Multi-Modal Evidence Filtering in Wireless Sensor Networks

Dilusha Madushani Weeraddana

(138018 E)

Degree of Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

June 2015

Abstract

A novel framework named **Dempster-Shafer Information Filtering** for information processing in Distributed Sensor Networks (DSNs) is presented. Moreover, distributed algorithms to implement spatio-temporal filtering applications in grid sensor networks are presented within the context of the framework. The framework facilitates processing multi-modality sensor data with a high noise level. Moreover, we compare intuitively appealing results against Dempster-Shafer fusion to grant further credence to the proposed framework.

The concept of the proposed framework is based on the belief notions in Dempster-Shafer (DS) evidence theory. It enables one to directly process temporally and spatially distributed multi-modality sensor data to extract meaning buried in the noise clutter. Certain facts on filter parameter's selection impose several challenges in the design of the Information Filter. This is analysed using a fire propagation scenario when high noise is present in the sensed data. Information bandwidth and the sluggishness of the filter are traded-off to minimise the effect of the noise in the output evidence signal.

From the application point of view, we address a Wireless Sensor Network (WSN) deployed in a multi-stoery building which can be effectively used to convey information to relevant parties (firefighters in their rescue operations) during an emergency situation. Therefore, a fire propagation scenario is simulated to illustrate the applications and justify the proposed framework.

Acknowledgements

First and foremost, I would like to extend my deepest gratitude to my supervisors Prof. S. A. D Dias, Dr. E. C. Kulasekere and Prof. K. S. Walgama for their continuous guidance, advice and support throughout my research.

I wish to extend my earnest gratitude to members of my project panel Eng. K. Samarasinghe, Dr. K. C. B. Wavegedara, and Dr. D. Bandara for their valuable comments on my research work.

I also thank my dear friends and colleagues in department of Electronic and Telecommunication Engineering, University of Moratuwa for their assistance and encouragement. I would also like to thank National research Council, Sri Lanka for funding my research through grant 11-113 for the entire duration to make it a success

Last but not least I would like to thank Dialog-University of Moratuwa mobile communications research laboratory for partially supporting my studentship. I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 21/06/2015

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ dissertation under my supervision.

Signature of the supervisor:

Date: 21/06/2015

Signature of the co-supervisor:

Date: 21/06/2015

Contents

1	Intr	oducti	ion	1	
	1.1	Decisi	on Making in Sensor Networks	2	
	1.2	Self-O	rganization of Sensor Nodes	4	
	1.3	Emerg	gency Response and Management	4	
		1.3.1	Challenges in Emergency Response	5	
2	Pre	limina	ries	7	
	2.1	Demp	ster-Shafer Theory	7	
	2.2	Evider	nce Updating \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	9	
		2.2.1	Combination of Evidences via Evidence Conditioning \ldots	9	
	2.3	Evider	nce Filtering	10	
		2.3.1	Fundamental of Evidence Filtering	10	
		2.3.2	Identified Facts regarding the Evidence Filter	11	
3	Analysis of Evidence Filtering in the Time Domain 15				
	3.1	Const	ruction of the Evidence Table	15	
	3.2	Evider	nce Filter Design and Results	16	
		3.2.1	Results Analysis	17	
	3.3	Artifa	ct Modelling in Linear Time Invariant Evidence Filtering	18	
	3.4	Artifa	ct Modelling in Linear Time Varying Evidence Filtering	19	
		3.4.1	Results Analysis	20	
4	Fir€	e Scena	ario Development	22	
	4.1	FDS ((Fire Dynamic Simulator)	23	
5	Der	npster	-Shafer Information Filtering	26	
	5.1	Tempo	oral Evidence Filtering	26	
		5.1.1	Single Input Single Output Evidence Filter	26	
		5.1.2	Multiple Input Single Output Evidence Filter	28	

	5.2	Spatio-Temporal Evidence Filter	29
	5.3	Spatio-Temporal Evidence Filtering With Belief Vectors	31
	5.4	Experimental Scenario for Fire Spread Model	32
		5.4.1 Simulation Setup: Temporal Evidence Filtering	32
		5.4.2 Mass Assignment and Construction of the Evidence Table	33
		5.4.3 Sensor Fusion \ldots	34
		5.4.4 Results Analysis of Temporal Evidence Filtering	37
		5.4.5 Spatio-Temporal Filtering to Estimate the Fire Severity	40
		5.4.6 Simulation Setup: Spatio-Temporal Evidence Filter	43
		5.4.7 Spatio-Temporal Evidence Filter-Severity Vector Generation	45
		5.4.8 Results Analysis of Spatio-Temporal Evidence Filter and	
		Severity Vector Generation Filter	49
6	Sele	ection of Filter Parameters	51
	6.1	Simulation	51
		6.1.1 Simulation Setup	51
		6.1.2 Design Procedure	52
		6.1.3 Analyse the Filter Parameters Based on the Emergency	
		Propagation Stages	52
		6.1.4 Results Analysis	54
7	Cor	nclusions	60
	7.1	Dempster-Shafter Information Filtering	60
	7.2	Error Variation with the Pole of Evidence Filter	61
	7.3	Severity Based Self-Organization Algorithm	62
	7.4	Sensor Network Based Architecture for Emergency Response	62
	7.5	Summary of Key Contributions	63
	7.6	Publications	64
\mathbf{A}	\mathbf{Sev}	erity Based Self-Organization	65
		A.0.1 Related Work	65
		A.0.2 Network Model	66
	A.1	Details of the Algorithm	67
		A.1.1 Estimating the Severity Level of an Emergency Phase	67
		A.1.2 Cluster Head Candidacy Phase	68
		A.1.3 Cluster Formation Phase	69
		A.1.4 Data Gathering Phase	70
		A.1.5 CH Rotation Phase	70

	A.2	Simula	ation Results	71
		A.2.1	Simulation Setup	71
		A.2.2	Applying DS Information Filtering to Estimate the Severity	
			of the Fire	72
		A.2.3	Cluster Head Selection of the Algorithm $\ldots \ldots \ldots$	73
		A.2.4	Performance of the Algorithm in an emergency environment	74
		A.2.5	Energy Efficiency of the Algorithm	75
-	G	.		-
В	Sen	sor Ne	twork Based Architecture	76
	B.1	Introd	uction	76
	B.2	D 1 .		
	2.2	Relate	d Work	77
	B.3	Relate Challe	ed Work	77 78
	B.3 B.4	Relate Challe Propo	ed Work	77 78 79
	B.3 B.4	Relate Challe Propo B.4.1	ed Work	77 78 79 80
	B.3 B.4	Relate Challe Propo B.4.1 B.4.2	ed Work	77 78 79 80 82

List of Figures

3.1	Simulation steps	17
3.2	Generated artificial data for 30min, each sensor data follows dif-	
	ferent function	18
3.3	Belief values for fire (green), normal (blue), uncertainty (red)	18
3.4	First order Evidence Filter output	19
3.5	Output from first order Evidence filter a) $alpha=0.5$, $beta=0.5$ b)	
	alpha=0.8, beta= 0.2	20
3.6	Adaptive filter output, time varying coefficients	20
3.7	Pole changes from .45 to 0.9	21
3.8	Enlarged input vs output evidence signals	21
3.9	1st order event triggered time varying Evidence Filter with fire	
	declined stage	21
4.1	Simulated room fire in FDS	23
4.2	Comparison of temperature between node 1 and node 33, node 1 $$	
	is away from the fire ignition point and the node 33 is just on top	
	of the fire ignition point	24
4.3	Comparison of smoke level between node 1 and node 33, node 1 is	
	away from the fire ignition point and the node 33 is just on top of	
	the fire ignition point	24
4.4	Comparison of optical density between node 1 and node 33, node	
	1 is away from the fire ignition point and the node 33 is just on	
	top of the fire ignition point	25
4.5	Normalized sensor readings at node 33 for temperature, smoke and	
	optical density	25
5.1	Single Input Single Output Evidence Filter	28
5.2	Multiple Input Single Output Evidence Filter	29

5.3	Simulation setup: Living room, Sensor nodes are deployed at the	
	ceiling	33
5.4	Sensor measurements at node 32 before noise is added	34
5.5	Normalized sensor measurements at node 32 before noise is added	35
5.6	Input evidence signal of SISO Filter-fused multi-modality evidences	
	at node 32	35
5.7	Input evidence signals of MISO Filter at node 32	36
5.8	Reference fire signal	36
5.9	Input vs output evidence signals of SISO filter at node 32	37
5.10	Input vs output evidence signals of MISO filter at node 32	37
5.11	Output of DS evidence combination over time at node 32	38
5.12	DS combination and SISO evidence filter outputs at node 32 \ldots .	38
5.13	Error variation of DS combination and SISO evidence filter output	
	at node 32	39
5.14	Grid sensor network. Fire starts at node $35;(5,4)$. Regions are	
	shown in boxes.	43
5.15	Output states of the each node in the network, at time t=1s \ldots	43
5.16	Output states of the each node in the network, at time t=2s \dots	44
5.17	Output states of the each node in the network, at time t=3s \dots	44
5.18	Output states of the each node in the network, at time t=4s \dots	44
5.19	Output states of the each node in the network, at time t=5s \ldots	45
5.20	Output states of the each node in the network, at time t=6s \ldots	45
5.21	Output states of the each node in the network, at time t=7s \dots	46
5.22	Output states of the each node in the network, at time t=8s \dots	46
5.23	Output states (magnitude and direction) of node, at time t=1s	49
5.24	Output states (magnitude and direction) of node, at time t=2s	49
5.25	Output states (magnitude and direction) of node, at time t=3s	50
6.1	Reference Signal with no noise	53
6.2	Output Evidence Signal for a one case, $\alpha = 0.8$	53
6.3	Mean Error from 1s-100s vs Pole from 0.1-0.9	53
6.4	Mean Error from 100s-200s vs Pole from 0.1-0.9	54
6.5	Mean Error from 200s-300s vs Pole from 0.1-0.9	54
6.6	Mean Error from 300s-400s vs Pole from 0.1-0.9	54
6.7	Mean Error from 400s-500s vs Pole from 0.1-0.9	55
6.8	Mean Error from 500s-600s vs Pole from 0.1-0.9	55
6.9	Mean Error from 600s-700s vs Pole from 0.1-0.9	55

6.10	Error variance from 1s-100s vs Pole from 0.1-0.9	56
6.11	Error variance from 100s-200s vs Pole from 0.1-0.9	56
6.12	Error variance from 200s-300s vs Pole from 0.1-0.9	56
6.13	Error variance from 300s-400s vs Pole from 0.1-0.9	57
6.14	Error variance from 400s-500s vs Pole from 0.1-0.9	57
6.15	Error variance from 500s-600s vs Pole from 0.1-0.9	57
6.16	Error variance from 600s-700s vs Pole from 0.1-0.9	58
6.17	Mean Error and Error variance from 1s-1000s vs Pole from 0.1-0.9	58
A.1	Simulation setup: Living room, Sensor nodes are deployed at the	
	ceiling	72
A.2	CH distribution over the network	73
A.3	Performance of the algorithm in an emergency	74
A.4	Energy efficiency of the algorithm	75
B.1	Proposed Emergency Response and Navigation Support Architec-	
	ture	79
B.2	Proposed Architecture	80
B.3	Function of Localization Layer	82
B.4	Function of Perceiving Layer	83
B.5	Function of Self-organization Layer	83
B.6	Function of Data Filtering and Prediction Layer	83
B.7	Function of Severity Calculator Layer	84

List of Tables

3.1	EVIDENCE TABLE	15
5.1	EVIDENCE TABLE FOR SEVERITY OF FIRE	34
5.2	Results comparison	34
6.1	Noise Variation at each Stage	58
A.1	Selected CH's Residual Energy and Belief Values	73