQL Subqueries

SELECT c.FirstName,

c.LastName,

(SELECT top 1 ConsultantCode FROM
[HMS].[BILL Comm MST PatientAdmissionDetail] WHERE [BHTNo] = c[BHTNo]) AS
Consultant
FROM [HMS].[BILL Comm_ MST PatientAdmissionHeader] ¢

Figure 6.20.1 — Correlated SQL subqueries

Please refer the figure 6.20 -QEP plan and Cost of Correlated SQL subqueries of Appendix C

Please refer the figure 6.21- QEP plan and Cost of Correlated
SQL subqueries in Sentry planner of Appendix C

Solution Correlated SQL Subqueries.
Please refer the Figure 6.22.1 — Correlated SQL subqueries

SELECT c.FirstName,
c.LastName,
co.ConsultantCode
FROM [HMS].[BILL Comm_ MST PatientAdmissionHeader] ¢
LEFT JOIN [HMS].[BILL Comm_ MST PatientAdmissionDetail] co
ON c¢.[BHTNo] = co.[BHTNo]

Figure 6.22.1 — Solution for Correlated SQL subqueries

Please refer the figure 6.22- Our Query QEP plan and Cost of Correlated SQL subqueries of
Appendix C

Please refer the figure 6.23 - Our Query QEP plan and Cost of Correlated SQL subqueries in
Sentry planner of Appendix C

46

Scenario 08.
Avoid Cursor

Please refer the figure 6.24.1 — Query with Cursor

DECLARE @BHTNo varchar(30)
DECLARE @FirstName varchar(30), @LastName varchar(30)
-- declare cursor called
DECLARE ActivePatient Cursor FOR
SELECT BHTNo, FirstName, LastName
FROM [HMS].[BILL Comm_ MST PatientAdmissionHeader]
WHERE IsDischarge = 1
-- Open the cursor
OPEN ActivePatient
-- Fetch the first row of the cursor and assign its values into variables
FETCH NEXT FROM ActivePatient INTO @BHTNo, @FirstName, @LastName
-- perform action whilst a row was found
WHILE @@FETCH _STATUS =0
BEGIN
-- get next row of cursor
Print @BHTNo
print @FirstName
print @LastName

FETCH NEXT FROM ActivePatient INTO @BHTNo, @FirstName, @LastName
END

-- Close the cursor to release locks

CLOSE ActivePatient

-- Free memory used by cursor

DEALLOCATE ActivePatient

Figure 6.24.1 — Query with Cursor
Please refer the figure 6.24 - QEP in Cusror of Appendix C
Alternatives for Cursors.

Create a temporary table, note the IDENTITY column that will be used to loop through
The rows of this table

Please refer the figure 6.25.1 — Alternative solution for cursor

CREATE TABLE #ActivePatient (
RowlID int IDENTITY(1, 1),
BHTNo varchar(30),

FirstName varchar(130),
LastName varchar(130)

)
47

DECLARE @NumberRecords int, @RowCount int
DECLARE @BHTNo varchar(50), @FirstName varchar(130), @LastName varchar(130)

-- Insert the resultset we want to loop through
-- into the temporary table
INSERT INTO #ActivePatient (BHTNo, FirstName, LastName)
SELECT BHTNo, FirstName, LastName
FROM [HMS].[BILL Comm_MST PatientAdmissionHeader]
WHERE IsDischarge = 1
-- Get the number of records in the temporary table
SET @NumberRecords = @@ROWCOUNT
SET @RowCount = 1
-- loop through all records in the temporary table
-- using the WHILE loop construct
WHILE @RowCount <= @NumberRecords
BEGIN
SELECT @BHTNo = BHTNo, @FirstName = FirstName, (@LastName = LastName
FROM #ActivePatient
WHERE RowID = @RowCount
Print @BHTNo
print @FirstName
print @LastName
SET @RowCount = @RowCount + 1
END
-- drop the temporary table
DROP TABLE #ActivePatient

6.25.1 — Alternative solution for cursor

We can see the above code gives the same functionality as the first code example but without
using a cursor. This gives us the benefits that the Customer table is not locked as we are
looping through our result set so other queries on the Customer table that are submitted by
other users will execute much faster. We will also have a faster-operating SQL script by
avoiding cursors which are slow in themselves.

Please refer the figure 6.25 - Alternative solutinon QEP plan and query cost
Of Appendix C

Cursor Alternative 2: Using User Defined Functions

Cursors are sometimes used to perform a calculation on values that come from each row in its
row set. This scenario can also be achieved by replacing a Cursor with a User Defined
Function. An example of a User Defined Function performing a calculation is given below:
Please refer the figure 6.26.1 - Using User Defined Functions

CREATE FUNCTION dbo.GetDiscountLevel(
@CustomerID int

)
RETURNS int

48

AS
BEGIN
DECLARE @DiscountPercent int
DECLARE @NumberOrders int, @SalesTotal float
SELECT @NumberOrders = COUNT(OrderID),
@SalesTotal = SUM(TotalCost)
FROM Sales WHERE CustomerID = @CustomerID
IF @SalesTotal > 5000.00 AND @NumberOrders > 5
SET @DiscountPercent = 5
ELSE
BEGIN
IF @SalesTotal > 3000.00 AND @NumberOrders > 3
SET @DiscountPercent = 3
ELSE
SET @DiscountPercent = 0
END

Return @DiscountPercent

END
Figure 6.26.1 - Using User Defined Functions

Scenario 09.

SET NO COUNT ON

Please refer the figure 6.26 — Set no count on execution time of Appendix C
WITHOUT NO COUNT

Please refer the figure 6.27 -— Without no count execution time of Appendix C

See the difference. The new technique will be faster than 10 times compared to the old
technique. Please refer the Table 6.5 — Difference between set no count and without no count

Execution time

With no count on 27

Without no count 40

Table 6.5 — Difference between set no count and without no count

49

Please refer the figure 6.27.1 — Difference between set no count and without no count

O with no count
on

B Without no
count on

y
%
%
%
%
%
%

L

0

Execution time

Figure 6.27.1 - Difference between set no count and without no count

6.5 Participants

Basically will involving database administrator, software developers, and end users.
6.6 Data Collection

Large volume database backup from the hospital.

Created database with more records. (Bulk insert)

6.7 Discussion

The party who are mainly benefited by this Database monitoring application and proposed
techniques system is the database administrator's, developers, users, and clients. With
currently available systems, they are only capable to see the graphical interface of system
status. Also currently there is no proper single system to get both database activity and fine
tune query techniques. This system facilitates to view both database and database server
issues. Limitation on this Support only for Microsoft products.

6.8 Summary

According to the evaluation done in this chapter, the system has maintained its evaluation
above the critical line in all evaluation features for both database monitoring application and
the proposed query optimization techniques. In next chapter, the conclusion and the further
possible enhancements for database performance improvement will be discussed.

50

Chapter 7

Conclusion and Further Work
7.1 Introduction

In this paper, an attempt is made to present a review of database performance tuning
techniques is made. This paper focuses on tuning techniques which are directly related to
database design. The main purpose of this study is to understand major factors

That can lead to database performance improvement. As query response time is the number
one metrics when it comes to database performance, SQL tuning is one of the widely used
tuning technique. SQL tuning aims to decrease response time and increase

System throughput.

7.2 Overall Conclusion

The evaluation evident that the database monitoring application and proposed optimization
techniques to address problems in database performance issues, is in above 70% acceptances
level accordingly our hypothesis is proven to be true.

7.3 Objective-Wise Conclusion

Objective (i) has been achieved by conducting a comprehensive literature survey comprising
more than 25 research papers related to database performance issues. Here we have
discovered many key problems and defined the research problems of this thesis.

The achievement of objective (ii) has also been supported by the literature review chapter. In
addition, chapter 3 presented a description of each technology selected for developing the
proposed solution which fulfills the achievement of objective (iii).

Achievements in objectives (iv), (v) and (vi) are evident from the details in chapters for
approach, design, and implementation.

The objective related to the evaluation of the hypothesis is presented in chapter 6. The overall
success of the solution has been 70%.

7.4 Further Work
Database monitoring application should be able to work with open source products.
7.5 Summary

In this chapter, the overview of Database performance improvement project was discussed
along with the evaluation results and identified limitations. Further possible enhancements
were also discussed together with possible practical applications.

51

References

[1] G. Ramakrishnan. Database Management Systems, Third Edition. McGraw-
Hill, 2003

[2] Fox, B. 2011. “Leveraging Big Data for Big Impact”, Health Management Technology,
http://www.healthmgttech.com/.

[3] A. Hameurlain, “Evolution of Query Optimization Methods: From Centralized Database
Systems to Data Grid Systems”, Proceedings of the 20th International Conference on
Database and Expert Systems Applications.

[4]. Andrew N.K. Chen. Robust optimization for performance tuning of modern database
Systems, European Journal of Operational Research. 171, 412--429 (2006)

[5] The State of the Art in Distributed Query Processing DONALD KOSSMANN,
University of Passau, ACM Computing Surveys, Vol. 32, No. 4, December 2000.

[6] Jacobs, A. 2009. “Pathologies of Big Data”, Communications of the ACM, 52(8):36-44.

[7] JASON. 2008. “Data Analysis Challenges”, The Mitre Corporation, McLean, VA, JSR-
08-142

[8] Kaisler, S. 2012. “Advanced Analytics”, CATALYST Technical Report, i SW Corporation,
Arlington, VA
[9]. Rasha Osman, Irfan Awan, Michael E. et al.. QuePED-Revisiting queuing networks for

the Performance evaluation of database designs. Simulation Modeling Practice and Theory,
19, 251--270 (2011)

[10]. Balsamo, S., A. Di Marco, P. Inverardi and M. Simeoni, Model-based performance

Prediction in software development: a survey, IEEE Transactions on Software Engineering.
30,5, 295--310 (2004)

[11] K. Ono and G.M.Lohman. Measuring the complexity of join enumeration in query
optimization. In D.McLeod, R Sacks-Davis, and J.-J. schek, editors,16th International
Conference on Very Large Data Bases, August 13-16,1990, Brisbane, Queensland, Australia,
Proceedings, pages 314-325. Morgan Kaufmann, 1990.

[12] A. Hameurlain, “Evolution of Query Optimization Methods: From Centralized Database
Systems to Data Grid Systems”, Proceedings of the 20th International Conference on
Database and Expert Systems Applications.

52

Fox, B. 2011. “Leveraging Big Data for Big Impact”, Health Management Technology,
http://www.healthmgttech.com/.

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

Gantz, J. and E. Reinsel. 2011. “Extracting Value from Chaos”, IDC’s Digital Universe
Study, sponsored by EMC.

https://cs.uwaterloo.ca/~kmsalem/courses/.../Chalamalla-HadoopDB.pdf
https://en.wikipedia.org/wiki/Greenplum
https://pig.apache.org/

www.cs.rutgers.edu/~zz124/cs671.../srikanth mapreducemerge.pdf. Map-Reduce-Merge:
Simplified Relational Data. Processing on Large. Clusters. Hung-chih Yang, Ali Dasdan.
Yahoo! Ruey-Lung Hsiao, D. Sto Parker.

http://www.journalofcloudcomputing.com/content/3/1/12. Improving the performance of
Hadoop Hive by sharing scan and computation tasks Tansel Dokeroglul, Serkan Ozall,
Murat Ali BayMuhammetSerkanCinar3 and Ahmet Cosarl.

Liu et al. "An Investigation of Practical Approximate Nearest Neighbor Algorithms",
2004. Carnegie-Mellon University, pp. 1-8.

www.elsevier.com/locate/jcss, Journal of Computer and System Sciences 77 (2011) 637-
651.

Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis,
IJCAI-07 1606, Evgeniy Gabrilovich and Shaul Markovitch Department of Computer
Science Technion—Israel Institute of Technology, 32000 Haifa, Israel

{gabr,shaulm} @cs.technion.ac.il.
https://en.wikipedia.org/wiki/MapReduce.

Applied Spatial Data Analysis with R Authors: Roger S. Bivand, Edzer Pebesma, Virgilio
Goémez-Rubio.

A twelve-analyzer detector system for high-resolution powder diffraction P. L. Lee, D.
Shu, M. Ramanathan, C. Preissner, J. Wang, M. A. Beno, R. B. Von Dreele, L. Ribaud, C.
Kurtz, S. M. Antao, X. Jiao and B. H. Toby. J. Synchrotron Rad. (2008). 15, 427-432.

53

Appendixes

Appendix A - User interface and architecture diagram of the system.

Security Module - Authentication

=
@ New Connection (& Refresh (manual) = || €3 Home | @ Pedurmance Analyze [Server Analyze
Gummary Obgcts Actwities Pedomance Anslysis

" _

wotaled. [N oo
Storted: N -
L 1 Connectien 3
sash
Server |
o S0LSanver -
User:
Password.

TG G

Figure 5.1 — Security Module - Authentication

Control Module — Server and Database Information

Bz DEMunitor 1001 a x
& New Connection (5 Refresh {manual) = || D Home | @) Peiformance Analyze [l Server Analyze

SJRB i1 RLHGORE] A | Summay Objects Acbes Pedomance Ansyss
= w5 Dotsbase_sher_optimized

= o I Conpor
x2) dba thilastConautant Standard Edition on Windows NT
| oo VW_BHTLOAD

[

17| doo VW _Doctor
i o _rnpatierilab
| dboww_m_BHTLOAD

I

HMEBILL Comm VW, E </ 10,2018 8:50:49 PM
| HMS Maw_Pabereadmic
HMS view Trmp R
| HMS\W_BILL Fepod_
HMS VW _BILL_RPT_8
HMS VW_BILL_RPT_B
] HMS VW _HMD_COMM
22| HMS ww_kemiplsad
5 HMS mand
% () Functions
5) Seend Priocac e
) Assembles
i) Teggens
= dah Distabase_befors_optinized
B D) Tables
I Views
xl 2 Functions
1) Siomd Prceduea
2 Asserrihes
i) Triggess.
= v doa_repoelony
#l I3 Tables:
] Viewa

[EEIE R [EEELE

) Funetions.
i Stoemd Prceduma
) Asweniibes
2 Trggens
= aah Incder_Chck_DE
I Tables
T 1) Views
I Funcions.
&) Stored Procedures w

Figure 5.2 — Control Module-Server and Database Information

54

Server Configuration

Summary Objects Activiies Perfomance Analysis

21/ i Microsoft SQL Server 2014 - 12.0.2000.8 (Intel X86)
Copyright (c) Microsoft Corporation

Standard Edition on Windows NT 6.3 <X64> (Build 10240:) (WOWE4)

[P 0 120/2014 7:20:46 PM [N MSSQLSERVER
[s 1)/2018 8:50:49 PM Prm:mID:-

Memory: [SIJREIL

I

Figure 5.3 — Server Configuration

Database Server Performance Analyzer

45 DBMonitor 10.0.1
< New Connection (2] Refresh 1 - | € Home | @ Performance Anatyze [Server Analyze

=] HMSBILL Comm_VW_. A ary Objects Activities Performance Analysis
=] HMS View_Patient Admission Details

=) AV view TempRevenur
iz HMS.VW_BILL_Report_
=] HMS.VW_BILL RFT_B

&=| HMSMW_BILL_RPT_B

] HMS VW _HHD_CONM
=] HMS.wvw_itemUpload
] HMS wrd
|2 Functions
123 Stored Procedures
12 Assemblies
123 Triggers
[4@ Database_before_optimized
12 Tables
@ 3 Views
133 Functions

12 Assemblies
132 Triggers
& dpa_repositoy
@ () Tables
12 Views
12 Functions

[|2 Stored Procedures ‘

12 Stored Procedures
12 Assemblies
123 Triggers
) &b Index_Check_DB
[|23 Tables
@ 12 Views
I3 Functions
[|2 Stored Procedures
13 Assemblies
® |2 Tiggers
&l @ master
[& model

&l @ msdb
& RepatServer
1l 4@ RepottServerTempDB

4 tempeb T T T T T T
of) v 03:28:30 03:26:40 03:28:50 03:29:00 03:29:10 03:29:20

Figure 5.4 — Database Server Performance Analyzer

55

Database Log Information and Suggestions

4 pBManiter 1.00.1

| 4 Mew Connection (0 Refresh {manual) = | £J Home | @ Pedormance Analyze] Server Analyze

& L) WINCTALMGOREN

il

fii

Database Performance Improvement Suggestions

1z DBMoniter 1.0.0.1

Summary Objects Acwties Fedomance Anoysis

Tie: [Dmsbassstorce =
e Object [— Currend Facter
Fule Dolaobase Dolnflog Spoce (7
istabasn DataLog Space Plepiort Sarver. 10 MB sup .
Database Cata/Log Space PReport Senver TempOl- L 4mp Ly
Ctabase Data/Log Space Dataksoe_shter_opteniced 10 ME 216 MB A%
Ditabaes Data/Log Spaca Dstsbass_bofom sotiosad | 995 M 23 MB 4o
Ciatabase Duta/Log Space. Iidex_Check_DB 2me 2 Me 4
o Log Space Tesl DB T 1oME 4
Log Socs clon_rmpaston: il

1 Truseare log

<

b Mew Connection (& Refresh [manusl) = | €3 Home | @) Perdormance Analyze [Server Anabyze

Figure 5.5 — Database Log Information and Suggestions.

o *

Summary Ubjects Adiviies Pefomance fnafysis

Tipe | Pedomence -

Fude Lt Refererce Currerd. Facter Suggeion

“Rue Database Stall (7} .)

Detsbsse Sl | FeporServer | 20me sm [Consider

Dtadunae: Sl ReporServerTe | 2ma B aicler

Demabinse Stal Im.ﬁ_ Mma | Conaider e
Daobase Stal | Dstsbase before | 20ms 46ms Consider o
Dt Slall lrnden_heck_DE | 20me 142 ms Congider
Demabase Stal Test DB Mma 15m Hgher sial 15,08 Wate

Dmabase 2l doa_repostory 20ms. 640 ms

| Gemsider improve hazd disk

T

| B Read Suall: 38,
DB Write Stall: 19,

| Loy Read Stall: 45,

T Leg Write Stall: ¥

&

56

by

Figure 5.6 — Database Performance Improvement Suggestions.

files / log files into different hard disks.
| Higher amall (in millisecond) meana worae dacabase performance.

Database Waiting Tasks

L2 DEMonitor 1.0.0.1 - A b
& New Connection (5 Refresh (menusl) = {3 Home | @ Peformance Anahyze B Server Analyze
5 1J WINCTRLMGOREA Summary Objects Actvbes Pafomance Frsies
15 #5) Database_sher cotmaed
@ b i Typm)
3 % don_repestony
@ &b Inder_Check D8
1 v maeter = DROKECR_EVENTHANDLER (1)
g g x %] 1622961273
@ &b Riepos Server Tty BROKEH_TRANSMITTER (7]
g S R —]
b et DB] L] |1622565237 | BROKER_TRAM.. |
Cowsl_type CHECKPOINT_QUEUE (1)
W b o Joweonta | | I
St type CLR_AUTO_EVENT (2 N
| [1z10m e a0 ev.. | [
1201082 |ermma ey | [
St tyee DIRTY_PAGE_POLL (1}
: o T | T
Cwait_ype FT_IFTS_SCHEDULER_IDLE_WAIT (7
| snaze FT_FTS_SCHE... |
S e s]
Dt type FT_IFTSHC_MUTEX (1)
1 -

Figure 5.7 — Database Waiting Tasks.

Database Missing Index Details and Suggestions

44 pOMonitor 1.04.1 - =] E
© i New Connection (0 Refresh (manual) - | 3 Home | @) Performance Analyze I Server Analyze
= [J wincTRLMGORET Summary Objects Aciies Pedomance Ancirss
H mm Tipe [indextlage ~]
;E cdex_Checke DB Fude Otiect Fielenon Curert Fadoe Suggestion
B ah maser “fule Table Index Usage (%)
4 model) T
=g ey Table iocex Usage | [Dislabase_ster A d
5] 45 RegaSenver Table index Usnge: | [Ctnbase_hedor_optimized] [HUS] [INV_T. Creste incle fior Neamocle, Entrybla ComCanterCnde, SonSecuence LintPace
 Jegerilad Tabe e Ussge | Dtabose st c.. Crete it Pt BTG
[i@ Test OB Tabse I Usarge | [Databiae_befors_cplivized] [HMS][BILL R . Cresle e or el D)
Table Index Linge: | [Dtahase_hedzen_eptimaed] [MMS] [BILL_C Create: inces for Roombia BHTHo

1 Greate index for Tuesdey. AW, ShedUode, FrofCode. . EnaTime, C. L= Modaf: Modafi A

Figure 5.8 — Database Missing Index Details and Suggestions

57

Database 10 operations

Ha DEMeniter 1.0.0.1

- m »
i s Mew Connection (G Refresh (menusl) - |) Home | () Performance Anshyze] Server Anshyze
[& 5 wikCTRLWGORED Sy Objects Aciiios Pecbormance Analian
° ‘g 2 Tabien Toe [0 v
ES“,:’!.;... Togtime comation Sime lasl_secadion_lime_aumry_terd lola_worker_Jime AvgCPUTine Logalfesds Logcaliites enecubon oot Aggll)
i (E Stored Procedures
gm'“ SV IS |S2VAN0IZT . |S2HE010335 . st Guab selc... | 150.907000 0262130208300, | 4052 1 7% 4053
3 4sh Detabase_tlore_pptimized nftar (U]
gi &% S35 . | WEANE A | SR8 IS | SELECT munam. | 9155000 4 73] [2 [
4 master E Dntabasehame dpa_ [|;|
Eg: 5299018351 579008321 [S22018 351 [sekeot IDNAME. . [a4 226000 0 ™ [[120 [
5 aah Feper Server iDatsbaseNome master (7)
E%mmrwn! SIS . | SN0 347 .. [S292018947 .. [SELECTSCHEM... [50.500000 [90.502000000.. | 91250 o 1 1250
@ b Tes DB SN AY) . | W2SENEI . | WEHANE IS |SELECT " FROM... | 45363000 35I| 36]] Eel
SN AG) . | W2IENE IS | SEHANE I |select lop 0 ged... | 26500000 Eol & 1 067
ROUO0MIE | SOQMBNET | SPUNNBI4T | SELECTSCHEM. |29 TR0) 4 [1)
5202018351 .. | 5292018326 . |S/202018 347 _ | SELECTISNULLL.. |16.282000 ez, 1568 0 u 1589
SN0 IS .. | SAVINDIAT_. |S20I8351 _ |SELECTTOP20. |SI9374000 4764039082560, | 545 lo 109 a5
5292018351 .. |S232018326 . |S/2W2018326 | SELECTognam. | 4913000 431 403 lo 1)
CiDalsbasetame RepodSeoes (3
RONO0MIE | R200MAI2 | SPURNIEAE] |selectiop 4 28855000 nomusenany | 1518 Jo m 516
Figure 5.9 — Database 10 Operations
. .
Database Objects and Details
5B puMontor LY - &) ~

4 New Connection (3 Refresh (manusl) = |) Home | @) Performance inalyze I Server Anshyze

© F WINCTRLMGORE Summary | 0SS Acliviien Prfomoncn | Ansiysin

= % a’mﬁm Name Space Court Create Date Modiy Date Path
®) Views) Ditabiase_nfter_ptmized FIEMB £ 39375 |0 Prrgram Flea e8]\ Momank S01 SenerMES01 12 MES0| SERVES
% % wp, IMH/H‘.I?... o C:\Program Flles (06 Microsoft SQL Server\M350L12 M5SOLSERVER
D hasembles TIETIMB 175, |0 C:\Program Files (BG] Mcrosoft SOL Server\M550L12 MSSQLSERVER
o & E;m ALTME S IME (0 L \Program Fles (86 Mcrosol! SUL Server M55UL12 MSSULSERVEY
@ ish doa_repcedony AME / IME o Porgram Flea feBE]\Momank S01 Sener MES01 12 MBS0 SERVES
E g :;M‘u I?lm!{ﬂ?! o C\Pemgram Flles 861\ Miemaoh SQL Sarver MSS0L12 MSS0L SERVES
0 & modrd 15.5625MB /1M |0 C:\Program Files (0BG Mcrosoft SOL Server M550L12 MSSQLSERVER
; g mm I%.WMH!W.'I...] L \Program Fles (86 Mcrosol! SUL Server M55UL12 MSSULSERVEY
I+l 4mb Fspon ServerTemaD8 AIETEMB 106 (0 - \Pengram Flee: e BR] Micrsahl SO Seremc WSSO 12 MSSOLSERVES
:gme BB/ D5ME 0 (Porgram Flea feBE]\Momank S01 Sener MES01 12 MES0| SERVES
10MB /38.375M8 |0 C:\Program Files (0BG Mcrosoft SOL Server\M550L12 MSSQLSERVER

Figure 5.10 — Database Objects and Details

58

Database Monitoring Application Options

Ha pEMonitor 1.0.0.1 - o x
! Mew Connection (@) Refresh (manual] = | (3 Home | 1 Pedormance Analyze [Server Analyze
Summary Obpects Activies Paformance Analyss

Tee (o v

<

e B

Figure 5.11 — Database Monitoring Application Options

59

Appendix B — Evaluation of Database Monitoring Application

Server information

Database Table Count

Database current
reading count

Database current
writing count

Missing index details

Database current
reading count

Database memory
utilization details

Database lock

Currently running
Processors

Table 7.1 — Evaluation functionality in database monitoring application

Please refer figure
7.4.1.1

Please refer figure
7.4.1.3

Please refer figure
7.4.1.3

Please refer figure
7.4.1.3

Please refer figure
7.4.1.5

Please refer figure
7.4.1.3

Please refer figure
7.4.1.7

Please refer figure
7.4.1.8

Please refer figure
7.4.1.9

60

Please refer figure
7.4.1.2

Please refer figure
7.4.1.4

Please refer figure
7.4.1.4

Please refer figure
7.4.1.4

Please refer figure
7.4.1.6

Please refer figure
7.4.1.4
Manually checked

Manually checked

Manually checked

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

45 DBMonitor 1.0.0.1
dh New Connection (2 Refresh (manual) + || € Home |) Performance Analyze [Server Analyze

=8 EW
Databass_after_optimized

4ah Database_before_oplinized \EET S Microsoft SQL Server 2014 - 12.0.2000.8 (Intel X86)
(éopyrigi (c) Microsoft Corporation

Summary Objects Activiies Performance Analysis

§ib dpa_repository

Jib Index_Check_DB andard Edition on Windows NT 6.3 <X64> (Build 10240:) (WOW64)

§ib master
§&b model
4 msdb [T T 3/20,/2014 7-20:46 PM IEe Il MSSQLSERVER

{5 ReportServer

{3 RepotServerTempDB Started: 5/10/2018 8-50-39 PM Process ID:

@ tempdb

& Tei 0o Moy

n-aﬁl
~
o

Figure 7.4.1.1 — Database server information from newly developed database monitoring application

Eod

File Edit View S0LEnlight Debug Tools Window Help
Gl - | Newuey [Tty | 4 28] 9 -

Object Explorer 8 X

Connect~ %] % m [(7] '
= [WINCTRL-MGORET! (SQL Server 12.0.2000 - s3)
@ [Databases
& 3 Security
& 3 Server Objects
@ 3 Replication
& [AlwaysOn High Availability

b | I Lo
About Microsoft SQL Server Management Studio X

B Microsoft

Microsoft SQL Server2014
Management Studio

@ [Management
[[Integration Services Catalogs
@ [SQL Server Agent

Component Mame
Microsoft SQL Server Management Studio

Microsoft Analysis Services Client Tools

Microzoft Data Access Components (MDAC)

Microsoft MSXML

Microsoft Internet Explorer
Microsoft .MET Framework
Operating System

Versions
12.0.2000.8
12,0.2000.8
10.0.10240.16...
3.06.0
9.11,10240.17...
4.0.30319.42000
6.3.10240

To copy component name and version information, diick Copy Info. Copy Info

Warning: This computer program is protected by copyright law and international
treaties, Unauthorized reproduction or distribution of this program, or any
portion of it, may result in severe cvil and criminal penalties, and will be
prosecuted to the maximum extent possible under the law.

© 2014 Microsoft. All rights ressrved,

Microsoft

Figure 7.4.1.2 — Database server information

61

o New Connection (0 Refresh {manual) ~ | € Home | @) Performance Anabyze B Server Anabyze
Summay Objects Aciviies Prdfomance Arsves

S0LQueryS.sql - Wl...optimized (sa (67))° % ptimized (sa

ql
cpu_busy_percentage = convert(bigint, (((ficpu_busy - cpu_busy)
/ 18e@.@ * @mspertick) / @interval - 108.0)),
io_busy_total = convert(bigint, (@io_busy / 1888 * @mspertick)).
io_busy current - convert(bigint, ((@io_busy - io_busy)
/ 1000.0 * @mspertick)),
io_busy_percentage - convert(bigint, (((@io_busy - io_busy)
/ 1ee@.@ * @mspertick) / @interval * 108.0)),
idle_total = convert(bigint, (convert(bigint,@idle) / 1860.8 * @mspertick)),
idle_current - convert(bigint, ((@idle - idle)
/ 100.0 * @mspertick)),
idle_percentage - convert(bigint, (((@idle - idle)
1600.8 * @mspertick) / @interval * 1@@.8)),
packets_received total - @pack _received,
packets_received current - @pack received - pack received,
packets_sent_total - @pack_sent,
packets_sent_current - @pack_sent - pack_sent,

+
=7

100% =
[Resuts |1y Messages

last_un _cument seconds cpu_busy_total cpu_busy_cument cpu_busy_percertage lo_busy_total lo_busy_curent lo_busy_percentage e total ide_curent ide_percerntage packets_received tot
1 [A0BUSZ 5T IAB0 | 2180529 2057.92947 28 220 0 [} 43 0 [6356791 108 389 283515

Figure 7.4.1.4 - Database server statistics

62

45 DEMoniter 1,001
: ok New Connection (8 Befresn {manual) -~ (JHome | @ Pertormance Anatyre [Server Analyze
= [WINCTRLMGORDTI

Summary Objects Acthiies Pedomance Anghysis

Tros: Indexsage -

Fuir Ceiect Rede 03 Sugpestion
Taibde: Indlees Lsnge: [Mtnhase _ofer. DAY_TRH, Crnate: indeas for Tueaday AW ShedCode ProfCade ShedD:
Taibie: Index Usage [Database_before_cotmzed] [HMS][INV_TRN_Bd EntryDietals] Crasee index for bemCode. Eriryblo CoatCamerCods SenSe...
[— [t st _stoe_cplirs: _Comm_MST_Pali [

Tate Index Usage [Dotabase_before JBILL_Fizcept_TRN = ReiO

Tatle Indesc Usage [Catsbass betore [BILL Ceorren_MST, = BHTH

>

Figure 7.4.1.5 — Missing index suggestions from newly developed database monitoring application

Ha S0LGuery2.sq] - WINCTRL

FISELECT D.statement AS

Objectiiame, column_name. column_usage

FROM sys.dm_gb_missing index_groups G
0TH sys.ds_db missing index greup stats GS OM G.index_group_handle = GS.group_handle
JUIN sys.dn_db_missing_index_details 0 0N G.index_handle - D.index_handle
CROSS APPLY sys.dm_db_missing_index_colusns (B.index_handle) o¢
where column_usage-'LQUALLTY"

ORDER BY D.index_handle, D.statement

wE -
1 Resuts [y Messnges
OtgeciHame ot cban_usage
1 | [Dstabase_shter_optmaed] IHMS1BILL_DAY_TRN_ SchedueMan] Tuesday EGUALITY
2 - L_DAY_TRN_ i AW EQUALITY
3 [Database_before_optimézed] [HMS] [HV_TRN_BAFniryDesads] RemCode EQUALITY
4 [Detsbase_shter_cotmzed] HMELBILL Comm_MST_PatiertAdmssionHeader Recmbla EQUALITY
5 [Database_pefom, L_Recept_TAN, _OPDPedCharge] Fefti) EQUALITY
6 [Dstsbase before, LL_Comm_MST_ Ficembio EQUALITY
(D) Query executed successhully. | WINCTRL-MGORETI (12.0RTM) 8 (70) Detabase before optimized | 000000 | & rows

Figure 7.4.1.6 — Missing index suggestions by manually

63

!4z DBMoniter 1.0.0.1
: b New Connection (2 Refresh (manual) - | {JHome | € Performance Analyze [l Server Analyze

& [0 WINCTRL-MGORETI A | Summary Obiects Activiies Perfomnance Analysis
@ Database_after_optimized
[43 Database_before_optimized Type: \ >
= I Tables

[dbo sysdiagrams
5] dbo. Temp_item_uploat

[HMS BILL_Com_Cas

5 HMS BILL_Comm_Cas Database Data/L... | RepotServer Truncste log
-] HMSBILL Comm M5 | [Datobase DatarL . |RepotServerTe. | 1MB aMe 0% Tuncete log
5] HMS BILL_Comm WS k

| FMSBILL Com by | [Detsbase DtanL. | Database ster_.. |10m8 21618 a0 Shinklog
5] HMS BILL Conm_WS Detabase Data/L. | Datebase_bfors .. | 835 MB 23318 0% Tuncate log
5] HMS BILL_Comm_MS

| HMSEILL Com w3 | | Datebase DatarL.. |incex_Check DB |2MB 20518 s Shink log
5] HMS BILL_Comm_MS Detabase Data/L. | Test DB 38MB 10MB 0% Tuncate log
5] HMS BILL_Comm_MS

| RN B Comm e | [Dtebase DetarL[dpo_repostory [218 7M8 r Tuncate log

(5 HMS BILL_Comm_WS
[HMS BILL_Comm_M§'
[HMS BILL_Comm_WS
(5] HMS BILL_Comm_WMS

51 LUME DI Fame MC

Figure 7.4.1.7 — Database memory utilization details

iz DBMenites 1001 - o *®
© g Mew Connection (0 Refresh (manusl] - | {JHome | @1 Pedformence Anshyze JI Server Anahyze

1] HM5BILL Comm_Cas.
1 HM5 BILL Comm_

] MM BILL Comm_M5
] HMSBILL Comen_MS5
] MM BILL Comm_M5
1 HMSBILL Comm_W5
1 HMEBILL Comm ME
1 HMSBILL Comm_W5
1 HMEBILL Comm WS
1 HMSBILL Comm_W5
1 HMEBILL Comm WS
1 HMSBILL Comm_W5
] HMS BILL Comm_MS
] HMSBILL Comm_M5
] HMS BILL Comm_MS
1 HMSBILL Comm_W5

Figure 7.4.1.7 — Database lock

DBMorstor 1.0.0.1 - a "
G N Commctn () Refreshs (mansal) = |0 Processes || Jobs | EEEEER [-|@ ki | @rome 0 Petornance natyze [Serves Analyze
T [WINCTRLMGORSN Summary Ojscls Aeetins Pestomance Arilysis

CPUjm) 10 Requea S

Figure 7.4.1.8 — Currently running Processors

64

Appendix C — Evaluation of proposed optimization techniques

113 Microsoft SQL Server Management Studio - X
File Edit View Debug Tools Window Help
i1 - 25 i | L NewQuery [0B E0 S| # G2 @]9 - © - : = = - o
Object Explorer
Connect~ 33 3 m T [£] .5
ET) WINCTRL-MGORE7! (SGL Server 12.0.2000 - sa)
= L3 Databases
[System Databases
(3 Database Snapshots
[Database after_optimized (Restricted User)
| Database_before_optimized (Restricted User)
| ReportServer
] ReportServerTempDB
@ 3 Security
[Server Objects
[3 Replication
& [AhwaysOn High Availability
[Management
[Integration Services Catalogs
[, 5QL Server Agent (Agent XPs disabled)

Figure 6.1 — Database Configuration

43 01-Script-Index.sql - WINCTRL-MGORB7L. Database_before_optimized (sa (61)) - Microsoft SOL Server Management Studic -

File Edit View Query Project Debug Tools Window Help
G| b 1= 2 I - o

o
x

Pl - S i o | D NewQuey (it iy | 6 A& |9 - & -
4 437 | |Database_before_optimized+| | | Execute b Debug ® o 15 =l | 27 ay
objectipore g Ee————

Connect~ 3 3 w 7 [2] .5 5l SELECT DISTINCT 'Doctor fees' AS TrnTypeCode, DFRH.Receiptlo, DFRH.BHTNo, DFRH. Referencelo, DFRH.Receiptimount, .80 AS PaidAmount, |&
— DFRH.MachineCode, DFRH.MachineBillNo, 'D' 45 AdvanceReceiptType, DFRH.CreateUser, DFRH.CreateDate,
5 (B WINCTRL-MGORST| (SQL Server 12.0.2000 - s2) DFRH.ModifiedUser, DFRH.TsVoid, DFRH.SessionID, DFRP.PaymEnti)p(pE, PT. [Description] AS [PaymentTypeame],
£ [Datebases DFRP.PaymentHo, DFRP.CardType, DFRP.BankCode, DFRP.ChequeDate, DFRP.CommonReferanceDetails, DFRP.SettledAmount,
) [System Datsbases CEL.dlogDate, CEL.dLogDutDate, (TL.Description + ' ' + PA.FirstName + ' ' + PA.lastName) AS Patientlame
[Database Snapshots .'' as DoctorCode , DFRP.Settledfmount as DocAmount, '' AS ProfessionalName
_J Database_after_optimized (Restricted User) FROM [HMS].[BILL_TRN_DoctorFeeReceiptHeader] AS DFRH
_J Database_before_optimized (Restricted User) i [1M5]. [BILL_TRN_DoctorfesReceiptPayment] AS DFRP ON DFRH.Receiptiio - DFRP.Receiptio
| Reporterver { [HMS]. [Sys_Audit_TRN CashierEventlog] AS CEL ON DFRH.SessionID - CEL.nLogRecId
41 1) ReportServerTempDB I [HMS]. [BILL Comm MST PaymentType] AS PT ON LTRIM(RTRIM(DFRP.PaymentType)) = LTRIM(RTRIN(PT.PaymentCode))
I [HMS].[BILL Comm MST PatientAdmissionHeader] AS PA ON PA.BHTNo = DFRH.BHTHo
0 [Securty | [HMS]. [BILL_TRN DoctorFeeHeader] AS DFH OM DFRH.BHTNG - DFH.BHTNo AND DFH.DocReceiptNo - DFRH.Receiptho
[Server Objects ouT TN (SELECT * FROM [HMS].[BILL_Comm MST_ReferenceData] WHERE Modulecode ='BILL_COMM_MST TITLE') AS TL
[Replicatien O LTRIM(RTRIN(PA.Title)) = LTRIM(RTRIM(TL.ReferenceCode))
[AlwaysOn High Availability |
[3 Management
[Integration Services Catalogs
[5L Server Agent (Agent ¥Ps disabled) o
[E Resutts [3 Messages
TmTypeCode ReceipthNo BHTNe F Re PaidAmount MachineCodk iptType Createlser CreateDate ~
1 iDuduriees iDFRDDDﬂDm ASHO000001 55000.00 0.00 MAC0000001 ~ MOO1000114 D admin 20120221 14:2
2 Doctorfees DFRO000002 DAYDO021215 10000.00 0.00 MACO000046 MO46000002 D 629 20120304 13:2
3 Doctorfees DFRO00D003 DAY0021237 20500.00 0.00 MACO000046 MO46000004 D 419 20120305 18:4
4 Doctorfees DFRO000003 DAY0021237 20500.00 0.00 MACO000046 M046000004 D 419 20120305 18:4
5 Doctorfees DFRO000004 DAYZ1250 10000.00 0.00 MACO000046 M046000006 D 629 20120306 11:5
& Doctorfees DFRO000005 CADODQ9660 9500.00 0.00 MAC0000003 ~ M003000204 D admin 20120306 16:1
7 Doctorfees DFRO00D00E ~ AMSD072264 1000 0.00 MAC0000003 M003000208 D admin 20120306 16:2
8 Doctorfees DFR0000007 ~ AMSD072566 14500.00 0.00 MAC0000033 M033000034 D 680 20120314121
9 Doctorfees DFR000000 AMSD072590 18000.00 0.00 MAC0000005 ~ M005000073 D 1900 2012-03-1412:2
10 Doctorfees DFRO000009 AMSD072450 1500.00 0.00 MAC0000033 M033000079 D 2571 20120321083 ,
< >
(@ Query executed successfully. WINCTRL-MGORB7| (120 RTM) | sa (51) Database_before_optimized 00:00:03 | 3781 rows

Figure 6.2 — Complex Query Execution Time

65

O1-Script-Index.sq..._optimized (sa (61)) % [EoNO Ny mized (sa (S0LQueryd:sql - Wl...optimized (sa (53)) 5QLQu timized (sa (56

© SELECT DISTINCT 'Doctor fees' AS TrnTypeCode, DFRH.Receiptlio, DFRH.BHTNo, DFRH.ReferenceNo, DFRH.ReceiptAmount, 8.8@ AS PaidAmount,
DFRH.MachineCode, DFRH.MachineBilllio, 'D' AS AdvanceReceiptType, DFRH.CreateUser, DFRH.CreateDate,
DFRH.ModifiedUser, DFRH.IsVoid, DFRH.SessionID, DFRP.PaymentType, PT.[Description] AS [PaymentTypeName],
DFRP.Paymentlic, DFRP.CardType, DFRP.BankCode, DFRP.ChequeDate, DFRP.CommonReferanceDetails, DFRP.SettledAmount,
CEL.dLogDate, CEL.dLogOutDate, (TL.Description + ' ' + PA.FirstMame + ' ' + PA.LastName) AS PatientName
,'" as DoctorCode , DFRP.SettledAmount as DocAmount, '' AS Professionalliame
FROM [HMS]. [BILL_TRN DoctorFeeReceiptHeader] AS DFRH
.[BILL_TRN DoctorFeeReceiptPayment] AS DFRP ON DFRH.ReceiptNo = DFRP.Receipthio
.[Sys_Audit TRN CashierEventlog] AS CEL ON DFRH.SessionID = CEL.nLogRecId
.[BILL_Comm MST PaymentType] AS PT ON LTRIM(RTRINM(DFRP.PaymentType)) = LTRIM(RTRIM(PT.PaymentCode))
.[BILL_Comm MST PatientAdmissionHeader] AS PA ON PA.BHTNo = DFRH.BHTNo
.[BILL_TRN DoctorFeeHeader] AS DFH ON DFRH.BHTNo = DFH.BHTNo AND DFH.DocReceiptNo = DFRH.Receiptiio
JOIN (SELECT * FROM [HMS].[BILL Comm MST ReferenceData] WHERE Modulecode ='BILL COMM MST TITLE') AS TL
ON LTRIM(RTRIM(PA.Title)) = LTRIM(RTRIM(TL.ReferenceCode))

0% -

] o
{13 Messages 4 Ewecutionplan

Query l: Query cost (relative to the batch): 100%
SELECT DISTINCT 'Doctor fees' AS TrnTypeCode, DFRH.ReceiptNo, DFRH.BHINc, DFRH.ReferenceNo, DFRH.ReceiptAmount, 0.00 AS PaidAmount, DFRH.MachineCcde, DFRH.M
Missing Index (Impact 41.0735): CREATE NONCLUSTERED INDEX [<Name of Miss Index, sysname,>] ON [HMS].[Sys Rudit TRN CashierEventlog] ([nLogRecId])

=] = 3 @ R = 2

Hash Match Hash Match Compute Scalar Nested Loops Hash Match Hash Match Clustered Index Scan (Clustered)
{Inner Join) (Inner Join) Cost- 0 & (Inner Join) {Inner Join) {Inner Join) [BILL_TRN DocterFeeReceiptHeader].[.
Cost: 1 % Cost: 4 & - Cost: 0 % Cost: 31 & Cost: 34 % Cost: 7 %
Table Scan
[Sys_Audiz TRN CashierfventLog] [CE..
Cost: 7 &
£ >
P - —_

Figure 6.3 - QEP Plan

e kdit View UQuery Project Uebug lools Window Help
- el G e | S NewQuery [PR G 4 a9 - : || - el
3¢ {4¢ | |Database_sfter_optimzed ~|| ! Execute b Debug ® o 4 = ;

01-Seript-Indexsql...r_optimized (sa (61)) %

= SELECT DISTINCT 'Doctor fees' AS TrnTypeCode, DFRH.Receipthio, DFRH.BHTNo, DFRH.Referencelio, DFRH.ReceiptAmount, 2.80 AS PaidAmount, +
DFRH.MachineCode, DFRH.MachineBillNo, 'D' AS AdvanceReceiptType, DFRH.CreateUser, DFRH.CreateDate,
DFRH.ModifiedUser, DFRH.IsVoid, DFRH.SessionID, DFRP.PaymentType, PT.[Description] AS [PaymentTypeName],
DFRP.PaymentNo, DFRP.CardType, DFRP.BankCode, DFRP.ChequeDate, DFRP.CommonReferanceDetails, DFRP.SettledAmount,
CEL.dLogDate, CEL.dLogOutDate, (TL.Description + ' ' + PA.FirstName + ' ' + PA.LastName) AS PatientName
,'" as DoctorCode , DFRP.SettledAmount as DecAmount, '' AS Professionalliame
FROM [HMS].[BILL_TRH_DoctorFeeReceiptHeader] AS DFRH
| [HMS].[BILL_TRN DoctorFeeReceiptPayment] AS DFRP ON DFRH.Receiptho = DFRP.Receiptho
[Sys_Audit_TRN_CashierEventlog] AS CEL ON DFRH.SessionID = CEL.nLogRecId
.[BILL_Comm_MST_PaymentType] AS PT ON LTRIM(RTRIM(DFRP.PaymentType)) = LTRIM(RTRIM(PT.PaymentCode))
.[BILL_Comm_MST_PatientAdmissionHeader] AS PA ON PA.BHTNe = DFRH.BHTNo
.[BILL_TRN_DoctorFeeHeader] AS DFH ON DFRH.BHTNo = DFH.BHTNo Al DFH.DocReceiptho DFRH.Receiptio
JOIN (SELECT * FROM [HMS].[BILL Comm MST ReferenceData] WHERE Modulecode ='BILL_COMM MST TITLE') AS TL
ON LTRIM(RTRIM(PA.Title)) = LTRIM{RTRIM(TL.ReferenceCode))
100% =~
[Restits | 1y Messages
TmTypeCode RecsiptNo BHTNo ReferenceNo Receiptfmount PaidAmourt MachineCode MachineBilNo AdvanceReceiptType Crestellser CresteDate ModfiedUser IsVieid SessionlD PaymentType Pz a
1 {Doctorfess | DFRODOOODT ASHODODOD! 55000.00 000 MACODDOOO! MDO1000114 D admin 20120221 142100 admin 1 21455 CA c
2 Dodorfess DFRODO000Z DAY0U21215 1000000 000 MACODDOM46 MO46000002 D 629 20120304 132200 629 1 2780 CA (=
3 Doctorfees DFRO000003 DAY0021237 20500.00 000 MACOOD046 ~ MO4G0D0004 D 413 20120305 184400 419 0 21850 CA £
4 Doctorfees DFRODOOO0I DAYDD21237 20500.00 0.00 MACODDOM4G MD4GUD0O04 D 419 2120305184400 419 [} 2180 DR D
5 Doctorfess DFROOO0O04 DAY21250 10000.00 (i1} MACODDOD46 ~ MD4GOD000S D =5 20120306 115300 629 0 21897 CA €
& Doctorfess DFROD0OODS CADOOOS6G0 9500.00 000 MACODO03 ~ M0O3000204 D admin 20120306 16:19:00 admin 1 21812 cA c
7 Doctorfees DFRODOOO0S AMSOD72284 1000 000 MACOD0003 ~ M0O3000208 D admin 20120306 162700 admin 1 21912 A (s
8 Doctorfees DFRODOONDT AMSOD72566 14500.00 000 MACODDO33 MD330000M D 520 20120314 121400 680 1 204 CA c
9 Doctorfess DFROO00N0S AMSOD72550 18000.00 000 MACODDOOUS ~ MDOS000073 D 1900 20120314 122600 1900 1 2191 _CA c
10 Doctorfees DFRODOCDS AMS0U72450 150000 000 MACODDOU33 M033000073 D 257 0120321083000 2571 1 5% CA |
< > It
(& Query executed successiully. WINCTRL-MGORBTI (120RTM) | sa (61) | Database_after_optimized | 00:00:00 | 3781 rows

Figure 6.4 — Query Execution Time After Optimized

66

[SOL Server Profiler
File

Edit View Replay Tools

Window Help

R ER]

ae|rn | HAMS

&P

1 50L Server Profiler

File Edit View Replay Tools

Figure 6.5 — SQL Profiler

Window Help

| EveniCiass | TextData | ApplicationName: NTUserName | LoginName | CPU | Reads Wiites | Duration CliertProcessiD A
sqQL:Batchstarting .. Report server REportsS... NT SER...
sSqQL:eatchCompleted Report Server REports... NT SER... o 4]]
5qL:Batchstarting Report Server ReportS... NT SER...
5QL:BatchCompleted Report Server ReportS... NT SER... o 10 o o
SOL:BatchCompleted select 5.% from hms.INV_TRN_Bi Microsoft sq... sa 657342 o 25809
Audit Logout Report Server REportsS... NT SER... o 706 [10006
RPC:Completed exec sp_reset_connection Report Server Reports... NT SER... o o]]
Audit Login -- network protocol: LPC set gquote... Report Server ReportS... NT SER...
5QL:Batchstarting Report Server ReportS... NT SER...
s0L:BatchCompleted Report Server ReportS... NT SER... o 4 o o
sqQL:Batchstarting Report Server REports... NT SER...
SqQL:eatchCompleted Report Server Reports... NT SER... o 10]] v
< ikl >
A
select 5.= from hms.INV_TRN_BillEntryDetails as s
inner join hms.INV_TRN_EillEntryHeader as d on s.EntryNo=d.EntryNo
inner join hms.BILL_Comm_MST_PatientAdmissionHeader as a on a.BHTNo-d.BHTNO
where ItemCode in (select itemcode from hms.BILL_Comm MST_Item)
i Ersisnisienia T (Saluss EicaneEy e o (i en I Ersi G T v
< >
Trace is stopped. Ln31,Col2 |Rows39 2

1 EY

| TextData | ApplicationName NTUserName | LoginName | CPLI Feads Wiites | Duration
.. Report server REPOrTS... NT SER... 4 [)

SqQL:Batchstarting Report server REpOrts... NT SER...

5QL:BatchCompleted ... Report Server Reports... NT SER... 10 o o

SQL:BatchCompleted CREATE TABLE #TempTable(ID varch... Microsoft sqQ... sa 995495 | 39873

Audit Logout Report Server Reports... NT SER... 126 o 10020

RPC:Completed exec sp_reset_connection Report Server Reports... NT SER... o o o

Audit Login -- network protocol: LPC set guote... Report Server Reports... NT SER...

Report Server Reports... NT SER...
Report server REPOFTS... NT SER... 4 o o

sSqQL:Batchstarting .. Report server REPOrtS... NT SER...

SqQL:BatchCompleted Report server REPOrtsS... NT SER... 10 o o

Audit Logout Report server REpOrts... NT SER... 140 o 10030

B ramnlarad = o et vt B annrt Caruan Bannrsc v cen ~ ~ a v
< >
[REATE TABLE #TempTable(~

ID varchar (507

[INSERT INTO #TempTable (ID)
select distinct itemcode from hms.BILL_Comm_MST_Item
select a.BHTNo,a.FirstName,a.lLastName,~ from hms.INV_TRN_BillEntryDetails as s v
< >

Trace is stopped.

Figure 6.6 — SQL Profiler result

67

[Ln3g colz [Rows:z

L3 U1-in operatorsql -..._optimized (sa (53)" % I

—Iset statistics time on

—1SELECT
5. *
FROM hms.INV_TRN_BillEntryDetails AS s
INMER JOIN hms.IMV_TRN_BillEntryHeader AS d
ON s.EntryMNo = d.EntryNo
INMNER JOIN hms.BILL_ Comm MST PatientAdmissionHeader AS a
ON a.BHTMo = d.BHTNo
WHERE ItemCode IN (SELECT DISTINCT
itemcode
FROM hms.BILL Comm MST Ttem)
AND costcentercode IN (SELECT
costcentercode
FROM hms.BILL_ Comm MST_ CostCenterHeader)
AND a.roomno IN (SELECT

roomno
100 % -

3 Results L3 Messages
(255188 row(s) affected)

SQL Server Execution Times:
CPU time = 2986 ms, elapsed time = 56866 ms.|

Figure 6.7 — SQL Server Execution time for Traditional query

2-in operator remo...optimized (sa (55)) >< EERETyW=T=T20 0t sl | BEaes

itemcode
FROM hms.BILL Comm_MST__Ttem

create nonclustered index IX Ttemcode on #TempTable(ID
—1ISELECT
L

FROM hm=s=.IMNW TRMN BillEntrywDetails AS =
00 -

T Resuls _'=_"| Messages
(Z2551l8@ rowl(=s) affected)

SDL Serwver Execution Times:
CPU time = 4141 ms, elapsed time = 54495 m=.

SDL Serwver Execution Times:
CPUJ time = @ ms, elapsed time = @ m=s.

Figure 6.8 — SQL Server Execution time for our new proposed query

68

] SOL Sentry Plan Explorer - X
File Edit View Window Help
NEH@ =@ % | 975 Get Estimated Plan § Get Actual Plan - | ® Show Estimated Plan | =] = [Post T SQLPerformance.com
Start Page 01-in operator.sgl -WI..._before_optimized (sa)* 2 02+n operator remove a...before_optimized (sa)* | h
Command Text | Results | Wait Stats
Plan XML n
Plan Diagram n
Zoom [80.0% Filter [=] 00% Stretch [<] 40 Flatten [=] 0.0 Mode Mormal | LinkStyle Angled ¥ 0o [Auto-Fit
X

LIETE 1Y [] seeed [1x [-]
5,000 o}
C
0
100,000 5
0
=
3,000 - o
wn
0

A\ 10_COMPLETION

Plan Diagram Top Operations ~ PlanTree Query Columns JoinDiagram Parameters Ewpressions TableIfO Index Analysis

Query execution completed, WINCTRL-MGORB7! (12,00.2000) = Database_before_optimized = sa | Cardinality Esti

imator: 70 | Compile Time: 00:00:00.079 | Total Time: 00:00:20.232 | Actual Rows: 235,180

Figure 6.9 - Analyze by using Sentry Plan explore with IN

[5] 501 Sentry Plan Explorer
i File Edit View Window Help

ihEda

| startage | 01 operator.sql - WL.._before_optmized (sa)*

Command Text | Results

Ba @ 2 Get Estimated Plan ¥ Get Actual Plan ~ | % Show Estimated Plan | =] =] [Post To SQLPerformance.com

024n operator remove a...before_optimized (sa)* X

Plan/Query Info

TextData PlanXML | Flan/Query Info

Plan Diagram

%2%
Index Insert
[#TempTable

e

&%
1o ==
B

Sort Table Scan

[#TempTable

40

Zoom [=] Fiatten [=]

80.0 % Filter =] Stretch [

0.0 Mode Normal | LinkStyle| Angled - o [] Auto-Fit

[LETH 38

0
180,000

100,000
50,000

0

0 smed -]

ndd

oI

Plan Disgram | Top Operations Plan Tree:

QueryColumns Jomn Disgram Parameters Expressions Table1f0 Index Analysis

'WINCTRL-MGORB7I (12.00.2000) | Database before_optimized sa = Cardinality Estimator: 120

Query execution completed.

Compile Time: 00:00:00.000 Total Time: 00:00:00.023 = Actual Rows: 11,808

Figure 6.10 - Analyze by using Sentry Plan explore without IN

69

meent L
. =
E

FROM BASE Prev2Year
WHERE CurrYear.ProductID = Prev2Year.ProductID
AND CurrYear.TransCurrYear = Prev2Year.TransCurrYear - 2) AS Prev2Year

SET STATISTICS time OFF

=1 -- Ohservations from Ouerv 1:
0% -

o "
Messages 4 Execution plan

el .
SET STATS

Cost: 0 %

Query 2: Query cost (relative to the batch): 100%
WITH BASE AS (SELECT ProductID, YEAR (TransactionDate) AS TransCurrYear, COUNT (1) AS NoTrans FROM Production.TransactionHistory GROUP_

23 gvg ~
: L 1 S)
SELECT - :552 “3“2 . Compute Sealar Compute Sealar Compute Scalar Hash Match Compute Scalar (ronas
Cost: 0 % (Right Ducer Join) Cost: 0 % Cost: 0 % Cast: 0 % (Bggragate) Cast: 0 %
Cost: 1% Cost: 17 %
= = 23 r= I
< > E

Query 3: Query cost (relative to the batch): 0%
SET STATISTICS time OFF -- Observations from Query 1: --There were over 27 scans with logical reads of 1998 --Although we used a CTE._

rsa

SET STATS
Cost: 0 %

Figure 6.11 — Query cost with temp table

et's now use a |e.._Lheck_Ub (sa (b)) X

Elset statistics time on

EICREATE TABLE #T1
(ProductID int
,TransCurrYear int
JMoTrans int

CREATE CLUSTERED INDEX CI_#T1 ON #T1 (TransCurrYear)
oI TMEEDT THTA #T1
10 %

73 Messages S"’ Execution plan

Juery 1: Query cost (relative to the batch): 0% ’
set statistics time on

Juery 2: Query cost (relative to the batch): 0%
CRERTE TABLE #T1 (ProductID int ,TransCurrYear int ,NoTrans int):

u ~

CRERTE TABLE e
fnat- 0 & 2
Juery 3: Query cost (relative to the batch): 0%
ZREATE CLUSTERED INDEX CI_#Tl ON #T1 (TransCurrYear)
~
v
CREATE INDEX
Cnar- 0 & 2
JQuery 4: Query cost (relative to the batch): 938%
INSERT INTO #T1 SELECT ProductID, YEAR(TransactionDate) AS TransCurrYear, COUNT (1) AS NcTrans FROM Production.TransactionHistory GRO.
QQueryaxecuted successfully. 'WINCTRL-MGORB7I (12.0 RTM) sa (68) = Index Check DB 00:00:00 ' 0 rows

Figure 6.12 - Query cost with #temp table

70

table variable.sgl -.x_Check DB (sa (69)) < [

-lset statistics time on 3

-IDECLARE @T1 AS TABLE
(ProductID int
,TransCurrYear int

NoTrans int b
W% - ¢ >

[3 Messages & Execuion plan

Query 1: Query cost (relative to the batch): 0% ~
set statistics time on

SET STATS
Cost

Query 2: Query cost (relative to the batch): 99%
DECLARE @T1 AS TABLE (ProductID int ,TransCurrYear int ,NoTrans int , INDEX [IX Transaction¥Year] CLUSTERED (ProductID,TransCurrYear).

\f?‘m E -E,g E @'

=== Clustered Index Imsert ——— — === Hash Match Clustered Index Scan (Clustered)
_ ort Compute Scalar Compute Sealar - T eni o1 I T b
[T11.[IX TransactionYear] P . (Aggregate) ; [TransactionHistoryl . [EK_Transacti
B - st: 2 % Cost: 0 % Cost: 1 &%
Cost: 1 % Cost: E1 % Cost: 46 &

<

Query 3: Query cost (relative to the batch): 1%
;With BASE AS (SELECT * FROM @T1) SELECT CurrYear.ProductID, Curr¥ear.NoTrans AS CurrTransCnt, PrevYear.NoTrans AS PrevTransCnt, P_

= id] | by :

SELECT A— Nested Loops Rested Loops Clustered Index Scan
(Left Outer Join) (Inner Join) [8T1] . [IX TransactionYear]

Compuze Scalar

Cost= 0 % Cost: 0 % Cost: 0 % Cost= 0 % Cost: 83 &
<, e
a Query executed successfully, WINCTRL-MGORB7I (120 RTM) | sa (69) Index_Check DB 00:00:00 O rows
Figure 6.13 - Query cost with @temp table
Start Page Plan4 - WINCTRL-MGOR. ..Index_Check_DB (sa)* X - | Hstory o
Command Text | Resits | Version | Type | Comments [Total Time
R %] 1A 00:00:00,169
lan Diagram =
0.0% 0% 20% 2.0% 02%
j‘—"' 2, a3 T}‘ m‘-_l% 113005 —_; TSRS e
HashMazh | CompuaScalar Compute Scalar Compuss Scatar Clustered Index Scan
(Right Outer Joi [Transaciontiszony).
[P_Trarsactionkiscory_Tran.
0.9%M 0.0% 7w 02%
=3 e | P P | .M.Fﬁ
= 3 =) 5 =g =
Wach piatch | Compuascalsr MashMaich Compute Sealar a tndex San
(tanr Jain) (Aggrogace) _ [Trancacionkisiory].
[PK_Trancactiontistory_Tran.
Compure Scalar Clustered Index San
[Trancactionkistory]
[PK_Transactionbiszory_Tran.
Zoom [=] 80.0 % Filter [=] #] 0.0% Stretch [=] 0.0
= x
Mode| Normal ~ | Link Style| Angled [] Auto-Fit i
4 i ¥
CEEEERE B T L

6.14 - Sentry plan with #temp table

71

File Edit View Window Help

DS H a5 @

% | 3 GetEstimated Plan ¥ Get Actual Plan - | (% Show Estimated Plan | =] = [l Post To SQLPerformance.com

StartPage | Plan< - WINCTRL-MGOR. .. Index_Check DB (s2)* Let's now use a Tempor...LIndex_Check_DB (sa)* X ~ [History R
ommand Text | Results Version | Type | Comments Total Time
‘ext Data = | 14 00:00:00.057
an Diagram T
0% % 16% A 8% 07%
o o = o sz sz
e e——E25 fe—2 —=z] 547 \L%‘_l ;
INSERT Clustered Index Insert Sort. Computs Scalar Hash Match Comgute Scalar Chustered Index Scan
[sT)fa_sT1] (Aggregate) [Transactionhistory).

[PK_TransactionHistory_Tran...

Zoom [=] 80.0 % Filter [=] 0.0% Streich [=] 4.0 Flatten [=] 0.0

Mode| Normal v | Link Style| Angled 0> [] Auto-Fit

< i

6.15 - Sentry plan with @temp table

query using the IM..._optimized (sa (74)) 3 RLGHLEEGL

El--select * from hms.INV_TRN_BillEntryDetails as s
--inner join #TempTable as t on t.ID=s.ItemCode
----where ItemCode in (select itemcode from hms.BILL_Comm_MST_Item)

Hselect 5.% from hms.INV_TRN_BillEntryDetails as s

inner join hms.INV_TRN_BilllEntryHeader as d on s.EntryNo=d.Entryle

inner join hms.BILL_Comm_MST_PatientAdmissionHeader as a on a.BHTNo=d.BHTNo
inner join #TempTable as t on t.ID=s.ItemCode

where

--ItemCede in (select itemcode from hms.BILL_Comm_MST_Item) and

costcentercode in (select costcentercode from hms.BILL Comm MST_CostCenterHeader)
and a.rocomno in (select roomno from hms.BILL_Comm_MST_Room)

drop table #TempTable

wo% -

E;! Messages S"’ Execution plan

Query 5: Query cost (relative to the batch): 44% e

select 3.* from hms.INV_TRN EillEntryDetails as = inner join hms.INV_TRN BillEntryHeader as d on s.EntryNo=d.EntryNo inner j..
Missing Index (Impact 21.975): CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>] ON [HMS].[BI1L Comm MST Patient.

= 23 5] g

—

ssrger — HashMatch = Clustersd Index Scan (Clustered)
B (Right Semi Joim) [BILL Comm MST_CostCentecHeader]. (F..
=t Cost: 2 % Cost: 0 %
[—
S Mezge Join Clustered Index Scan (Clustered)
(Inner Join) [BILL Comm MST_Item] . [PE_BILL Comm_. v
< >l

Figure 6.16 — How to find missing index

0.0 % 321% 96.8 %
2,000 ‘ 2 000

=5

SELECT Too Table Scan

[IMV_TRN_BillEntryDetzils]

Figure 6.17 — Analyzed best practice IN and Where Clause.
72

Plan Diagram

0.0 % 0.0 % 2.3 %] 6.8 %
2 000 r
Ele—=e—={x] E =
SELECT Top Mestad Loops Table Scan
(Left Sermi Join) % [INV_TRM_BillEntryDetsils]

19.5 % 0.3 %
L
= e —— T |
R Count Spool Clust=red Indes S=ek
{Lazy Spoal) [BILL_Comm_MST_Item].

[PE_BILL_Comm_MST_Iram]

Figure 6.18 — Analyzed bad practice IN and Where Clause

Plan Diagram

0.0 % 0.0 % 3.3 %] 6.8 %
2 000 2
= e—=1{C] B3
SELECT Top Mestad Loops Table Scan
(L=ft S=rmi Join) % [INV_TRM_BIllEntryDetzils]
19.5 % 0.3 %
yt————55Y
R Count Spool Clust=red Indes S=ek
{La=y Spoal) [BILL_Comm_MST_Item].

[PE_BILL_Comm_MST_Iram]

Figure 6.19 — Bad practice for IN and Where

73

dit View SOLEnfight Query Project Debug Tools Window Help
_JEHWAMMWmﬁﬁm;ﬁ@M WILMMH\

|| -l e lel - .

Avoid Correlated SQ...optimized (sa (65])" %

o % % @ T [¢] FISELECT c.Firsthame,
m c.LastName,
7 (SELECT top 1 ConsultantCode FROM [HMS].[BILL_Comm_MST_PatientAdmissionDetail] WHERE [BHTHo] = c.[BHTNo]) AS Consultant
e EROM [H45] . [BILL_Comm_MST_PatientAdmissionHeader] c
@ 5 HMSBILL,
@ O HMSEILL.
HMS.BILL_ E--SELECT c.Firstiame,
HMS.BILL, c.lastHame,
& =1 HMSEBILL, co.ConsultantCode
7 HMS.EILL --FROM [HMS].[BILL Comm_MST_PatientAdmissionHeader] ¢
B -~ LEFT JOIN [HMS].[BILL Comm MST PatientAdmizsionDetail] co
- -- ON c.[BHTHa] = co. [BHTNo]
HIMS.BILL_
HIVS.BILL,
HIVS.BILL.
HIMS.BILL.

HMS.BILL. W0% v < >

FAMSBILL B 1 Messages 2 Execution plan

HMS.BILL,

T Query 1: Query cost (relative to the batch): 100%

i SELECT c.FirstName, c.lastName, (SELECT top 1 ConsultantCode FROM [HMS].[BILL_Comm MST PatientAdmissionDetail] WHERE [BHTNo] = c.[BHTN..
HIMS.BILL. fD] lﬂ"a

HMSBILL, ure Scatar & Fested Loops ———— Clustered Index Scan (Clustered)

HMS.BILL, Comp? E (Left Outer Joinl [BILL Comm MST PatientAdmissicnHead.-

HMS BILL Costoi¥ Cost: 13 Cost: 14 %

HMS.BILL

HMS BILL. =] o bt H}’

=]
]
2]
2]
2]
2]
=
2]
=

1l ED ED D D ED D D D G ED D GG ED KD G DG ED G R R e

HMS.BILL, = Index Spool ¢ Clustered Index Scan (Clustered)
HMS.BILL. F ;Pn 5 (Eager Spool) [BTLL Comm MST PatientAdmissionDeta
HMS.BILL oSt Cost: 83 & Cost: 2 &
&
- a ‘Query executed successfully. WINCTRL-MGORE7 (120 RTM) | sa (65) Database after optimized = 00:00:00 | O rows

Figure 6.20 — QEP plan and Cost of Correlated SQL subqueries

i File Edit View Window Help

N da = @ s | 375 GetEstimated Plan ¥ Get Actual Plan ~ | % Show Estimated Plan | =]] [l Post To SQLPerformance.com

Start Page Plan1 - WINCTRL-MGORB. ..fore_optimized (sa)* Histary ks

Command Text | Results Version | Type | Comments Total Tme

4

|TExtData B | 1E 00:00:00.000
ZA 00:00:00.625
Plan Diagram 7

Figure 6.21- QEP plan and Cost of Correlated SQL subqueries in Sentry planner

74

-l e @ | NewOuey [P8 0 | K A A 9 -0 - @S] b } |
£ 4|0 [¥ Becute b Dsbug = v 35 8l | 78[5 0]

=
¥

[FISELECT c.Firstiame,
c.LastHame,
co.ConsultantCode

FROM [HMS] . [BILL_Comm_MST_PatientAdmissionHeader] c
LEFT J0IN [HMS].[BILL_Comm MST_PatientAdmissionDetail] co
ON c.[BHTNo] = co.[BHTNs]|

100% -

[y Messages & Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT c.FirstName, c.LastName, co.ConsultantCode FROM [HMS].[BILL Comm MST PatientAdmissionHeader] c LEFT JOIN [HMS].[BILL Comm MST PatientAdmissionDetail].

o

= e
== Merge Join " Clustered Index Scan (Clustered}

m {Left Outer Join) [BILL Comm MST PatientAdmissionHead_

Cost: 7 % Cost: €2 %

|24 Eﬁ?
Clustered Index Scan (Clustered)

[BILL Comm MST_PatientAdmissionDeta..
Cost: 8 %

Figure 6.22- Our Query QEP plan and Cost of Correlated SQL subqueries

Hie EQr View wingow Help

NS A @ By L = % 30 GetEstimatedPlan ¥ Get Actual Plan - | % Show Estimated Plan | =]] [} Post To SOLPerformance.com

Start Page | Plan1 - WINCTRL+MGORS. ..efore_optimized (sa)* Plan2 - WINCTRLMGORS....efore_optimized (sa)* X T | History B

Command Text | Results Version | Type | Comments Total Tme

Text Data n | 1A 00:00:00.033

?lan Diagram R

SELECT

=
®

ustered n
L1 Comm_MST_PatientAdis.
PK_BILL_Comm_MST_PatisntAd..

Figure 6.23- Our Query QEP plan and Cost of Correlated SQL subqueries in Sentry planner

75

SQLQuery16.5q! - WI...optimized (sa (69)° X [lolKoNMEETIRS) SOLQuery14.5q! - WI...optimized (sa (68)) SOLQuery13.5q1 - not connected” SOLQuery12.5g! - not connected
FETCH NEXT FROM ActivePatient INTO @8HTNo, @Firstlame, @LastName
-- perform action whilst a row was found
SIWHILE @@FETCH STATUS = @
~IBEGIN

-- get next row of cursor
Print @8HTNo
print @Firsthame|
print @Lasthame

FETCH WFXT FROM ActiwePatient TNTO @RHTMn. @FirstName. @1 astName
100 %
37 Execution plan
Luery cost (relsrive To TOe DATCN) ! UR
SET STATISTICS TIME ON

feel

SET STATS
Cost: 0 %

{13 Messages
Cuery :

Query 3: Query cost (relative to the batch): 100%

DECLARE @BHTNo varchar(30) DECLARE @FirstName varchar(30), @LastName wvarchar(30) -- declare curscr called DECLARE ActivePatient Cursor FOR SELECT BHTINco,
X Clustered Indes Insert Clustered Index Scan (Clustered)
Dynamic Fetch Query [CHT_Primsry¥ey] Compute Scalar [BILL_Comm MST_PatientidmissionHead
Cost: 0 % Costz 0 % = Cost: 0 % o
Cost: €9 % Cost: 31 %
Query 4: Query cost (relative to the batch): 0%
--WHERE IsDischarge = 1 -- Open the cursor OPEN ActivePatient —- Fetch the first row of the cursor and assign its values into variables
cl
(D) Query executed successiuly, WINCTRL-MGORBTI (12.0 RTM) | sa (69) | Database_before_optimized | 00:00:00 | 01

Figure 6.24 — QEP in Cusror

ptimized (sa (69)) SQLQuery15.5q] - Wi..optimized (sa (6))*
DECLARE (@BHTNo varchar(58), @FirstName varchar(138), @LastName varchar(138)

El-- Insert the resultset we want to loop through
-- into the temporary table

CIINSERT INTO #ActivePatient (BHTNo, FirstName, LastName)
SELECT BHTNo, FirstName, LastName
FROM [HMS].[BILL_Comm MST_PatientAdmissicnHeader]
WHERE IsDischarge 1
-- Get the number of records in the temporary tablel
SET (@NumberRecords = @EROWCOUNT
SET @RowCount = 1

E-- loop through all records in the temporary table
-~ using the WHILE loop construct
CWHILE @RowCount <= @NumberRecords
EIBEGIN
0% -

; wa
{13 Messages # Execution plan

Query 4: Query cost (relative to the batch): 100%
DECLARE gNumberRecords int, ERowCount int DECLARE @BHTNo varchar(50), @FirstName varchar(130), @LastName varchar(130)

= = | = k5

Clustered Index Seen (Clustered]
Compute Scalar Compue Scalar Top [BILL Comm MST_PatientAdmissionHead.
Cost: 0 % Cost: 0 % Cost: 0 % S e s

Insert the resultset we want to L.

Table Imsert
[#RctivePatient]

Query 5: Query cost (relative to the batch): 0%
-- Get the number of records in the temporary table SET @NumberRecords = @E@ROWCOUNT

|
2cermm

(@ Query executed successfully. WINCTRL-MGORBTI (120 RTM) | sa (63) | Database_before_optimized | D0:00:00 0 rows

Figure 6.25 — Alternative solutinon QEP plan and query cost

76

Ay I AV M E | NOCOUNLEQ) - Wi.... 1EST_UB (53 (02)) X el
EISET NOCOUNT ON

£
-]

DECLARE @i INT = 1;
DECLARE {ix TABLE(a INT);
INSERT @x(a) VALUES(L);

SELECT SYSDATETIH

FWHILE @i < 1000000
FBEaIN
UPDATE @x SET a = 1;
SET @i += 1;
END

SELECT SYSDATETI

1% -

3 Resufts |{3 Messages
{No column name)
1 20180525 2242:02 9313588 |

No column name)
2018-05-25 22:42:30 3116694

) Query executed successfully. WINCTRL-MGORB7I (12.0RTM) | sa (62) | Test DB | 00:00:27 2 rows

Figure 6.26 — Set no count on execution time

Edit View SQLEnlight Query Project Debug Tools Window Help

Or -S| Nevuey LRG| 4 2a9-0-8-0 @ -l .|
14 137 | [Database after_optimized -|| ¥ Execute b Debug = o 33 @l |17y | 2

i
SQLQuery30.sql - Wl...optimized (sa (62))* X
El SET NOCOUNT OFF‘
DECLARE i INT = 1;
DECLARE fix TABLE(a INT):
INSERT @x(a) VALUES(1);

R e 8] ¢

SELECT SYSDATET

FIWHILE @i < leoeeee

=IBEGIN
UPDATE @x SET a = 1;
SET @ += 1
END

SELECT SYSDATETIME();

0% -

[Resuts [fy Messages
{No column name)
1 201805-25 22:50:41.3190285

(No column name)
1 {201805:25 2251215695505 |

(2 Query executed successfully,

WINCTRL-MGORBT! (12.0 RTM) | sa (62) | Database after optimized | 00:00:40 2 rows

Figure 6.27 - 6.26 — Without no count execution time

77

