INVESTIGATION OF LONGITUDINAL SPLITTING OF COMPOSITE SLABS/BEAMS

MASTER OF SCIENCE

DILRUK INDIKA FERNANDO

MORATUWA UNIVERSITY OCTOBER 2004

LB/DON/146/04

INVESTIGATION OF LONGITUDINAL SPLITTING OF COMPOSITE SLABS/BEAMS

By D.I.FERNANDO

5

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

> University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

> > Supervised by

624 °04° 624 (043)

Dr. M.D. WEERASINGHE

Department of Civil Engineering University of Moratuwa Sri Lanka October 2004

> University of Moratuwa 82431

> > 82431

UM Thesis coll.

82431

ACKNOWLEDGEMENTS

My sincere thanks go to my supervisor, Dr. (Mrs.) M.D. Weerasinghe, for her excellent guidance during course of research. I am particularly thankful to her for her tireless and critical readings of the draft chapters, and generally for seeing me through it all.

I am deeply grateful to professor (Mrs.) N. Rathnayake head of the postgraduate unit and her assistant workers for their kindness help. I would like to extend my thanks to the Asian Development Bank for their financial support during this study.

At last not least I wish to thank civil engineering department of Moratuwa University for facilities they helped me to carry on my research study.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

In this research study the longitudinal Splitting of concrete-steel composite structures has been investigated. Longitudinal Splitting can be identified as one of the common problem exist at serviceability limit state of structures and sometimes ignoring of these splitting may cause ultimate failure of the structure.

The main objective of this research study was to develop finite element computer program for modeling the longitudinal splitting of composite slabs. A number of standard finite element types were used to model various elements of the structure such as concrete slab steel beam, steel deck profile, transverse reinforcements and steel stud connectors.

1

One-way spring elements were used to represent shear studs and an equation developed for stiffness value for these spring elements based on fracture mechanism concept. This equation was accounted for a number of factors, which are generally known to have a direct influence on longitudinal splitting. Only headed studs with a diameter 19 mm and nominal length 100 mm was considered throughout this study.

The finite element model was verified with some experimental tests conducted by prior investigators and also by changing different features of model, the ways of reducing the failure of composite structures were investigated.

CONTENTS

ł

PAGE NUMBER

CHAPTER 1	1
1.1 BRIEF HISTORY OF THE INVESTIGATION OF	
COMPOSITE STRUCTURES	1
1.2 LONGITUDINAL SPLITTING	2
1.3 GENARAL BEHAVIOUR OF COMPOSITE BEAMS	3
1.4 INTERFACE BEHAVIOUR	4
1.5 SPLITTING FORCES	5
1.6 OBJECTIVE OF RESEARCH STUDY	6
1.7 METHOLOGY	6
1.8 OUTLINE OF THE REPORT	6
CHAPTER 2	9
2.1 THE STANDARD PUSH OFF TESTS	9
2.2 PAST INVESTIGATIONS AND RESEARCHES ABOUT THE	
LONGITUDINAL SPLITTING OF COMPOSITE	
STRUCTURES	10
2.2.1 COMPUTER MODEL DEVELOPED BY	
JOHNSON R. P. & OEHLERS. D	11
2.3 THEORY BEHIND THE LONGITUDINAL SPLITTINGS	12
2.4 OTHER INVESTIGATIONS	12
2.5 COMPARISION BETWEEN S.J.HICK'S PUSH OFF TEST	
SPECIMENS AND STANDARD PUSH OFF TEST	
SPECIMENS	13
2.6 ANALYTICAL STUDY OF S.J.HICK'S EXPERIMENTAL	
RESULTS	14
2.6.1 TRANSVERSE DECK PROFILE	16

2.6.2 LONGITUDINAL DECK PROFILE	16
2.6.3 SOLID SLAB	16

2.7 SUMMARY

1

1

17

CHAPTER 3	23
3.1 INTODUCTION	23
3.2 THE MAIN COMPONENTS OF	
PUSH OFF TEST SPECIMEN	23
3.3 MODELING THE INDIVIDUAL STRUCTURAL	
COMPONENTS	24
3.3.1 FINITE ELEMENTS FOR CONCRETE SLAB	24
3.3.2 FINITE ELEMENTS FOR STEEL BEAM	26
3.3.3 FINITE ELEMENTS FOR STEEL DECK PROFILE	26
3.3.4 FINITE ELEMENTS FOR STEEL	
REINFORCEMENTS	27
3.3.5 MODELLING OF MATERIALS	27
3.4 THE SPRING ELEMENTS USED TO DENOTE STUD	
CONNECTIONS	28
3.4.1 INFLUENCING FACTORS FOR	
THE STIFFNESS OF SPRING ELEMENTS	28
3.4.2_DERIVATION OF A VALUE FOR	
STIFFNESS OF SPRING ELEMENTS	29
3.4.3 THE EQUATION DEVELOPED FOR	
STIFFNESS VALUE	30
3.4.4 THE PARAMETRIC STUDY USED TO	

FIND OUT THE EFFECTIVE

CONSTANTS C1 AND C ₂	31
3.4.5 RESULTS OF PARAMETRIC STUDY	31
3.4.6 RELATIONSHIP BETWEEN C1 AND C2 FOR ALL	
FOUR SPECIMENS	32
3.4.7REASONS FOR SELECTION OF EXPERIMENTAL	
STIFFNESS FOR THE STIFFNESS OF SPRINGS	32
3.4.8 DERIVATION OF COMMON EQUATION FOR	
SPRING STIFFNESS	33
3.4.9 PROCEDURE FOR OBTAINING STIFFNESS VALUE	
SPRING ELEMENTS WITH RESULT FROM	
PARAMETRIC STUDY	34
3.4.9.1 GRIFFITH CONCEPT	35
3.4.9.2 CALCULATION OF C1	37
3.4.10 DIFFERENT CONNECTION METHODS OF	
STEEL BEAM AND PROFILED CONCRETE	
SLAB AND REPRESENT OF EACH	
CONNECTION TYPE FROM FINITE MODEL	38
3.4.10.1 CONNECTION THROUGH	
DECK WELDING	39
3.4.10.2 CONNECTION THROUGH HOLES MADE	
IN THE DECKING	39
3.4.11 THREE DIMENSIONAL VIEW OF THE	
FINITE ELEMENT MODEL	39
3.5 SUMMARY	39

CHAPTER 4544.1 DETAILS OF S.J.HICK'S PUSH OFF TEST SPECIMENS544.2 VERIFICATION OF FINITE ELEMENT MODELS554.2.1 IDENTIFICATION WITH LOAD VS
LONGITUDINAL SLIP CURVES55

RESPECTIVE TO EACH SPECIMEN	55
4.2.1 IDENTIFICATION WITH TENSILE STRESS	
DIAGRAM OF TOP SURFACE OF THE SLAB	56
4.3 VARIATION OF TENSILE STRESS OF CONCRETE	
WITH TRANSVERSE REINFORCEMENTS	56
4.4 VARIATION OF TENSILE STRESS OF CONCRETE	
WITH ELASTIC MODULUS OF CONCRETE	57
4.5 EFFECT OF THE STUD LINE PATTERN TO THE	
LONGITUDINAL SPLITTING OF	
COMPOSITE BEAM/SLAB	57
4.6 EFFECT OF THE TRANSVERSE REINFORCEMENT	
PATTERN TO THE LONGITUDINAL SPLITTING OF	
COMPOSITE BEAM/SLAB	57
4.7 EFFECT OF NUMBER OF STUDS USED TO CONNECT	
STEEL BEAM TO THE CONCRETE	57
4.8 EFFECT OF STUD SPACING	58
4.9 SPECIMEN WITH TRANSVERSE DECK PROFILE	59
4.10 TRANSVERSE TENSILE STRESS VARIATION	
THROUGH THE SLAB	59
4.11 SUMMARY	59

CHAPTER 5	67
5.1 SUMMARY	67
5.2 CONCLSIONS	68
5.3 RECOMMENDATIONS FOR FUTURE WORKS	69

TABLES

1

Figure 2.5 - Specimen with Longitudinal deck profile	21
Figure 2.6 – Plan view of the slab with stud lines	21
Figure. 2.7 – Arrangement of relevant equipments for	
Hicks push off tests	22

.

66

66

CHAPTER 3

I

¥

Figure 3.1 – Shell element	49
Figure 3.2 – Eight nodes solid elements	49
Figure 3.3 – Arrangement of steel beam	50
Figure 3.4 – Steel deck profile arrangement	50
Figure 3.5 – Push off test specimen & Finite Element Model	51
Figure 3.6 – Arrangement of Spring Elements	51
Figure 3.7 – State plane - crack system	52
Figure 3.8 – Connection through deck welding	52
Figure 3.9 – Connection not through deck welding	53
Figure 3.10 – Three dimensional view of finite element model	54
PTER 4 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	

CHALLER 4	CH	AP	TE	R	4
-----------	----	----	----	---	---

LILN4	8	www.lib.mrt.ac.lk	
Figure 4.1 – Trans	verse	Reinforcement Pattern	

Figure 4.2 – Stu	d Spacing Pattern
------------------	-------------------

GRAPHS

CHAPTER 3

Graph 3.1 – Graph of K vs C1 for specimen 1,	44
Graph 3.2 – Graph of K vs C1 for specimen 2,	44
Graph 3.3 – Graph of K vs C1 for specimen 3,	45
Graph 3.4 – Graph of K vs C1 for specimen 4,	45
Graph 3.5 – Graph of K vs C2 for specimen 1,	46
Graph 3.6 – Graph of K vs C2 for specimen 2,	. 46

Graph 3.7 – Graph of K vs C2 for specimen 3,	47
Graph 3.8 – Graph of K vs C2 for specimen 4,	47
Graph 3.9 – Relationship between C1 and C2	48
Graph 3.10 – Common relationship between C1 and C2	48

CHAPTER 4

Graph 4.1 – Load vs Slip of specimen with longitudinal deck profile	
Connect through deck welding (Specimen 1)	61
Graph 4.2 – Load vs Slip of specimen with longitudinal deck profile	
Connect not through deck welding (Specimen 2)	61
Graph 4.3 – Load vs Slip of specimen with solid slab Connected	
by two studs	62
Graph 4.4 – Load vs Slip of specimen with solid slab Connected	
by four studs	62
Graph 4.5 – Transverse Tensile Stress Vs Reinforcement steel ratio	63
Graph 4.6 – Transverse Tensile Stress Vs Elastic Modulus of concrete	63
Graph 4.7 – Transverse Tensile Stress Vs No of studs	64
Graph 4.8 – Transverse Tensile Stress Vs Spacing Between studs	64
Graph 4.9 – Load vs Longitudinal Slip of specimen with	
Transverse deck Profile	65
Graph 4.10 – Height of the slab vs Maximum Transverse	
Tensile stress of Specimens	65

IX