
LB/DON/148/04 DCE 13/10

APPLICATION OF NON-DESTRUCTIVE METHODS FOR TESTING OF INDEX PROPERTIES OF GNEISSIC ROCKS IN LARGE-SCALE GEOTECHNICAL INVESTIGATIONS

MASTER OF ENGINEERING IN GEOTECHNICAL ENGINEERING

GAN VIDANELAGE INDUTILAK SAMARADIVAKARA

624 "04" 624.1(043)

09

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

UM Thesis coll.

82433

August'2004

DECLARATION

The work included in the thesis in part or whole has not been submitted for any other academic qualification at any institution.

molin and 000 GV.I. Samaradivakara

Certified

UOM Verified Signature

Dr. U.G.A. Puswewala Supervisor

M.Eng in Geotechnical Engineering - Research Project - GVIS'2003

I

There is an abundance of gneissic rock formations found in Sri Lanka. Gneiss is a banded rock with fairly continuos segregation of different minerals.

Foundations of most of the large-scale civil engineering structures are extended up to or into the fresh gneissic rocks. Especially, the foundation of dams, bridges and high rise buildings are extended into fresh rock.

In such large-scale geotechnical investigations, boreholes are advanced up to the interested depth of exploration and rock coring is compulsorily done using rotary core drilling machines. Borehole logging is followed by arranging the laboratory testing programme for testing of soil and rock materials.

Hence the identification of engineering behaviour of gneissic rocks at the detailed investigation stage is a prime necessity in such projects.

Laboratory testing of a large number of rock samples is time consuming and expensive. The general practice of selection of representative rock samples on visual inspection followed by laboratory destructive testing may not lead to a precise interpretation of engineering properties of the entire subsurface rock strata.

Non-destructive testing of gneissic rock is identified as a fast and effective method of selection of representative rock samples for a laboratory-testing programme.

A 100m deep exploratory rock core of diameter 54mm was selected for this research. More than two hundred samples were prepared and subjected to three different nondestructive tests, followed by destructive tests.

Depending on the results of the study, samples having distinct characteristics could easily be identified.

In particular, the strata having low compressive strength were clearly identified and hence those samples could be specified for destructive tests.

The findings of this research will be immensely helpful to organise laboratorytesting programmes on rock samples effectively and economically especially in largescale geotechnical investigations.

PREFACE

This report is on "Application of non-destructive methods for testing of index properties of gneissic rocks in large – scale geotechnical investigations". This study is based on analysis of index properties of rocks by non-destructive and destructive testing methods. The report is organised into eight chapters and three appendices.

Chapter 1 of the report briefly describes the necessity and importance of this study for the industrial benefits. This chapter includes the objectives of the study and also a concise description of the selected site.

The methodology and borehole logging are described in Chapter 2 and Chapter 3 of the report respectively.

Chapter 4 of the report gives the laboratory-testing programme and Chapter 5 gives a concise description on the instruments used in this study.

Chapter 6 of this report describes the non-destructive tests carried out, whereas Chapter 7 of the report describes the destructives tests carried out in this study.

The concluding remarks and recommendations are given in Chapter 08 of the report.

ACKNOWLEDGEMENT

It is my great pleasure to convey my heartiest gratitude to Dr. U.G.A. Puswewala, Senior Lecturer in the Department of Civil Engineering, University of Moratuwa, as my project supervisor for his continuous guidance and invaluable support extended towards me to complete this study.

I wish to convey my noble thanks to Dr.Kithsiri Dissanayake, Head-Dept. of Earth Resources Engineering, Prof.A.K.W. Jayawardene, Head-Dept. of Civil Engineering Dr. D.A.I. Munindradasa, Head- Dept. of Electronics & Telecommunication and Mrs. L.P.J.P. Premaratne, Senior Lecturer in the Department of Electrical Engineering for providing necessary facilities to make this research a success.

I also wish to tender my gratitude to Eng. M.D.Wimal, the Quarry Manager of Lanka Quarries (Pvt) Ltd., for granting permission and providing necessary facilities to carry out the fieldwork component of this study.

The great assistance given by Eng. W.A.A.W. Bandara, Director- Engineering & Laboratory Services (Pvt) Ltd., by providing some laboratory equipment required for this study is also acknowledged.

Finally, I gratefully acknowledge the fullest cooperation given by all laboratory staffs of the above four departments of the University of Moratuwa, in the preparation and testing of rock samples successfully.

G.V.I. Samaradivakara

University of Moratuwa, Moratuwa, Sri Lanka.

August'2004

CONTENTS

	Page No.
Declaration	1
Abstract	II
Preface	III
Acknowledgement	IV
List of Abbreviations	VI
List of Tables	VII
List of Figures	VIII

CHAPTER 1

INTRODUCTION

1.1	General Introduction	1
1.2	Objective of the project	2
1.3	General Geology of the area	2
1.4	Topography of the area	2

CHAPTER 2

METHODOLOGY

2.1	Selection of a deep exploratory	
	borehole	6
2.2	Borehole Logging	6
2.3	Sample selection for	
	laboratory testing	6
2.4	Laboratory	
	testing programme	7
2.5	Non-destructive and destructive	
	tests on selected rock samples	7
2.4	Analysis of data	7

CHAPTER 3

BOREHOLE LOGGING

3.1	Introduction 8
3.2	General Information recorded in
	borehole logs 8
3.1	Log of the borehole used for the
	study 9

CHAPTER 4

LABORATORY TESTING

4.1	Introduction	20
4.2	Testing Methods	20
4.3	Initial Sample Preparation	20

CHAPTER 5

INSTRUMENTATION

5.1	GPS	27
5.2	Electric driven masonry saw	28
5.3	Rock polishing machine	28
5.4	Schmidt Hammer	30
5.5	Portable Ultrasonic Non-destruc	tive
	Digital Indicating Tester	
	(PUNDIT)	31
5.6	Variable Auto Transformer	32
5.7	High Impendence Voltmeter	33
5.8	Ammeters and voltmeters	33
5.9	Slake Durability Test Apparatus	34
5.10	Uniaxial compression machine	35
5.11	Triaxial compression machine	35
5.12	Petrographic analysis	
	test apparatus	37

CHAPTER 6

NON-DESTRUCTIVE TESTS

Schmidt Hammer Rebound	
Hardness Test	39
Electrical Resistivity Test	39
Ultrasonic Pulse Velocity Test	41
Analysis of data	42
	Hardness Test Electrical Resistivity Test Ultrasonic Pulse Velocity Test

CHAPTER 7

DESTRUCTIVE TESTS

7.1	Uniaxial Compression Test	74
7.2	Triaxial Compression Test	74
7.3	Slake Durability Test	75
7.4	Analysis of data	76

7.5 Petrographic analysis 107

CHAPTER 8

CONCLUDING REMARKS AND RECOMMONDATIONS 109

ANNEXURES

I – Photographs of core boxes	115
II- Result sheets of Laboratory tests	
III- CD containing the report and	
MS- PowerPoint presentation	182
References	

M.Eng in Geptechnical Engineering - Research Project - GVIS'2003

LIST OF ABBREVIATIONS

Abbreviation	Description
ASTM	American Standard of Testing Material
BS	British Standards
CCS	Cylinder Compressive Strength
ER	Electrical Resistance Test
ISRM	International Society of Rock Mechanics
LQL	Lanka Quarries Ltd.
QFG	Quartzo-Feldspathic Gneiss
QBG	Quartzo Biotite Gneiss
R	Resistance
SD	Slake Durability Test
SDI	Slake Durability Index
SMH	Schmidt Hammer Rebound Hardness Test
ТСТ	Triaxial Compression Test
UCS	Unconfined Compressive Strength
UPV	Ultrasonic Pulse Velocity

M.Eng in Geotechnical Engineering - Research Project - GVIS'2003

LIBRARY

LIST OF TABLES

Table No.	Description	pg.
2.1	Summary of three exploratory boreholes	6
3.1	Borehole Log	10
4.1	Laboratory Testing Programme	21
5.1	Ammeters and Voltmeters used for this study	33
6.0	Ranges of resistivity values for different rock types	40
6.1	Cylinder Compressive Strength (CCS) for	
	Quartzo-Feldspathic Gneiss (QFG) strata	42
6.2	Cylinder Compressive Strength for Biotite Gneiss (BG) strata	42
6.3	Statistical Analysis for CCS of QFG strata	43
6.4	Statistical Analysis for CCS of BG strata	43
6.5	Ultrasonic Pulse Velocity (UPV) for QFG strata	47
6.6	Ultrasonic Pulse Velocity for BG strata	47
6.7	Statistical Analysis for UPV of QFG strata	48
6.8	Statistical Analysis for UPV of BG strata	48
6.9	Resistivity for QFG strata	52
6.10	Resistivity for BG strata	52
6.11	Resistivity for the entire rock strata	52
6.12	Statistical Analysis for Resistivity of QFG strata	53
6.13	Statistical Analysis for Resistivity of BG strata	53
6.14	Statistical Analysis for Resistivity of entire rock strata	53
6.15	Summary of non-destructive test results	57
6.16	CCS and UPV values for QFG strata	60
6.17	CCS and UPV values for BG strata	60
6.18	CCS and R values for QFG strata	67
6.19	CCS and R values for BG strata	67
7.1	Summary of Unconfined Compressive Strength (UCS) test results	
7.2	UCS for QFG strata	77
7.3	UCS for BG strata	77
7.4	UCS for rock strata	77
7.5	Statistical Analysis for UCS of QFG strata	78
7.6	Statistical Analysis for UCS of BG strata	78
7.7	Statistical Analysis for UCS of entire rock strata	78
7.8	Triaxial test results for rock strata	83
7.9	Triaxial test results for BG strata	83
7.10	Statistical Analysis for cohesion of rock strata	84
7.11	Statistical Analysis for friction angle of rock strata	84
7.12	Slake Durability Index (SDI) for rock strata	87
7.13	SDI for QFG strata	87
7.14	SDI for BG strata	87
7.15	Statistical Analysis for SDI of QFG strata	88
7.16	Statistical Analysis for SDI of BG strata	88
7.17	Statistical Analysis for SDI of entire rock strata	88
7.18	Summary of destructive test results	93
7.19	UCS, UPV and CCS data for QFG strata	96
7.20	UCS, UPV and CCS data for BG strata	96
7.20	UCS and Resistivity for QFG strata	104
7.22	UCS and Resistivity for BG strata	104
1.22	000 and reastring to 20 chain	

M.Eng in Geotechnical Engineering – Research Project – GVIS'2003

LIST OF FIGURES

Figure No.	Description	pg.
1.1 1.2 1.3	Location and accessibility of study area A photograph taken from the west end of the selected site Contour survey map of the area	3 4 5
5.1	Global Positioning System (GPS)	27
5.2	Electric driven masonry saw	28
5.3	Rock polishing/ lapping machine	29
5.4	Schmidt Hammer	30
5.5	Portable Ultrasonic Non-destructive Digital Tester (PUNDIT)	31
5.6	Variable Auto Transformer	32
5.7	High Impedance Voltmeter	33
5.8	Ammeters and Voltmeters	33
5.9	Slake Durability test apparatus	34
5.10	Uniaxial compression machine	35
5.11	Triaxial compression machine	36
5.12	Instruments for the preparation of thin sections for	
	petrographic analysis	37
5.13	Polarizing microscope	38
6.0	Instrument setup for the measurement of electrical properties of	
<i>c</i> 1	rock samples	40
6.1	Depth vs. Cylinder Compressive strength for QFG	44
6.2	Depth vs. Cylinder Compressive strength for BG	45
6.3	Depth vs. Cylinder Compressive strength for rock strata	46
6.4	Depth vs. Ultrasonic Pulse Velocity for QFG	49
6.5	Depth vs. Ultrasonic Pulse Velocity for BG	50
6.6	Depth vs. Ultrasonic Pulse Velocity for entire rock strata	51
6.7	Depth vs. Resistivity for QFG	54
6.8	Depth vs. Resistivity for BG	55
6.9	Depth vs. Resistivity for entire rock strata	56
6.10	Comparison of CCS and UPV with depth for QFG	61
6.11	Comparison of CCS and UPV with depth for BG	62
6.12	Comparison of CCS and UPV with depth for rock strata	63
6.13	CCS vs. UPV for QFG	64
6.14	CCS vs. UPV for BG	65
6.15	CCS vs. UPV for entire rock strata	66
6.16	CCS vs. Resistivity for QFG	68
6.17	CCS vs. Resistivity for BG	69 70
6.18	CCS vs. Resistivity for entire rock strata	70 71
6.19	Depth vs. CCS and resistivity for QFG	72
6.20	Depth vs. CCS and resistivity for BG	
6.21	Depth vs. CCS and resistivity for entire rock strata	73

M.Eng in Geotechnical Engineering - Research Project - GVIS'2003

LIST OF FIGURES Ctd..

Figure No.

Description

7.1	Depth vs. UCS for QFG	79
7.2	Depth vs. UCS for BG	80
7.3	Depth vs. UCS for the entire rock strata	81
7.4	Depth vs. UCS (for QFG and BG)	82
7.5	Depth vs. Cohesion and Friction Angle for BG	85
7.6	Depth vs. Cohesion and Friction Angle for entire rock mass	86
7.7	Depth vs. Slake Durability Index for QFG	89
7.8	Depth vs. Slake Durability Index for BG	90
7.9	Depth vs. Slake Durability Index for entire rock strata	91
7.10	Depth vs. Slake Durability Index (for QFG and BG)	92
7.11	Depth vs. UCS, CCS, UPV and R (for QFG)	97
7.12	Depth vs. UCS, CCS, UPV and R (for BG)	98
7.13	Depth vs. UCS, CCS, UPV and R (for entire rock strata)	99
7.14	UCS vs. CCS (For QFG)	100
7.15	UCS vs. CCS (For BG)	101
7.16	UCS vs. UPV (For QFG)	102
7.17	UCS vs. UPV (For BG)	103
7.18	UCS vs. Resistivity (For QFG)	105
7.19	UCS vs. Resistivity (For BG)	106
7.20	Image of thin section (S25/1) taken in ordinary light	108
7.21	Image of thin section (S25/1) taken in plane polarized light	108
8.1	The variation of resistivity of rock strata with depth	111
8.2	The variation of Cylinder Compressive Strength	
	of rock with depth	112
8.3	The variation of Ultrasonic Pulse Velocity	
	of rock strata with depth	112

M.Eng in Geotechnical Engineering – Research Project – GVIS'2003

pg.