IN-RUSH CURRENT MITIGATION ON TOROIDAL TRANSFORMERS WITH COMPOSITE CORES

Warnakula Patabendige Thushan Sameera Perera

(149318P)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2018

IN-RUSH CURRENT MITIGATION ON TOROIDAL TRANSFORMERS WITH COMPOSITE CORES

Warnakula Patabendige Thushan Sameera Perera

(149318P)

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2018

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

Signature of the candidate (W. P. T. S. Perera)

Date

The above candidate has carried out research for the Masters dissertation under my supervision.

.....

Signature of the supervisor

Date

(Prof. J.P. Karunadasa)

ACKNOWLEDGEMENT

First of all, the pride, praise and perfection belong to the almighty alone.

Then, I would like to express my sincere gratitude to my supervisor Prof. J. P. Karunadasa for the continuous guidance given me to drive this research to the success, through motivation, enthusiasm and with his immense knowledge.

Further, I would like to pay my gratitude to all the lecturers engaged in the MSc course programme, for making our vision broader and providing us the opportunity to improve our knowledge in various fields.

Then I would like to extend my appreciation to the company I am currently working Noratel International (Pvt) Ltd. for providing the necessary research material and facilities required to complete this study.

Warmest thanks go to the prototype division of the company for the support given to me by sampling, which greatly helped me for the collection of required data.

Moreover, I appreciate the help given by my colleagues Sumith and Suresh in my work place and for the continuous encouragement throughout this post graduate programme and in the research work.

Finally my special thanks go to my wife, my mother, my father and my brother for their love, unwavering and resolute support during this eventful period.

W. P. T. S. Perera

ABSTRACT

Toroidal transformers play an important role in the transformer industry specially in high end applications due to their superior performance, over the conventional laminated transformers. But toroidal transformers lag in performance when comes to high power requirements, specially due to their extremely high inrush currents compared to the laminated transformers.

There are many options that can be used externally to the toroidal transformer to avoid this issue, but due to the reliability concerns, transformer based inrush current mitigation methods are always preferred in the industry. Conventional transformer based inrush current mitigation methods fall short on toroidal transformers, because those methods tend to mitigate their superior performance also, together with the inrush current.

The proposed transformer based inrush current mitigating method with composite cores will reduce the inrush current extensively, while protecting the typical superior performance characteristics of toroidal transformers. Also the proposed method will have better control over the inrush current than the conventional methods, while being competitive in the market.

The proposed method involves two cores; one is lower grade NGOSS (Non Grain Oriented Silicon Steel) core in the centre for the normal operation, and the other is higher grade GOSS (Grain Oriented Silicon Steel) core positioned around the NGOSS core with a controlled air-gap, for inrush current controlling purpose. Due to the uncut NGOSS core in the centre, the composite core retains high performance in the normal operation without compromising.

This dissertation includes practical development of the composite core together with silicon steel types CK37-35H300 and M0H-M103-27P, and then experimental testing on inrush current and finally converge the research findings for developing a new design guideline for the optimized solution, while discussing the cost and the manufacturing aspects.

TABLE OF	CONTENTS
----------	----------

DECLARA	TION OF	F THE CA	ANDIDATE AND SUPERVISORS	i
ACKNOW	LEDGEN	1ENT		ii
ABSTRAC	Т	•••••		iii
LIST OF F	IGURES.			viii
LIST OF T	ABLES	•••••		Х
LIST OF A	BBREVI	ATIONS.		xi
LIST OF A	PPENDI	CES		xii
Chapter 1	– INTRC	DUCTIO	DN	
1.1	Toroidal	l transform	ner construction	2
1.2	Motivati	ion to the	research	4
1.3	Objectiv	e of the re	esearch	5
Chapter 2	- INRUS	H CURR	ENT IN TOROIDAL TRANSFORMERS	
2.1	Theoreti	cal backg	round of inrush current	7
2.2	Toroidal	core		9
	2.2.1	Silicon s	teel	10
	2.2.2	Silicon s	teel on toroidal core	10
2.3	Saturatio	on inducta	nce and inrush current	12
Chapter 3	- RESEA	RCH DE	SIGN	
3.1	Existing	inrush cu	rrent mitigation methods	16
	3.1.1	NTC the	rmistor in primary winding	16
	3.1.2	Use of N	IGOSS	18
	3.1.3	Cut core	toroidal transformers	21
3.2	Propose	d compos	ite core concept for inrush current mitigation	23
	3.2.1	Design f	lux density	24
	3.2.2	Airgap s	ize in cut core	25
		3.2.2.1	Flux distribution in the composite core	26
		3.2.2.2	Calculation of saturation inductance Ls	30
		3.2.2.3	Calculation of inrush current	32

3.2.3 Uncut – Cut core cross-sectional area ratio	35
3.3 Importance Of Source Impedance On Inrush Current	35
3.4 Scope of the research	37
Chapter 4 - EXPERIMENTAL DATA COLLECTION	
4.1 Inrush current measurement on samples	38
4.2 Finding the optimum air gap for outer core	39
4.3 Summary of inrush current measurements	47
4.4 Inrush current measurements for different area ratios	48
Chapter 5 - ANALYSIS OF DATA	
5.1 Selection of optimum air-gap	50
5.2 Calculation of relative permeability	52
5.3 Calculation of inrush current for different core cross-sectional	
area ratios	53
5.4 Development of design tool for composite core	55
5.5 Comparison between measured and calculated inrush current	
values	57
Chapter 6 - RESULTS DISCUSSION AND MOTIVATION	
6.1 Comparison of electrical parameters	60
6.1.1 Comparison of inrush current values	60
6.1.2 Comparison of no-load current values	62
6.1.3 Comparison of reactive power loss	63
6.1.4 Comparison of active power loss	64
6.2 Use of recycle steel cores	66
6.3 Comparison of manufacturing aspects	67
6.3.1 Manufacturing of conventional cut core	67
6.3.2 Manufacturing of composite core	68
6.4 Comparison of mechanical parameters	69
Chapter 7 - CONCLUSION AND SUGGESTIONS FOR FUTURE	
RESEARCH	
7.1 Conclusion	72
7.2 Suggestions for future research	73

Reference List	74
Appendices	75

LIST OF FIGURES

Figure No.	Description	Page
Figure 1.1:	Inrush current transient waveform	2
Figure 1.2:	Toroidal transformer	3
Figure 1.3:	EI laminated transformer	4
Figure 2.1:	Graphical interpretation of inrush current with remanence	9
Figure 2.2:	Silicon steel mother coils	10
Figure 2.3:	BH characteristics for AISI CK37 (35H300)	13
Figure 2.4:	BH characteristics for AISI M-0H M103-27P	14
Figure 2.5:	BH characteristics for AISI M-5	15
Figure 3.1:	Typical characteristic curve for NTC	17
Figure 3.2:	Magnetization characteristics for GOSS-AISI Grade M5	18
Figure 3.3:	Core loss curve for GOSS-AISI Grade M5	19
Figure 3.4:	Magnetization characteristics for NGOSS 35H300	19
Figure 3.5:	Core loss curve for NGOSS 35H300	20
Figure 3.6:	BH loops before and after core cut	21
Figure 3.7:	Composite core arrangement	23
Figure 3.8:	Real manufactured composite core	23
Figure 3.9:	Variation of inrush current with outer core airgap	26
Figure 3.10:	Flux density distribution between Cut/Uncut cores	27
Figure 3.11:	BH curve for AISI M0H - M103-27P	28
Figure 3.12:	Experimentally calculated µH characteristic curve	28
Figure 3.13:	Extract of calculated µH characteristic	29
Figure 3.14:	Calculated Bµ characteristic	30
Figure 3.15:	BH loops at different air-gaps	33
Figure 3.16:	BH loop at deep saturation	34
Figure 3.17:	Inrush current measured with high source impedance	36
Figure 3.18:	Inrush current measured with low source impedance	37
Figure 4.1:	Test setup for inrush current measurement	38
Figure 4.2:	Variation of inrush current with outer core airgap	40

Figure 4.3:	Inrush current wave form TI-173622	40
Figure 4.4:	Flux density distribution of Cut/Uncut cores	41
Figure 4.5:	Variation of inrush current with outer core airgap	42
Figure 4.6:	Inrush current wave form TI-173618C	42
Figure 4.7:	Flux density distribution of Cut/Uncut cores	43
Figure 4.8:	Variation of inrush current with outer core airgap	44
Figure 4.9:	Inrush current wave form TI-173618D	44
Figure 4.10:	Flux density distribution of Cut/Uncut cores	45
Figure 4.11:	Variation of inrush current with outer core airgap	46
Figure 4.12:	Inrush current wave form TI-173618E	46
Figure 4.13:	Flux density distribution of Cut/Uncut cores	47
Figure 4.14:	Inrush Current (x Iload) Vs Steel cross-sectional area ratio	49
Figure 5.1:	Optimum air-gap to the cut core cross sectional area	51
Figure 5.2:	Relative permeability Vs Cut-core cross-sectional area	53
Figure 5.3:	Inrush Current (x Iload) Vs Steel cross-sectional area ratio	54
Figure 5.4:	Flow chart of Design tool	56
Figure 5.5:	Design tool	57
Figure 6.1:	Inrush current of composite / conventional designs	61
Figure 6.2:	No-load current of composite / conventional designs	63
Figure 6.3:	Reactive power loss of composite / conventional designs	64
Figure 6.4:	Active power loss of composite / conventional designs	65
Figure 6.5:	Recycle core including joints in steel strips	66
Figure 6.6:	Conventional cut core	67
Figure 6.7:	Composite core	68
Figure 6.8:	Humming test set up	70

LIST OF TABLES

Table No.	Description	Page
Table 3.1:	Flux densities at normal/inrush condition	27
Table 3.2:	Experimental test data on AISI M0H - M103-27P	29
Table 4.1:	Design parameters for TI-173622	39
Table 4.2:	Design parameters for TI-173618C	41
Table 4.3:	Design parameters for TI-173618D	43
Table 4.4:	Design parameters for TI-173618E	45
Table 4.5:	Summary of inrush current measurements	48
Table 4.6:	Inrush current measurements for different area ratios	48
Table 4.7:	Inrush current measurements for all samples	49
Table 5.1:	Optimum air-gap to the cut core cross sectional area	51
Table 5.2:	Relative permeability to the core cross sectional area	52
Table 5.3:	Comparison between measured and calculated inrush current	
	values	58
Table 6.1:	Inrush current measurements of composite / conventional	
	designs	60
Table 6.2:	No-load current measurements of composite / conventional	
	designs	62
Table 6.3:	Reactive power loss measurements of composite/conventional	
	designs	63
Table 6.4:	Active power loss measurements of composite / conventional	
	Designs	65

LIST OF ABBREVIATIONS

Abbreviation	Description
AC	Alternative Current
AISI	American Iron and Steel Institute
DC	Direct Current
EMI	Electro Magnetic Interference
GOSS	Grain Oriented Silicon Steel
Н	Height
ID	Inner Diameter
IEC	International Electrotechnical Commission
MMF	Magneto Motive Force
MPL	Magnetic Path Length
NC	Nano Crystalline
NGOSS	Non Grain Oriented Silicon Steel
NTC	Negative Temperature Coefficient
OD	Outer Diameter
RMS	Root Mean Square

LIST OF APPENDICES

Appendix	Description	Page
Appendix A:	Design simulations with ToroidEZE programme for designs	
	with steel area ratio Uncut : Cut – 1.0 : 0.7	75
Appendix B:	Design simulations with ToroidEZE programme for designs	
	with different steel area ratios	83
Appendix C:	Test equipment details	91

INTRODUCTION

Inrush current (sometimes called input surge current) is defined as maximum peak current drawn by electrical equipment due to driving its core into deep saturation at the time of energization. Inrush current is an undesirable phenomenon to occur and the equipment manufacturers/designers have to take this in to consideration where it is applicable. Elimination of inrush current could be very costly and impossible but mitigation of inrush current is possible [1].

Generally for all cases inrush current does not last for a long time. For example it lasts only for few cycles for alternating current (AC), for transformers and motors. Magnitude of inrush current to its rated current could be several times, or even closer to 30 times in extreme cases, especially with toroidal transformers [2]. The magnitude of the inrush current is based on several parameters like; switching angle, source impedance, magnitude of input voltage, residual flux on the core, saturation inductance, etc. As a result, more often overcurrent protection reacts for these high currents and trips the device from the source resulting inability to energize the equipment. Also the inrush current will result in significant voltage drops, and thus affect the power quality, reliability and stability [2].

Inrush current most of the time is harmless to the device but unwanted tripping could cause undue problems to the electrical system. But in special cases, mostly with toroidal transformers which normally connected at high end applications, it needs to protect the expensive power electronic equipment from the high currents [2].

To understand this phenomenon in transformers and motors it requires sound knowledge of mathematics and magnetism. Inrush current occurrences on transformers are explained in chapter 2 to the extent of the topic being discussed. Typical inrush current transient waveform when a transformer is energized is illustrated in Figure 1.1, which is captured on a single phase 1000VA toroidal transformer.

Figure 1.1: Inrush current transient waveform

1.1 Toroidal Transformer Construction

Toroidal winding is considered to be challenging with respect to winding in laminated transformer, as it required rotating the coil during winding through the inner diameter of the core. Typical toroidal core does not hold any gaps in its magnetic path, which cause the toroidal transformer to be high performing with respect to the laminated transformers. The performance of an ideal transformer can be closely approximated with this most expensive toroidal construction [1].

In the process, first sufficient winding wire must be wound or loaded onto the winding shuttle (or magazine), and then unwound onto the toroidal transformer's core as per the required turns in the particular design. This is repeated as for the number of primary and secondary windings on the transformer. Also it is having the capability to wind several copper wires together to wind several windings at once, hence saving cost. For isolation transformer, insulation is required in between the

primary winding and the secondary winding. Generally the exposed enamel copper (or aluminium) wire is protected by outer wrapping insulation tape for safety purpose. Normally all the insulations are done based on the creep and clearance distance requirements coming under IEC 61558.

Toroidal transformer will not require a bobbin or tube like with the laminated construction, but the insulated core itself act as the bobbin, which is creating better coupling of flux in the core together with the windings.

Toroidal construction is less common and not popular in the industry due to its manufacturing complexity and high cost. However toroidal components can be seen in high end applications regardless of its high costs due to their high performance requirements.

Figure 1.2 shows a single-phase toroidal transformer which goes to a power supply unit for high-end audio amplifier.

Figure 1.2: Toroidal transformer

Most common transformer construction is laminated type transformers due to its simplicity in construction. A typical laminated type transformer is illustrated in Figure 1.3. When comes to low power transformers, most of the laminated type

transformers are made with EI shaped core laminations. These are stamped as English letters 'E' and 'I' and these E's and I's are then stacked to form the core. Then the copper/aluminium wire (or foil) winding is done on a bobbin, and the wound bobbin is then inserted into the stacked E and I core parts, and finally they are fixed tightly by suitable mechanism.

Figure 1.3: EI laminated transformer

1.2 Motivation to the Research

Toroidal transformer has its advantages over laminated transformers of high efficiency, low weight, low leakage and low Electro Magnetic Interference (EMI), low volume, etc. The core loss in a toroidal transformer is very low since its gapless round shape, and which supports and allows the magnetic flux to travel ideally in a less reluctance magnetic path with minimum stray field. As a result, when designing toroidal transformers, the designers can go for high design flux densities and utilise material effectively than in laminated type [1].

However due to its low reluctance to flux, toroidal transformer exhibits severe inrush currents than standard laminated type transformers. This is one major drawback in toroids and it becomes significant especially considering high power transformers. The situation gets worsen when higher quality grade steel is used, due to even low reluctance in the core to the flux.

High quality grain-oriented silicon steel (GOSS) has steep induction curve against excitation current and also they do have higher residual flux (remanence flux) which cause high inrush of the transformer. This occurrence is further described in chapter 2, also comparing different types of electrical steel grades (Grain-oriented and Non grain-oriented) usually used in toroidal transformer designing.

Presently there are many methods to limit inrush current on toroidal transformers, both using external equipment based and transformer-based solutions. But most of the existing transformer-based mitigation methods are weakening the performance indicators of the toroidal transformer design; even it is more reliable than the external equipment based inrush current mitigation methods [1].

Therefore still there is an industry requirement to search for a more developed and optimized inrush mitigation method to boost the market share on toroidal transformers.

1.3 Objective of the Research

The main objective of this study is to propose a reliable and economical transformerbased inrush current mitigation method for toroidal transformers. The conceptual proposal would be to use a composite core with an uncut inner-core and a gapped outer-core.

Using the proposed composite core method, it is envisaged to increase the performance of transformer by using low grade steel in the un-gapped core in place

of air-gapped high grade steel. With this method, it is expecting to save material costs and labour on the product and overall being competitive in the market.

The ultimate goal of the project is to promote toroidal transformers in the industry over other types of transformers (laminated), even in the high power levels.

Furthermore, limiting the use of high grade materials unworthily in magnetic components is also an objective of this study. General norm is high grade materials are extracted and manufactured with higher energy intense processes, and therefore an environment friendly and resource conservative benefits are secured out of this research. The possibility of using re-cycled steel for composite core method is also an advantage of this regards [1].

INRUSH CURRENT IN TOROIDAL TRANSFORMERS

As stated in the previous Chapter 1, inrush current is a critical problem for toroidal transformers compared to the laminated transformers, especially considering higher power levels. A brief introduction to toroidal transformer is done in previous Chapter 1 under section 1.2, and in this chapter the following main topics are discussed in order to have a better understanding on the inrush current scenario with toroidal transformers.

- 1) Theoretical background of inrush current
- 2) Toroidal core
- 3) Saturation inductance and inrush current

2.1 Theoretical Background of Inrush Current

This is a transient scenario, where high saturation of the transformer core originates high inrush current at the point of energization. There are several explanations on this scenario in several sources, but the below will illustrate the basics of the inrush current occurrence in a simpler way.

Basically the input voltage applied to the transformer will be the driving force to the inrush current and that will force the flux to build up double the steady state flux plus the remanence flux. Hence the transformer gets in to deep saturation and that result with creating a high energization current [3].

Inrush current occurrence of a transformer is a transient effect which could be explained with electromagnetism as described follows.

The inrush current phenomenon is governed by Faraday's law [3].

$$\mathbf{v}(\mathbf{t}) = \frac{d}{dt} \mathbf{\phi}'(\mathbf{t}) \tag{2.1}$$

Where v(t) is the instantaneous voltage applied and $\phi'(t)$ is the instantaneous flux linkage.

Then,
$$\phi'(t) = \int_0^t v(t) dt \qquad (2.2)$$

Neglecting the leakage flux component, the total instantaneous flux $\Phi(t)$ of the core with N number of turns of the winding can be written as,

$$\phi'(t) = N\phi(t) \tag{2.3}$$

Then with combining equations (2.2) and (2.3)

$$\phi(t) = \frac{1}{N} \int_0^t v(t) dt \qquad (2.4)$$

Consider the supply voltage for the transformer is sinusoidal with switching angle θ

 $v(t) = V_m \sin(\omega t + \theta)$

Then re-write equation (2.4) with sinusoidal supply voltage v(t)

$$\phi(t) = \frac{1}{N} \int_0^t V_m \sin(\omega t + \theta) dt \qquad (2.5)$$

$$\phi(t) = \frac{V_m}{N} \int_0^t \sin(\omega t + \theta) dt
$$\phi(t) = \frac{V_m}{N\omega} \cdot \left[-\cos(\omega t + \theta)\right]_0^t \phi(t) = \frac{V_m}{N\omega} \cdot \left[-\cos(\omega t + \theta) + \cos\theta\right] + \phi(0)$$$$

Considering the remanence flux at t=0 is $\phi(0) = \phi_r$ (Remanence flux) Then,

$$\phi(t) = \frac{V_m}{N\omega} \cdot \left[-\cos\left(\omega t + \theta\right) + \cos\theta\right] + \phi_r$$

The maximum flux ϕ_{max} is generated at zero crossing of the input voltage applied; means $\theta = 0$

$$\phi_{max} = \frac{V_m}{N\omega} \cdot [2] + \phi_r$$
$$\phi_{max} = \frac{2V_m}{N\omega} + \phi_r$$

$$\phi_{max} = 2\phi_m + \phi_r \tag{2.6}$$

So it is proven that, the inrush transient forces the flux to build up double the steady state flux plus the remanence flux. This scenario can be illustrated in graphical form as per the Figure 2.1 [3].

Figure 2.1: Graphical interpretation of Inrush current with remanence

2.2 Toroidal Core

Toroidal core is having donut shape with no air gaps in the magnetic path, against the laminated transformer cores. These cores are available in many material types; Silicon steel (SiFe), Nickel iron (NiFe), Perm-alloy, Nano-crystalline (NC) and others [1]. Silicon steel and nickel iron mainly available as tape wound cores or laminated pieces. In this research, only Silicon steel types are considered for toroidal transformer cores.

2.2.1 Silicon steel

Silicon steel is available as tape wound reels with different types/grades, thicknesses, widths and can be purchased based on the requirements of the relevant designs. Standard available steel widths are varying with the steps of 5mm, but still possible to purchase even other sizes in between, based on the demand. Figure 2.2 shows a silicon steel coil before the slitting process done, and in this form it is called as the 'Mother coil'. Mother steel coil is commonly available with 350mm width.

Figure 2.2: Silicon steel mother coils

2.2.2 Silicon steel on toroidal core

Generally the silicon steel contains high permeability (μ) providing low reluctance (R) for a given Magnetic Path Length (MPL). When a transformer core is magnetized to the flux density (B) and the permeability increases as per following basic equation.

$$B = \mu. \,\mathrm{H} \tag{2.7}$$

Where H – Magnetizing force

As per the B-H characteristics of typical silicon steel (refer Figure 2.3), it retains almost linear relationship between B and H up to certain flux density (where it holds maximum permeability) and then the steel starts approaching to the saturation region. Then, if the flux density further increased in the saturation region, the permeability decreases approaching to the value of free space or air. This region is called as deep saturation of the steel core. This is a common scenario for all the silicon steel types, apart from the difference of the flux densities where it start saturation.

Electrical steel comprises of various grades and have different classifications. One of the standard classifications is from its AISI grade. AISI stands for American Iron and Steel Institute [1].

There are mainly three types of silicon steel types discussed in this research; one is non-grain oriented steel type AISI CK37 (35H300) and other two are grain oriented steel types AISI M-5 and AISI M-0H. See Figure 2.3 to 2.5 for the steel characteristic curves taken from Kawasaki Steel data catalogue [4].

Mainly the grain oriented steel type AISI M-5 is used for conventional low inrush designs to retain better performance, even together with fully air-gapped core. The drawbacks of this method are discussed in the next chapter 3.

But in this research, the steel types AISI CK37 (35H300) and AISI M-0H M103-27P are mainly discussed in the composite core. Basically with the proposed composite core method, the steel AISI CK37 is used as the centre core to operate in the normal condition at its unsaturated region, while AISI M-0H is used to dominate in the inrush condition at its "Just unsaturated" condition.

2.3 Saturation Inductance and Inrush Current

In this research, it is proven that the most significant parameter affect to the inrush is saturation induction. In many literatures, they say the input winding resistance mainly affects the inrush current, but in practical scenario the designers do not have much allowance to change the winding resistances having a design is normally bound for particular temperature class.

Therefore in this research, the effects of saturation induction to the inrush current is mainly discussed and go through details on the inrush current variation by changing the air-gap in the outer core, hence changing the saturation induction.

RESEARCH DESIGN

In chapter 2, it was discussed about the inrush current phenomenon on toroidal transformers and about the factors that affect the magnitude of in rush transients; mainly the saturation inductance and electrical steel characteristics.

In this chapter following aspects are discussed descriptively.

- 1) Existing inrush current mitigation methods
- 2) Proposed composite core concept for inrush current mitigation
- 3) Importance of source impedance on inrush current
- 4) Scope of the research

3.1 Existing Inrush Current Mitigation Methods

Mainly there are two categories of inrush mitigation methods available for toroidal transformers; one is external equipment based inrush current mitigation and the other is transformer-based inrush current mitigation.

Out of these two categories, most of the high end applications prefer the transformerbased solutions for inrush current mitigation, due to their higher reliability [1]. Followings are some of the methods used by designers/manufacturers for mitigation of inrush currents in toroidal transformers.

3.1.1 NTC thermistor in primary winding

This method can be used with general purpose toroidal transformers, where the transformer is not designed intending to mitigate the inrush current. The main advantage of this method is, here the transformer can be designed in higher flux density utilizing the magnetization curve to its maximum possible point. Also the transformer efficiency, weight, dimensions could also be to its optimum and also that lead avoiding complex manufacturing processes, hence finally be economical.

The Negative Temperature Coefficient (NTC) thermistors are thermally sensitive semiconductor resistors which exhibit inverse characteristic between the resistance and the absolute temperature, as shown in Figure 3.1. In typical operation of the NTC thermistor, this is connected in series with the transformer input winding and initially holding high resistance at lower ambient temperature. But after the transformer is powered up, the resistance of the NTC thermistor can be brought down either by a change in the ambient temperature or by self-heating resulting from current flowing through the device [1].

Figure 3.1: Typical characteristic curve for NTC

Referring the Figure 3.1, the x-axis is representing the multiplying factor M, which should multiply with specified nominal resistance of the NTC at I_{max} , to get the resistance value at each I_{op} / I_{max} .

 I_{max} - The maximum steady state RMS AC or DC

I_{op} - The actual operating current.

The main drawbacks of this method are the addition of primary resistance to normal operation of the transformer and the heat dissipation and ultimately leading to low efficiency of the total equipment. And the next drawback is, it will not do the intended function in successive power interruptions, because due to the thermal inertia the thermistor may hold high temperature - low resistance stage in the next power up. The other drawback is the reliability. Transformer itself is highly reliable but adding the NTC thermistor in series with the supply makes the combination unreliable.

3.1.2 Use of NGOSS

The typical B-H curve for silicon steel presents steep magnetization characteristic after they exceed the maximum unsaturated flux density. This characteristic is far great especially with GOSS types, while it is not that much critical for NGOSS types.

Generally toroidal transformers are wound using high grade GOSS for its common intended performances, but the said steep magnetization curves of GOSS and high design flux density makes easy to saturate the core. See Figure 3.2 and Figure 3.3 for magnetization characteristics with corresponding loss curves for GOSS (AISI M-5) [4].

Figure 3.2: Magnetization characteristics for GOSS-AISI Grade M5

Figure 3.3: Core loss curve for GOSS-AISI Grade M5

As a result, designers are using NGOSS for low inrush designs due to lower steep characteristics in magnetization [1]. NGOSS transformers have to be designed in low flux density and then its narrow magnetization characteristics can be used to keep it unsaturated, compared to the GOSS types. Following Figures 3.4 to 3.5 illustrates magnetization characteristics with corresponding loss curves for NGOSS (35H300) [4], for easy understanding of above mentioned point.

Figure 3.4: Magnetization characteristics for NGOSS 35H300

Figure 3.5: Core loss curve for NGOSS 35H300

Selection of NGOSS does reduce the inrush current to some extent, but when the application is critical on inrush current, the designers also tend to use above NGOSS without annealing process [1]. Annealing is a special heat treatment process done to regain the magnetic properties back to steel core, after it has been lost in the core manufacturing process (due to stresses exerted on the steel strips).

The main drawback of this method is the less efficiency of the transformer due to high core losses (see Figure 3.5) and high excitation current. These designs are obviously bulky and weight is more than the standard GOSS designs.

However reliability point of view this method is better than the method described in previous section 3.1.1.

3.1.3 Cut core toroidal transformers

Introducing a cut (or a small air-gap) to the magnetic path of the toroidal core will change magnetization characteristics of the steel; basically this will increase the unsaturation characteristic even at the high flux densities. Based on the BH characteristics, it will reduce the slop of the curve (or reduce permeability) and bring the knee point to the right side of magnetization curve, while increasing the magnetizing force.

Also the other main purpose is reducing the remanence flux (ϕ_r). As per the equation 2.6 derived for inrush current (also Figure 2.1), the remanence flux (or remanence flux density, B_r) plays an important role in the inrush current. The Figures 3.6 illustrates how the remanence flux density get reduced (by ΔB) together with an air gap in the toroidal core [5].

Figure 3.6: BH loops before and after core cut

There are several advantages and disadvantages of this method.

First discussing on the advantages; this method does not change the core losses (negligible increment) with respect to the uncut core. Note in Figure 3.6, the areas within the BH loops for with and without air-gap are almost same.

Also this inrush mitigation method is more reliable than the external NTC thermistor option described in previous section 3.1.1.

Regarding the disadvantage; the gapped cores need more Magneto Motive Force (MMF) to magnetise the core than the normal toroidal core, hence it draws higher current in the off-load condition. Due to that reason, the gapped core transformer consumes lot more reactive power loss. Therefore this cannot be designed at its optimum flux density and hence should be designed approximately 30% lower value. Also core vibration due to loose lamination and noise issues could be an issue in the end application [1].

Based on the discussed inrush current mitigation methods, the gapped core option is mostly used in applications due to its reliability and other advantages. But still it is necessary to overcome its disadvantages, and hence the Composite core method introduced.
3.2 Proposed Composite Core Concept for Inrush Current Mitigation

As per the concept of the composite core there are two cores positioned concentrically; one is uncut core in the centre and the other is a cut-core around the centre core. The basic arrangement is shown in the Figure 3.7 and Figure 3.8 [5].

Figure 3.7: Composite core arrangement

Figure 3.8: Real manufactured composite core

In this core arrangement, the centre core is made with lower grade steel type (Steel AISI CK37 - 35H300, which will be used in this research) and the outer core is made with higher graded steel (AISI M0H - M103-27P, which will be used in this research).

According to the basics of magnetism, the majority of flux will concentrate on the lowest magnetic path length (means close to the inner core), and then the flux gets propagate over the whole cross sectional area of the core when the core energization gets higher. Similarly, the centre core will dominate in the normal operation of the transformer, and the outer core will dominate in the inrush current transient.

There are three main design factors considered in the designing process.

- 1) Design flux density
- 2) Airgap size in cut core
- 3) Uncut core Cut core cross-sectional area ratio

3.2.1 Design flux density

In this research, the design flux density is kept fixed to the inner uncut core to 1.30T, and accordingly the number of turns for the primary winding is calculated (Refer Appendix-A, for ToroidEZE simulations for designs). Then the outer cut core is separately calculated based on the target inrush current requirement. Basically in normal operation, the inner core will be operated slightly below 1.30T flux density, while the outer cut core also will energize around 0.2-0.3T.

This scenario will extensively discuss in section 3.2.2 and 3.2.3.

3.2.2 Airgap size in cut core

Air gap is the main design parameter in designing process with composite core. First, the equation 3.1 is showing the general relationship between the maximum inrush current and the impedance of the product [6] [7].

$$I_{max} = \frac{V_m}{\sqrt{(\omega L_s)^2 + R^2}} \cdot (1 + \cos\theta + \frac{B_s - B_r}{B_n})$$
(3.1)

- I_{max} Maximum inrush current (peak current)
- V_m Maximum input voltage (peak voltage)
- R Winding resistance
- L_s Saturation inductance
- θ Switching angle
- B_r Residual flux density
- B_s Saturation flux density
- B_n Nominal design flux density

According to the equation 3.1, it is obvious that increasing the Saturation inductance (L_s) and Winding resistance (R) will be the main option to minimize the inrush current. When comes to winding resistance, in practical situation the designer does not have much allowance to changed resistance having the product itself should complied with certain thermal class. Hence changing the winding resistance is not an option to control the inrush current. Therefore, increasing the Saturation inductance will be the only option in this regards.

It is obvious, reducing the airgap will increase the inductance value, but too much lowering the gap will lead saturating the outer core. Note, the outer core dominates in the inrush scenario, so it needs to maintain the outer core unsaturated in the inrush current transient. Therefore it needs to find the **Optimum gap** is such, which holds the maximum L_s , while keeping the outer core unsaturated.

The following test has been done to the 1000VA transformer, where the inrush current is measured with different air gaps in outer core. See Figure 3.9.

Figure 3.9: Variation of inrush current with outer core airgap

According to the Figure 3.9, it shows higher inrush currents in the lower gaps due to saturating the outer cut core. As the air gap increases along the x-axis, the inrush current reduces due to moving the cut-core in to unsaturated region. But too much increase of the air-gap will again increase the inrush current due to drop of Saturation inductance (L_s). Means there is a particular air gap which should be maintained to minimize the inrush current, called "Optimum air gap".

It was experimentally found, that the Optimum airgap changes with the size of the cut-core cross sectional area. The distribution of Optimum airgap with respect to cross sectional area will be discussed in the chapter 4.

3.2.2.1 Flux distribution in the composite core

The next important step is analysing the flux distribution within the composite core (between cut core and uncut core), when the composite core is magnetized from the lower voltage to the deep saturation stage. As discussed early of this section, the inner uncut core dominates in the normal operation, while outer cut core share lesser flux. But outer cut core also holds considerable flux density (similar to the uncut core) when the composite core subjected in to deep saturation. Refer Figure 3.10.

Figure 3.10: Flux density distribution between Cut/Uncut cores

The flux densities of the cut core and uncut core at normal operation and at deep saturation stage (at inrush transient, energized 2.65 times to normal operation – Refer Section 3.2.2.3 / equation 3.6) are tabulated as per Table 3.1. The flux density variation of the corresponding conventional core also graphed to compare how the composite core maintain lower flux density at inrush transient to keep the combined core well unsaturated comparatively.

	Flux Density (T)			
	At normal operation	At inrush transient		
Uncut core	1.205	2.114		
Cut core	0.304	2.215		

 Table 3.1: Flux densities at normal/inrush condition

Finding the flux density of the cut core at inrush transient is the most important outcome of the above exercise. The reason behind is, the flux density of the cut core is needed to find the Relative permeability (μ_r) of the cut core at inrush, and which becomes the most dominant parameter for calculating Saturation inductance (L_s). After all, Ls be the most significant parameter in calculating the inrush current.

In order to extract μ_r via the flux density, the steel supplier's BH characteristics of the outer core (AISI M0H - M103-27P) should be used. But, having this scenario interested on μ_r at deep saturation level (at flux density 2.215T), the values for μ_r will be very low and practically difficult to read the exact values from Figure 3.11[4].

Figure 3.11: BH curve for AISI M0H - M103-27P

To overcome this issue, the research will continue with experimentally calculated μ H characteristic curve, Figure 3.12. One advantage of this method is, the experimentally calculated μ H characteristic will reflect the real annealing condition of the manufacturing facility and hence the accuracy becomes higher.

Figure 3.12: Experimentally calculated µH characteristic curve

Then it is possible to extract the deep saturation section of curve (Figure 3.12) to derive Figure 3.13. Together with the experimental results in Table 3.2, it can derive the B μ characteristic curve Figure 3.14, which finally helps to calculate the exact values of μ_r for closely varying flux densities. Note, the value of L_s is solely depending on the value of μ_r ; hence the accuracy is much important.

Figure 3.13: Extract of calculated µH characteristic

Flux Density (T)	Magnetizing Force (A/m)	Relative Permeability
1.99	2555	619.1
2.00	3027	525.9
2.02	3441	467.1
2.04	4229	383.8
2.05	4618	353.4
2.07	5676	290.6
2.09	6736	247.1
2.10	7652	218.4
2.11	8258	203.7
2.13	8906	189.9
2.15	10347	165.0
2.17	11731	147.0
2.19	13200	131.7
2.21	15200	115.4
2.22	17000	104.0
2.24	19350	92.1
2.27	22600	79.8
2.28	25000	72.6
2.31	29400	62.4

Table 3.2: Experimental test data on AISI MOH - M103-27P

Together with Table 3.2 and Figure 3.14, it is possible to find μ_r at flux density 2.215T as 109.5.

Figure 3.14: Calculated Bµ characteristic

3.2.2.2 Calculation of saturation inductance Ls

According to the concept, as the composite core subjected to deep saturating condition, the outer cut core will retain in the "Just unsaturated" stage, while the centre uncut core will be saturated.

Hence the inductance of the **inner uncut core** can be considered as the inductance of saturated core (air choke).

$$L_{uncut} = \frac{4\pi \times 10^{-7} . N^2 . A. \mu_r}{\text{MPL}_{uncut}}$$
(3.2)

 $L_{uncut} \quad \ \ - \ Uncut \ core \ saturated \ Inductance$

- A Cross sectional area of core
- μ_r Relative Permeability
- MPL Magnetic path length

OD/ID - Outer/Inner diameter of core

N - Number of turns

Where MPL is calculated by,

$$MPL = \frac{\pi x (OD - ID)}{\ln(\frac{OD}{ID})}$$

Considering the 1000VA transformer;

Uncut core dimension (OD x ID x H)	: 133 x 90 x 90 mm
Cut core dimension (OD x ID x H)	: 165 x 135 x 90 mm
Number of turns	: 430 turns

The parameters for the centre "uncut core";

Saturated (uncut) core area $= 1935 \text{ mm}^2$ Relative permeability= 1 (Air)MPL= 345.902 mm

Substituting the uncut core data into equation 3.2

$$L_{uncut} = 1.299 \, mH$$

Then the inductance of the **outer cut core** can be calculated from the equation 3.3

$$L_{cut} = \frac{4\pi \times 10^{-7} N^2 A. \,\mu_r}{MPL + \mu l_g}$$
(3.3)

 L_{cut} - Uncut core un-saturated Inductance l_g - Air gap

The parameters for the centre "Cut core";

Un-saturated (cut) core area	$= 1350 \text{ mm}^2$
Relative permeability	= 109.5 (μ_r at 2.215T)
MPL	= 469.664 mm
Air gap	= 0.075 mm

Substituting the cut core data into equation 3.3

$$L_{cut} = 0.0718 H$$

Then the total Saturation inductance L_s is;

$$L_S = L_{uncut} + L_{cut}$$
$$L_S = 0.0732 H$$

It shows that the inductance of the uncut saturated core (L_{uncut}) is negligible on the resultant inductance L_s , and hence on the inrush current.

3.2.2.3 Calculation of inrush current

Recall the equation 3.1

$$I_{max} = \frac{V_m}{\sqrt{(\omega L_s)^2 + R^2}} \cdot \left(1 + \cos\theta + \frac{B_s - B_r}{B_n}\right)$$
(3.1)

Having this research is concentrate only on the Maximum inrush current, which occurs at the zero crossing. Then apply $\theta = 0$

$$I_{max} = \frac{V_m}{\sqrt{(\omega L_s)^2 + R^2}} \cdot \left(1 + 1 + \frac{B_s - B_r}{B_n}\right)$$
$$I_{max} = \frac{V_m}{\sqrt{(\omega L_s)^2 + R^2}} \cdot \left(2 + \frac{B_s - B_r}{B_n}\right)$$

Also applying $V_m = \sqrt{2} V_{rms}$

$$I_{max} = \frac{\sqrt{2}V_{rms}}{\sqrt{(\omega L_s)^2 + R^2}} \cdot \left(2 + \frac{B_s - B_r}{B_n}\right)$$
(3.4)

As per the experimental data, the value of $\frac{B_s - B_r}{B_n}$ stays almost constant, irrespective to the air gap size. This is proven as following.

Consider the BH loops of two composite core transformers of 1000VA, which are identical except having different air-gaps 0.05mm and 0.80mm in the outer cut-core.

Figure 3.15: BH loops at different air-gaps

According to Figure 3.15, the change of the remanence flux is almost negligible even for high variation of air gap size. Hence the ratio between the saturated flux density (B_s) and remanence flux density (B_r) is considered fixed as following, in this research.

Means,
$$B_r = 0.75 B_s$$

Therefore we can calculate,

$$B_s - B_r = 0.25 B_s$$
 (3.5)

Then the composite core of 1000VA (with optimum air-gap) is subjected to deep saturation level and studied its BH loop characteristics. Refer Figure 3.16.

Figure 3.16: BH loop at deep saturation

Accordingly it is observed the design starts saturation when the nominal voltage gets nearly 2.65 times, means closer to 610V (230V nominal).

Therefore we can derive, $B_s: B_n = 2.65: 1$ (3.6)

From equations (3.5) and (3.6), it is possible to derive,

$$\frac{B_s - B_r}{B_n} \approx 0.65 \tag{3.7}$$

Then substituting the equation 3.7, into equation 3.4.

$$I_{max} = \frac{\sqrt{2}V_{rms}}{\sqrt{(\omega L_s)^2 + R^2}} . (2 + 0.65)$$

$$I_{max} = \frac{3.75 \, V_{rms}}{\sqrt{(\omega L_s)^2 + R^2}} \tag{3.8}$$

Accordingly it is possible to calculate the I_{max} , together with the calculated saturation inductance L_s and calculated winding resistance (R = 0.745 Ω)

$$I_{max} = 38.86 \text{ A}$$

But the measured inrush current under the laboratory facility is 36.3A.

There are several factors effecting to this slight deviation between the calculated and measured inrush current values. Some of them are; the level of calibration of the test equipment, estimated assumptions made to simplify the calculation, source impedance to the transformer, etc.

The source impedance to the transformer makes a great effect to the above deviation, over the other factors. The significance of the source impedance will be described in section 3.3

3.2.3 Uncut – Cut core cross-sectional area ratio

It is obvious (and experimentally proven) that increasing the outer cut-core cross sectional area reduces the inrush current. But the drawback of increasing the outer cut-core (which made with M0H - M103-27P) is the cost and the size of the finished product. So the designer shall calculate and decide the steel area ratio required for the target inrush current.

This aspect will be deeply discussed in the chapter 4 and chapter 5, and accordingly this research will be limit for the cross sectional area ratio range 1:0.60 to 1:0.80 (Uncut : Cut).

3.3 Importance of Source Impedance on Inrush Current

In a typical installation, the cable sizes are selected mainly based on the nominal current ratings of the equipment installed, but definitely not considering the transient peak currents (inrush current), having considered those short time transients are not making any harm to the system. Hence in an installation, it is a typical fact that these transient high currents do make significant voltage drops.

Due to the above point, it is evident that the inrush current definitely will not reach to the calculated inrush current in most of practical cases.

Following Figure 3.17 and Figure 3.18 are showing the inrush current measured for the same transformer with two sources; first is having higher source impedance and the second is having negligible source impedance respectively.

Figure 3.17: Inrush current measured with high source impedance

In the Figure 3.17, it shows that the input sinusoidal waveform gets slightly deformed at the zero crossing (where the inrush current generated) and that cause the measured maximum inrush current value near 98.8A (peak).

But in the Figure 3.18, it shows almost no deformation in the input sinusoidal waveform at the zero crossing, and that causes the measured maximum inrush current value near 115.0A (peak).

Therefore, with the purpose of avoiding/neglecting the effect of source impedance, the research is carried out all the important experiments on inrush current measurements with the source having negligible impedance.

Figure 3.18: Inrush current measured with low source impedance

3.4 Scope of the Research

Together with the discussions on the section 3.2, this research will be confined into the following scope.

- Design flux density fixed to 1.30T for the inner core and experiments conducted only for 230V mains input
- Considered only the steel types CK37 35H300 and M0H M103-27P for uncut core and cut core respectively
- 3) Considered transformer power range 1kVA to 5kVA
- Considered core cross sectional area ratio range 1:0.60 to 1:0.80 (Uncut: Cut), which covering inrush current range 2 to 8 times of load current.

EXPERIMENTAL DATA COLLECTION

In chapter 3, the proposed composite core method had been discussed together with 1000VA transformer. This chapter discusses on further details of experimental data collected for composite core designs, covering the transformer power range 1kVA to 5kVA.

Here the following designs are mainly discussed. Note, all the below designs comes with constant core cross sectional area ratio (Cut core: Uncut core = 0.7 : 1.0) and with constant design flux density 1.30T for the inner core.

- 1) TI-173622 (1000VA)
- 2) TI-173618C (2000VA)
- 3) TI-173618D (3000VA)
- 4) TI-173618E (4500VA)

4.1 Inrush Current Measurement on Samples

The transformers TI-173622, TI-173618C, TI-173618D and TI-173618E were tested applying alternating rated voltage 230V/50Hz (Sinusoidal) across the primary winding. Then the inrush current transient waveforms are taken to an Oscilloscope (Tektronix DPO3000) connected via a current probe (Tektronix A621) to the circuit. Test set up for this arrangement is shown in Figure 4.1 [1].

Figure 4.1: Test setup for inrush current measurement

In this experiment, the inrush current data collected with two methods. First method is repeating the test several times (minimum 60 times per design), creating the possibility to switch the input wave form at zero crossing, and hence creating the maximum inrush current. The second method is switching the input via zero-point detecting circuit (made with SIEMENS 3RF2050-1AA02), which does monitor and detect the zero crossing of the input wave form and ensure to switch ON the transformer at that point.

Both the options provided almost same maximum inrush current value, for each scenario to be discussed in section 4.2.

4.2 Finding the Optimum Air Gap for Outer Core

In this case, each design was tested for inrush current, varying the air-gap size of the outer core, while keeping the other design parameters fixed. Following sections show the maximum inrush current waves and the inrush current varying curves for each air-gap sizes.

1) TI-173622 (1000VA)

The design parameters of TI-173622 are as per Table 4.1. Note, the core dimensions typically denoted as "OD x ID x H". Refer Annex A for more design details.

Cut core Uncut core Primary Primary Cut core area Uncut core area MPL cut MPL uncut Product dimensions dimensions Resistance A _{cut} / A _{uncut} A _{uncut} (mm²) Turns A_{cut} (mm²) (mm) (mm) (ohm) (mm) (mm) TI-173622 165x135x90 133x90x90 430 0.745 1350 1935 0.698 469.66 345.90

Table 4.1: Design parameters for TI-173622

The design TI-173622 is then tested for the maximum inrush current value at 230V/50Hz, for each air gap in the outer core, as per the Figure 4.2.

Accordingly the "Optimum air gap" is selected as 0.075mm, where the minimum inrush current observed.

Figure 4.2: Variation of inrush current with outer core airgap

The measured inrush current at Optimum air gap is $36.3A_{pk-pk}$. Refer Figure 4.3 for the maximum inrush current wave captured through the oscilloscope.

Figure 4.3: Inrush current wave form TI-173622

The no load current of this design is measured as 65.7mA and the active and reactive core losses are 8.71 watt and 12.15 var, respectively.

And according to the flux density distribution analysis on the composite core (between the cut core and uncut core) in deep saturation, it is observed that the cut core operates at 2.215T at inrush transient (at 610V). Refer Figure 4.4

Figure 4.4: Flux density distribution of Cut/Uncut cores

2) TI-173618C (2000VA)

The design parameters of TI-173618C are as per Table 4.2. Note, the core dimensions typically denoted as "OD x ID x H". Refer Annex A for more design details.

 Table 4.2: Design parameters for TI-173618C

Product	Cut core dimensions (mm)	Uncut core dimensions (mm)	Primary Turns	Primary Resistance (ohm)	Cut core area A _{cut} (mm ²)	Uncut core area A _{uncut} (mm ²)	A _{cut} / A _{uncut}	MPL _{cut} (mm)	MPL _{uncut} (mm)
TI-173618C	247x184x60	180x90x60	311	0.74	1890	2700	0.700	672.16	407.91

The design TI-173618C is then tested for the maximum inrush current value at 230V/50Hz, for each air gap in the outer core as per the Figure 4.5.

Accordingly the "Optimum air gap" is selected as 0.30mm, where the minimum inrush current observed.

Figure 4.5: Variation of inrush current with outer core airgap

The measured inrush current at Optimum air gap is 51.8A_{pk-pk}. Refer Figure 4.6 for the maximum inrush current wave captured through the oscilloscope.

Figure 4.6: Inrush current wave form TI-173618C

The no load current of this design is measured as 86.7mA and the active and reactive core losses are 11.12 watt and 15.67 var, respectively.

And according to the flux density distribution analysis on the composite core (between the cut core and uncut core) in deep saturation, it is observed that the cut core is operates at 2.148T at inrush transient (at 610V). Refer Figure 4.7.

Figure 4.7: Flux density distribution of Cut/Uncut cores

3) TI-173618D (3000VA)

The design parameters of TI-173618D are as per Table 4.3. Note, the core dimensions typically denoted as "OD x ID x H". Refer Annex A for more design details.

 Table 4.3: Design parameters for TI-173618D

Product	Cut core dimensions (mm)	Uncut core dimensions (mm)	Primary Turns	Primary Resistance (ohm)	Cut core area A _{cut} (mm ²)	Uncut core area A _{uncut} (mm ²)	A _{cut} / A _{uncut}	MPL _{cut} (mm)	MPL _{uncut} (mm)
TI-173618D	247x184x80	180x90x80	231	0.72	2520	3600	0.700	672.16	407.91

The design TI-173618D is then tested for the maximum inrush current value at 230V/50Hz, for each air gap in the outer core as per the Figure 4.8.

Accordingly, the "Optimum air gap" is selected as 0.60mm, where the minimum inrush current observed.

Figure 4.8: Variation of inrush current with outer core airgap

The measured inrush current at Optimum air gap is $58.9A_{pk-pk}$. Refer Figure 4.9 for the maximum inrush current wave captured through the oscilloscope.

Figure 4.9: Inrush current wave form TI-173618D

The no load current of this design is measured as 122mA and the active and reactive core losses are 15.5 watt and 23.39 var, respectively.

And according to the flux density distribution analysis on the composite core (between the cut core and uncut core) in deep saturation, it is observed that the cut core is operates at 2.103T at inrush transient (at 610V). Refer Figure 4.10.

Figure 4.10: Flux density distribution of Cut/Uncut cores

4) TI-173618E (4500VA)

The design parameters of TI-173618E are as per Table 4.4. Note, the core dimensions typically denoted as "OD x ID x H". Refer Annex A for more design details.

Table 4.4: Design parameters for TI-173618E

	Product	Cut core dimensions (mm)	Uncut core dimensions (mm)	Primary Turns	Primary Resistance (ohm)	Cut core area A _{cut} (mm ²)	Uncut core area A _{uncut} (mm ²)	A _{cut} / A _{uncut}	MPL _{cut} (mm)	MPL _{uncut} (mm)
Т	I-173618E	247x184x100	180x90x100	186	0.715	3150	4500	0.700	672.16	407.91

The design TI-173618E is then tested for the maximum inrush current value at 230V/50Hz, for each air gap in the outer core as per the Figure 4.11.

Accordingly, the "Optimum air gap" is selected as 0.70mm, where the minimum inrush current observed.

Figure 4.11: Variation of inrush current with outer core airgap

The measured inrush current at Optimum air gap is $59.5A_{pk-pk}$. Refer Figure 4.12 for the maximum inrush current wave captured through the oscilloscope.

Figure 4.12: Inrush current wave form TI-173618E

The no load current of this design is measured as 228mA and the active and reactive core losses are 25.1 watt and 46.08 var, respectively.

And according to the flux density distribution analysis on the composite core (between the cut core and uncut core) in deep saturation, it is observed that the cut core is operates at 2.071T at inrush transient (at 610V). Refer Figure 4.13.

Figure 4.13: Flux density distribution of Cut/Uncut cores

4.3 Summary of Inrush Current Measurements

Following Table 4.5 comes with the summary of test data, together with the Relative permeability calculated based on the experimentally derived relationship of Figure 3.14 in chapter 3.

These data will be using in chapter 5 to develop some useful characteristics, in order to build up relationships to calculate inrush current.

Product Number	Inrush current (A pk-pk)	Air gap (mm)	Flux Density (B) (cut core at inrush)	Relative permeability
TI-173622 (1000VA)	36.3	0.075	2.215	109.5
TI-173618C (2000VA)	51.8	0.30	2.148	160.0
TI-173618D (3000VA)	58.9	0.60	2.103	220.0
TI-173618E (4500VA)	59.5	0.70	2.071	291.0

 Table 4.5: Summary of inrush current measurements

4.4 Inrush Current Measurements for Different Area Ratios

In this section, the two designs TI-173622 (1000VA) and TI-173618D (3000VA) are tested for different core cross sectional area ratios (Cut core: Uncut core) while keeping all the other parameters constant. Refer Annex B for design details. The tests are done under the same procedure discussed in the previous sections and the Table 4.6 is showing the test result summary.

	Inrush Current (A _{pk-pk})				
Steel area ratio	TI-173618D (3000VA)	TI-173622 (1000VA)			
0.60	120.3	72.7			
0.65	78.5	47.3			
0.70	58.9	36.3			
0.75	47.2	28.2			
0.80	38.3	24.2			

Table 4.6: Inrush current measurements for different area ratios

Together with the experimental data in Table 4.6, it was found that the variation of the inrush currents with respect to the area ratio is following the same characteristic curve. In order to illustrate that, the inrush current is graphed as the multiple of load

current with respect to the area ratio. Refer Figure 4.14. The relationship at Figure 4.14 will be used to calculate inrush current for different area ratios in the next chapters.

Figure 4.14: Inrush Current (x Iload) Vs Steel cross-sectional area ratio

Following Table 4.7 shows test results on furthermore designs (having different core cross sectional area ratios) tested in the same way, covering the power range 1kVA to 5kVA.

Article Number	Measure inrush current (A _{pk-pk})
TI-173622 (1000VA)	36.3
TI-173628 (1000VA)	58.3
TI-173630 (1000VA)	21.8
TI-173618C (2000VA)	51.8
TI-173618M (2500VA)	93.4
TI-173618D (3000VA)	58.9
TI-173618N (3500VA)	30.7
TI-173618E (4500VA)	59.5

Table 4.7: Inrush current measurements for all samples

ANALYSIS OF DATA

In this chapter, it is mainly focused to build up a methodology to calculate inrush current towards developing a design tool. As discussed in chapter 3, basically the equation 5.1 can be used for inrush calculation. But together with the experimental data collected in chapter 4, there are certain characteristics can be built and embedded in to the calculation towards handling the design parameters.

$$I_{max} = \frac{3.75 \, V_{rms}}{\sqrt{(\omega L_s)^2 + R^2}} \tag{5.1}$$

In this chapter the following aspects will be discussed together with the data obtained in chapter 4 and the inrush current calculation method discussed in the chapter 3.

- 1) Selection of optimum air-gap
- 2) Calculation of relative permeability
- 3) Calculation of inrush current for different core cross-sectional area ratios
- 4) Development of design tool for composite core
- 5) Comparison between measured and calculated inrush current values

5.1 Selection of Optimum Air-Gap

The optimum air-gap of the outer core is found to be related together with the size of the core, or explicitly the cross sectional area of the cut-core. Therefore based on the experimental data discussed in chapter 4, it is possible to derive a direct relationship between the optimum air-gap and the cut-core cross sectional area.

Refer Table 5.1 for the summary of experimental test results extracted from chapter 4 and consequent graph in Figure 5.1.

Duoduot	Cut core area	Optimum air-gap		
Product	(mm ²)	(mm)		
TI-173622 (1000VA)	1350	0.075		
TI-173618C (2000VA)	1890	0.30		
TI-173618D (3000VA)	2520	0.60		
TI-173618E (4500VA)	3150	0.70		

Table 5.1: Optimum air-gap to the cut core cross sectional area

Figure 5.1: Optimum air-gap to the cut core cross sectional area

The respective equation for Figure 5.1 comes as the following equation 5.2

$$Y = -1.2808 \times 10^{-7} X^2 + 0.000924 X - 0.93474$$
(5.2)
$$R^2 = 0.9939$$

Accordingly the designers are recommended to stick into the given curve in Figure 5.1 (in contrast the polynomial equation 5.2) for selecting the air-gap.

TI-173618E (4500VA)

5.2 Calculation of Relative Permeability

As per the proposing design guideline, the designer is expected to follow the air-gap selection with respect to the cut core area as discussed in section 5.1. And also having this research is restricted to a fixed flux density 1.30T (see section 3.2.1) for the inner core, it is possible to make a direct relationship between the cut core cross sectional area and the saturation flux density (and hence the relative permeability) of the outer core. See Table 5.2 arranged based on the experimental data discussed in chapter 4.

Cut-core area Air gap Flux density (B) Relative Product (mm^2) (mm) of cut core permeability TI-173622 (1000VA) 1350 0.075 2.21 109.5 TI-173618C (2000VA) 1890 160.0 0.30 2.15 TI-173618D (3000VA) 2520 0.60 2.10 220.0

Table 5.2: Relative permeability to the core cross sectional area

Based on the data in Table 5.2, it is possible to derive a characteristic curve for Relative permeability with respect to Cut-core cross sectional area as per Figure 5.2.

0.70

2.07

291.0

The respective equation for Figure 5.2 comes as the following equation 5.3

3150

$$Y = 0.1004X - 28.437 \quad (5.3)$$
$$R^2 = 0.9979$$

This characteristics equation 5.3 shall be used in permeability calculation purpose in design tool development, towards inrush calculation.

Figure 5.2: Relative permeability Vs Cut-core cross-sectional area

Note, the characteristic in Figure 5.2 is strictly valid only for the core cross sectional area ratio 1:0.7 (CK: MOH), and note the four designs discussed here are with the same area ratio, as discussed under chapter 4. This restriction is because, as the area ratio changes, the parameters of Optimum air-gap, Saturation flux density (hence Relative permeability) get changed for particular cross sectional area ratio, means different core cross sectional area ratios result with different characteristics.

5.3 Calculation of Inrush Current for Different Core Cross-Sectional Area Ratios

Even the characteristic in Figure 5.2 valid only for finite core cross sectional area ratio 1:0.7 (CK: MOH), it is not admissible fixing the design guideline only for finite core cross sectional area ratio. To meet the flexibility to design in different core cross sectional area ratios, the characteristics in the Figure 5.3 will be used.

Each curve is generated with the transformers having same parameters in all aspects, except changing the core cross sectional area ratio. Note, this characteristic is generated based on the two designs TI-173622 (1000VA) and TI-173618D (3000VA).

Figure 5.3: Inrush Current (x Iload) Vs Steel cross-sectional area ratio

Accordingly, once the inrush current is calculated based on core cross sectional area ratio 1:0.7 (CK: MOH), the following polynomial equation 5.4 can be used in calculating inrush currents for different core area ratios.

$$Y = -690X^3 + 1582.4X^2 - 1218.9X + 318.11 \quad (5.4)$$
$$R^2 = 0.9985$$

The research covers the steel ratio range 1:0.60 to 1:0.80 and that will cover the inrush current range approximately 2 to 8 times of load current. This range cover the most of application requirements comes under toroidal transformers.

Having the characteristics curve for Relative permeability and Cut-core cross sectional area (Figure 5.2) is already complied with core cross sectional area ratio 1:0.7 (CK: MOH), the equation 5.4 shall be corrected for X = 0.7 before integrating with equation 5.1, as following.

Consider,

$$Y = -690X^3 + 1582.4X^2 - 1218.9X + 318.11$$

Calculate $Y_{0.7}$ at X = 0.7

$$Y_{0.7} = -690 \times (0.7)^3 + 1582.4 \times (0.7)^2 - 1218.9 \times (0.7) + 318.11$$
$$Y_{0.7} = 3.586$$

Then the Ratio factor (say K_{ratio}) will be derived as following,

$$\mathbf{K}_{\text{ratio}} = \mathbf{Y} / \mathbf{Y}_{0.7}$$

$$K_{ratio} = -192.415X^3 + 441.27X^2 - 339.905X + 88.709$$
 (5.5)

Accordingly the factor K_{ratio} can be integrated with the equation 5.1 as following.

$$I_{max} = \frac{3.75 \, V_{rms}}{\sqrt{(\omega L_s)^2 + R^2}} \times K_{ratio} \qquad (5.6)$$

where X = core cross sectional area ratio

So the equation 5.6 can be used as the general equation for inrush current calculations for different area ratios.

5.4 Development of Design Tool for Composite Core

This section will discuss on development of a design tool for composite core, integrating the equations and characteristics derived in the previous sections.

As discussed in the chapter 3 (section 3.2.1), all the designs considered in this research are done for constant flux density 1.30T considering the centre uncut core. Hence in this design tool the designer will only need to input the core dimensions of the inner core and the outer core (and the input winding resistance), then the design tool itself will calculate the number of turns of the input winding and the other parameters, and finally calculate the inrush current value. The Figure 5.4 shows the simplified flow chart for the calculation tool.

Then the flow chart can be presented as a design tool, which can be programmed with different software programming languages. The following Figure 5.5 is showing the program which is done on the Flow chart, with Microsoft Excel.

	Low inr	Low inrush toroidal transformer design tool with Composite cores			
Inner CK37 Core Details Outer diameter (OD _{CK}) Inner diameter (ID _{CK}) Height Mean length Core area Turns (considering 1.3T flux densi Outer MOH Core Details	133 mm 90 mm 90 mm 345.90 mm 1935.0 mm ² ty for inner core, at 23 430	10V input)			
Outer diameter (OD_{MOH}) Inner diameter Height Mean length Core area Core gap Relative permeability of MOH Mean length	167 137 90 475.97 mm 1350.0 mm ² 0.1 mm 107.6 476.1151	Winding Resistance L _{ck} (Saturated) L _{MOH} L _{Total}	0.745 ohm 1.302 mH 0.070 H 0.071 H		
Core Area Ratio (0.6 - 0.8)	0.6977	Inrush Current	38.86 A _{pk-pk}		

Figure 5.5: Design tool

As shown in the Figure 5.5, the designer will only have to input only the dimensions of the cores and the resistance of the input winding, and the design tool will calculate the maximum inrush current accordingly.

5.5 Comparison between Measured and Calculated Inrush Current Values

In this section, it shows the performance of the developed tool comparing together with the measured inrush current values. The Table 5.3 has shown the summary of measured inrush current values and the calculated inrush current values based on the characteristic relationships developed in the previous sections.

Article Number	Measure inrush current (A pk-pk)	Calculated inrush current (A pk-pk)	Deviation %
TI-173622 (1000VA)	36.3	38.86	6.6
TI-173628 (1000VA)	58.3	61.40	5.0
TI-173630 (1000VA)	21.8	22.10	1.4
TI-173618C (2000VA)	51.8	54.22	4.5
TI-173618M (2500VA)	93.4	96.10	2.8
TI-173618D (3000VA)	58.9	60.74	3.0
TI-173618N (3500VA)	30.7	31.80	3.5
TI-173618E (4500VA)	59.5	60.84	2.2

 Table 5.3: Comparison between measured and calculated inrush current values

In Table 5.3, the deviation in the last column is calculated together with the following equation 5.7.

$$Deviation (\%) = \frac{I_{calculated} - I_{measured}}{I_{measured}} \times 100 \quad (5.7)$$

I _{calculated}	- Calculated inrush current
Imeasured	- Measured inrush current

Accordingly it is observed that there is only a small deviation between the calculated and measured inrush current values. Means it is evident that the characteristic equations built up for inrush calculation is with high accuracy towards calculating inrush current.

Also it is noted that the deviations are always positive, means the calculated inrush current values are always higher, than the measured inrush current values.

One of the main reasons for that will be the source impedance (section 3.3), which will never be zero in real applications. Note, the above measured values are taken from a source with very low impedance, hence the deviations are minimal.
Therefore considering calculated values as the maximum inrush current is obviously safe, considering all the applications.

Meantime the inrush current values in Table 5.3 evident that the composite core method does have a good control over the inrush current value, rather than the conventional transformer based inrush current mitigation methods. Hence it can be concluded that, together with the composite core method, it is possible to calculate the inrush current values within 10%, including the manufacturing tolerances.

The manufacturing controls will further discussed in chapter 6, under the manufacturing aspects of the composite core.

RESULTS DISCUSSION AND MOTIVATION

In this chapter, mainly discusses on the results obtained for the composite core designs in chapters 4 and chapter 5; comparing with the corresponding same cost conventional low inrush transformer designs (total cut-core designs). In addition to electrical parameters, transformer manufacturing aspects also briefly discussed. Followings are the main topics to be discussed;

- 1) Comparison of electrical parameters
- 2) Use of recycled steel cores
- 3) Comparison of manufacturing aspects
- 4) Comparison of mechanical parameters

6.1 Comparison of Electrical Parameters

Mainly there are four electrical parameters to be discussed under this section. They are Inrush current values, No load current values, Reactive core loss value and Active core loss value.

6.1.1 Comparison of inrush current values

Here the inrush current values obtained from the composite core designs will be compared with the corresponding conventional low inrush designs. The following Table 6.1 shows the measured data on the both options, covering the power range approximately 1kVA to 5kVA.

Power (VA)	Inrush Current - Composite core (A _{pk-pk})	Inrush Current – Conventional (A _{pk-pk})	Reduction %
1000	36.3	52	30.19
2000	51.8	95	45.47
3000	58.9	125	52.88
4500	59.5	155	61.61

Table 6.1: Inrush curre	ent measurements of composit	e / conventional designs
		e, com, entronter designs

Here the Reduction (%) is calculated by equation 6.1,

$$Reduction (\%) = \frac{I_{\text{conventional}} - I_{\text{composite}}}{I_{\text{conventional}}} \times 100 \quad (6.1)$$

I conventional	- Inrush current from conventional method
I composite	- Inrush current from composite core method

Also these findings can be graphed as per the Figure 6.1.

Figure 6.1: Inrush current of composite / conventional designs

The Figure 6.1 illustrates that the inrush current values of conventional method increases as the power level increases, but the composite core method do have much control over inrush currents, especially in higher power levels. So basically it can conclude that the composite core method do reduce the inrush current by around 40-60%, compared to conventional method, within the power range 1kVA to 5kVA.

Also if the same inrush current level considered, the composite core method will reduce the transformer cost by 5% for 1000VA power level with respect to the corresponding conventional core transformer, and this saving will further increase even up to 10% considering 5000VA.

6.1.2 Comparison of no-load current values

Here the no-load current values obtained from the composite core designs will be compared with the corresponding conventional low inrush designs. The following Table 6.2 shows the measured data on the both options, covering the approximately power range approximately 1kVA to 5kVA.

 Table 6.2: No-load current measurements of composite / conventional designs

Power (VA)	No-load Current - Composite core (mA)	No-load Current – Conventional (mA)	Reduction %
1000	65.7	208	68.41
2000	86.7	240	63.85
3000	122.0	287	57.49
4500	228.1	410	44.39

Here the Reduction (%) is calculated by equation 6.2,

$$Reduction (\%) = \frac{I_{\text{conventional}} - I_{\text{composite}}}{I_{\text{conventional}}} \times 100 \quad (6.2)$$

I conventional	- No-load current from conventional method
I composite	- No-load current from composite core method

Also these findings can be graphed as per the Figure 6.2

As the Figure 6.2 illustrates, the no-load current values in conventional method is much higher, but with the composite core method it can be reduce by more than 50%. The basic reason for higher currents in the conventional method is, it cut the total core resulting higher magnetic force requirement in normal operation, while in composite core method the centre uncut core keeps the required magnetic force lower.

Figure 6.2: No-load current of composite / conventional designs

6.1.3 Comparison of reactive power loss

Here the reactive power loss values obtained from the composite core designs will be compared with the corresponding conventional low inrush designs. The following Table 6.3 shows the measured data on the both options, covering the power range approximately 1kVA to 5kVA.

Power (VA)	Reactive power loss - Composite core (Var)	Reactive power loss – Conventional (Var)	Reduction %
1000	12.15	47.6	74.45
2000	15.67	53.4	70.63
3000	23.39	65.5	64.27
4500	46.08	93.5	50.70

 Table 6.3: Reactive power loss measurements of composite/conventional designs

Here the Reduction (%) is calculated by equation 6.3,

$$Reduction (\%) = \frac{var_{\text{conventional}} - var_{\text{composite}}}{var_{\text{conventional}}} \times 100 \quad (6.3)$$

var _{conventional} - Reactive power loss convention	nal method
--	------------

var _{composite} - Reactive power loss composite core method

Also these findings can be graphed as per the Figure 6.3.

Figure 6.3: Reactive power loss of composite / conventional designs

As discussed in section 6.1.2, the transformers with conventional method shows significantly higher no load current, and consequently that shows a higher reactive power loss. Typically it maintains over 50% reduction of reactive power loss in composite core method within power range 1kVA-5kVA.

6.1.4 Comparison of active power loss

Here the active power loss values obtained from the composite core designs will be compared with the corresponding conventional low inrush designs. The following Table 6.4 shows the measured data on the both options, covering the power range approximately 1kVA to 5kVA.

Power (VA)	Active power loss - Composite core (watt)	Active power loss – Conventional (watt)	Increment %
1000	8.71	5.2	40.30
2000	11.12	6.1	45.14
3000	15.5	8.2	47.10
4500	25.1	12.5	50.00

Table 6.4: Active power loss measurements of composite / conventional designs

Here the Loss increment (%) is calculated by equation 6.4,

Increment (%) =
$$\frac{watt_{composite} - watt_{conventional}}{watt_{composite}} \times 100$$
 (6.4)

watt _{conventional} - Active power loss conventional methodwatt _{composite} - Active power loss composite core method

Also these findings can be graphed as per the Figure 6.4.

Figure 6.4: Active power loss of composite / conventional designs

As Figure 6.4 illustrates, the composite core method is having significantly higher active power loss in normal operation compared to the conventional method. The reason for this is, the composite core uses low graded steel in place of high graded steel for cost saving purpose. But still note, considering the transformer power range 1kVA to 5kVA, this active power loss increment will drop the transformer efficiency only by 0.25% to 0.35% considering the off-load condition.

6.2 Use of Recycled Steel Cores

The disadvantage of active power loss increment (discussed in section 6.1.4) can be overcome by use of low cost "Recycled steel cores" for inner core. Recycle cores are typically made with small strips of used high grade steel types (and varnished), instead of virgin steel. Due to this reason, the cost of recycle cores are very low, even closer to the cost of low grade NGOSS cores made with virgin steel. But still recycle cores are holding very low core losses, as they are made with high grade steel.

The specialty of the recycle cores are, they cannot be cut to separate due to its piecelike structure (see Figure 6.5), because that will lead to loose the strips and then gets mechanically unstable. Hence it is difficult to use these recycle cores with conventional low inrush designs due to manufacturability issues.

Figure 6.5: Recycle core including joints in steel strips

The advantage of the composite core method is, it does not need to cut the centre core, and hence the recycle cores can be used in the place of centre uncut core without any manufacturing issue, while reducing the active core loss.

6.3 Comparison of Manufacturing Aspects

This section describes the pros and cons between the core manufacturing of composite core and conventional cut core.

6.3.1 Manufacturing of conventional cut core

Typically the conventional cores are totally made with high grade steel (GOSS-AISI Grade M5) in order to keep the core losses lower as possible, due to these cores are incorporated with a full cut radially. See Figure 6.6.

Figure 6.6: Conventional cut core

To keep the core loss lower, these cores require special attention in the cutting process, to have a smooth finish on the cutting surfaces. In critical applications, it might require additional polishing process on the surfaces to get them smoother. Also

note, having this method required to cut the total core, it needs to varnish the total core as well. Due to the criticalness of the cutting process, this process consumes more labour time and also will result considerable material wastage, hence finally affect to the product cost.

After it is cut, the core fixing also need to be processed with much attention as it needs to ensure the cutting surfaces are ideally aligned and fixed minimizing the core losses in normal process. Then the core needs to be reinforced together with the steel bands, glue etc. to make it rigid during manufacturing process and also most importantly in continuous operation. Note, this core operates at flux density around 1.10 - 1.20T in normal operation, hence the level of reinforcement affect to the transformer performance (vibration issues).

6.3.2 Manufacturing of composite core

The composite core is comprised with two cores, one is uncut core in the centre made with a low grade steel type (NGOSS- AISI Grade 35H300) and other is cut core made with higher grade steel type (GOSS- AISI Grade MOH). See Figure 6.7.

Figure 6.7: Composite core

The advantage of the composite core is, it does not need to cut the total core, and hence it does not need to varnish the total core either. Most importantly the outer cut core does not need to have extreme smooth cutting surfaces, because in case of composite core scenario it needs to maintain a certain gap in the outer core. Therefore in this case, it consumes much lower labour time and minimizes material wastage.

But maintaining the air gap is critical in composite core scenario, where it may use specially made spacers or commonly available Intek sticky tapes (Class H graded) with thickness steps 0.05mm.

One more advantage of the composite core method is, the outer core does not need much of reinforcement together with the steel bands similarly in conventional cut core, because the outer core is already supported by the inner uncut core for reinforcement, in both manufacturing process and normal operation. Means this construction is more mechanically stable over the total cut core method.

Hence it is possible to avoid steel bands under this construction in most of the applications (but need to use glue) and reduce cost. Note, the outer cut core operated at flux density around 0.2-0.3T in normal operation, and hence the said bonding level will not affect to the performance at transformer normal operation.

6.4 Comparison of Mechanical Parameters

In order to measure the mechanical stability of composite core, the only factory available methodology is Humming test. Here same sized two transformers made with the two methods (conventional and composite cores) are tested for humming at their normal operation.

Note, it is difficult to measure the absolute humming level under the factory condition, but only possible to "compare" the sound levels under the same ambient noise condition.

Here the sound level measuring equipment Extech SL130G is used for measuring humming level, together with the wooden box with sound sealing material in the inner surfaces to install the transformer specimen. See Figure 6.8 for humming test set up.

Figure 6.8: Humming test set up

Here the first step is calculating the ambient noise level and it was measured as approximately 30dB.

Then consequently the noise levels of the conventional core transformer & composite core transformer (which are made for same power level) are measured under the same mains input within limited time duration to keep the harmonics level of the mains as same as possible.

The noise levels measured are 32.9dB and 33.1dB for the conventional core transformer & composite core transformer respectively. So it is evident that the core bonding mechanism suggested in section 6.2.2 is sufficient for the composite core.

Apart from the humming comparisons, one of the drawbacks in the composite core method is, it occupies slightly larger space (about 8% increment in diameter compared to respective conventional design) in the lower power ranges (1kVA to 2kVA). But this disadvantage get mitigated moving towards higher power ranges (4kVA to 5kVA), comparing together with the respective conventional transformer.

In contrast this increment of volume results in increment of the weight of the final product, compared to the conventional transformer.

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Conclusion

In this research study, it emphasized that the transformer based inrush mitigation methods are more reliable over the external equipment based (i.e. connecting NTC thermistor, start-up resistive load) inrush mitigation methods. Further, this research established the use of composite cores as the best option over the existing transformer based solutions to mitigate inrush current and several other drawbacks of the conventional solutions.

The proposed method has the advantages of higher performance; lower inrush current, lower no-load current, low reactive core loss, mechanically stable reinforced structure, easier manufacturing and hence reduced material wastage. So the proposed method saves costs and also the resources. The composite core is highly reliable on inrush mitigation for the 1kVA to 5kVA range of test transformers, the reduction in inrush current was 40-60%, reduction in no load current was over 50%, and reduction in reactive core loss was over 50% compared to the corresponding conventional transformers.

The main disadvantage of composite core was the increment of the active core loss, but which can be mitigated by using recycle cores. So this opportunity of using recycled steel core also an added advantage on saving the resource on the planet.

The composite transformer is slightly larger and heavier, but still that will not cause much of a problem as the increase is small, about 8%. This too would diminish when the transformer capacity goes up.

7.2 Suggestions for Future Research

Followings are the future research suggestions, on the composite core method discussed.

- This research is confined to particular steel types, steel area ratio range and transformer power range. So the same calculation methodology can be used to expand the ranges of above parameters while introducing new steel types.
- 2) This research has done experiments only for 230V main input. But it will be useful building the same concept for the other common input voltages of other countries / applications (110V, 120V, 200V, 400V etc.), expanding the design calculation.
- Also there will be more easier and economical manufacturing methods on composite cores; like introducing welding on cut core for bonding purpose together with the centre uncut core, for more stable construction instead gluing etc.

Also it will be worth experimenting for other constructional methods, which could be economical and might be high performing.

REFERENCE LIST

- [1] H.K. Ekanayake, "Methodology to limit inrush current of toroidal transformers", Charted Engineering IESL Sri Lanka, 2012
- [2] Rasim Dogan, Saeed Jazebi, "Investigation of Transformer-Based Solutions for the Reduction of Inrush and Phase-Hop Currents", IEEE Transactions on Power Electronics, Vol. 31, Iss 5, pp 3506 – 3516, July 2015
- [3] Francisco de L, Brian G, "Transformer Based Solutions to Power Quality Problems", Plitron Manufacturing Inc. Canada, 2001
- [4] KAWASAKI STEEL CORPORATION, "PLASMA CORE RGHPJ RGH AND RG CORE", Grain-Oriented Magnetic Steel Strip, Japan: 1991.
- [5] Colonel MW, T. Mclyman, "Transformer and inductor design handbook", Third Edition, Kg Magnetics, Inc. California, USA, 2004, pp. 96-100
- [6] Saeed Jazebi, Nicholas Wu, "Enhanced analytical method for the calculation of the maximum inrush current of single phase power transformer", IEEE Transactions on Power Delivery, Vol. 30, Iss 6, pp 2590 2599, June 2015
- [7] Yunfei Wang, Sami G., "Analytical formula to estimate the maximum inrush current", IEEE Translations on Power Delivery, Vol. 23, No 2, pp 1266 1268, April 2008

APPENDICES

Appendix A – Design simulations with ToroidEZE programme for designs with steel area ratio Uncut : Cut - 1.0 : 0.7

TI-173622 (1000VA) – Uncut centre core

TOROIDAL TRANSFORMER DESIGN SUMMARY.							
Design No : TI-173622 (1000VA) - Uncut core Customer : Customer P/N :					Prim Desi Nora	nted : 2017-10-31 igner : Sameera atel SL	
Notes:							
Design File : 173 	622- un-cut	core.tf:	ĸ				
Core : 133 x 90 x Fe Weight : 5.1 kg Induction : 1.311 Frequency : 50 Hz Excitation: 110.9 x Core/Coil : 0.9:1	90 mm CK-37 T mA kg		Iron Loss Coil Weight Load Loss Sec Loss Pri Loss Window Fill	: 9.2 W : 5.66 kg : 34.69 W : 18.45 W : 16.24 W : 83.6 %	Finished Dim's Tot. Weight Tot. Power Temp. Rise Optimized Wire Fill	: 153 x 57 x 116 mm : 10.827 kg : 999 VA : 42/50 deg.C : 1:0.36 Wdg+ : 38.3 %	
Windings.	Primary	Sec 1					
Rated Volts rms.	230v	222v					
Rated Amps rms.	4.54A	4.5A					
Duty Cycle %.	-	100%					
VA rms.	-	999					
Conductor.	Cu	Cu					
Turns.	430ts	430ts					
Wire Gauge.	1.900mm	1.900mm					
Filars.	-	-					
	-	-					
Ohms @ 20°C.	0.641	0.74					
Copper grams.	2629	3035					
Full-Lond Wolts	_	222 9**					
No-Load Volts	_	230v					
Regulation %.	1.5%	3.1%					
	_	-					
Watts Loss Hot.	16.24	18.45					
	-	-					
Insulation Tape.	-	-					
Width. mm.	-	13					
Thickness. mm.	-	0.05					
Layers.	-	3					
Concening Mone	-	-					
screening Tape. Width mm	-	-					
Thickness mm	-	-					
Lavers.	-	_					
	_	_					
A/mm^2.	1.6	1.59					
Copper Fill %.	19.16%	19.16%					
ToroidEZE-AL v.2.6	.1					Page 1 of 1.	

TI-173622 (1000VA) - Composite core

TOROIDAL TRANSFORMER DESIGN SUMMARY.									
Design No : TI-173622 (1000VA) - Composite core Printed : 2017-10-31 Customer : Designer : Sameera Customer P/N : Noratel SL									
Notes:	Notes:								
Design File : 173	622.tfx								
Fe Weight : 10.17)	90 mm 27-Mu ka	п	Coil Weight	: 2.13 W : 6.27 kg	Tot. Weigh	$1 \text{m} \cdot \text{s} : 162 \text{ x} 57 \text{ x} 114 \text{ mm}$			
Induction + 0 751 5	r.		Lond Long	. 27 05 W	Tot Down				
Engineering : 50 Hz	1		Load Loss	: 37.23 W	Tot. Power	: : : : : : : : : : : : : : : : : : :			
Frequency : 50 Hz			Sec Loss	: 19.64 W	Temp. RIS	: 34/41 deg.C			
Excitation: 13.7 m/	A.		Pri Loss	: 17.61 W	Uptimized	: 1:U.65 Wdg+			
Core/Coll : 1.6:1)	kg		Window Fill	: 83.6 %	Wire Fill	: 38.3 %			
Windings.	Primary	Sec 1							
Dated Volts rms	0 230 v	0 22217							
Rated Amos rms	4 51 2	4 52							
Duty Cycle &	4.51A	1008							
Duch clote #:	_	1008							
VA rms.	_	999							
Conductor.	Cu	Cu							
Turns	430±s	430±s							
Wire Gauge.	1.900mm	1.900mm							
Filars.	-	-							
riturs.	-	-							
Ohms @ 20°C.	0.72	0.808							
Copper grams.	2954	3315							
	-	-							
Full-Load Volts.	-	222.3v							
No-Load Volts.	-	230v							
Regulation %.	1.6%	3.3%							
	-	-							
Watts Loss Hot.	17.61	19.64							
T	-	-							
Midth mm	-	- 12							
wiath, mm.	-	13							
Thickness. mm.	-	0.05							
Layers.	-	3							
	-	-							
Screening Tape.	-	-							
wigth. mm.	-	-							
Thickness. mm.	-	-							
Layers.	-	-							
3 (200 4 2	-	1 50							
A/mm~2. Common Fill °	10 169	10.109							
copper riii %.	19.10%	19.108							
ToroidEZE-AL v.2.6	. 1					Page 1 of 1.			
						1000 1 01 1.			

TI-173618C (2000VA) - Uncut centre core

		Т	OROIDAL TRAN	SFORMER DESIGN	SUMMARY.	
Design No : TI- Customer : Customer P/N :	173618C (20	000VA) - 1	Uncut core		e E N	Printed : 2017-10-31 Wesigner : Sameera Woratel SL
Notes:						
Design File : 173	618C- un-cu	it core.t	fx			
Core : 180 x 90 x Fe Weight : 8.61 k	60 mm CK-37 g	,	Iron Loss Coil Weight	: 15.21 W : 4.43 kg	Finished Dir Tot. Weight	m's : 195 x 61 x 81 mm : 13.11 kg
Induction : 1.299	T		Load Loss	: 101.4 W	Tot. Power	: 2000 VA
Frequency : 50 Hz			Sec Loss	: 35.01 W	Temp. Rise	: 97/116 deg.C
Excitation: 178.1 :	mA		Pri Loss	: 66.41 W	Optimized	: 1:0.78 Wdg+
Core/Coil : 1.9:1	kg		Window Fill	: 75.2 %	Wire Fill	: 33.1 %
Windings.	Primary	Sec 1				
Bated Volts rms	2307	2227				
Rated Amps rms	9.25	9 013				
Duty Cycle %.	- J.ZA	100%				
2401 01010 0.	_	-				
VA rms.	-	2000				
Conductor.	Cu	Cu				
Turns.	311ts	314ts				
Wire Gauge.	1.180mm	1.700mm	L			
Filars.	(x2)	(x2)				
	-	-				
Ohms @ 20°C.	0.537	0.295				
Copper grams.	1315	3113				
	-	-				
Full-Load Volts.	-	222v				
No-Load Volts.	-	232.2v				
Regulation %.	3%	4.4%				
	-	-				
Watts Loss Hot.	66.41	35.01				
Turulation Mono	-	-				
Width mm	_	12				
Width, hun.	_	0.05				
Lavers	_	3				
Dayers.		-				
Screening Tape	_	_				
Width. mm.	_	_				
Thickness. mm	_	_				
Layers.	_	-				
	_	-				
A/mm^2.	4.21	1.98				
Copper Fill %.	10.69%	22.41%				
ToroidEZE-AL v.2.6	.1					Page 1 of 1.

TI-173618C (2000VA) - Composite core

TOROIDAL TRANSFORMER DESIGN SUMMARY. Design No : TI-173618C (2000VA) - Composite core Printed : 2017-10-31 Customer Designer : Sameera Customer P/N : Noratel SL Notes: Design File : ED-173618C total core.tfx Iron Loss : 3.87 W Coil Weight : 5.66 kg Load Loss : 127.2 W Sec Loss : 42.67 W Fri Loss : 84.57 W Core : 247 x 90 x 60 mm 27-M0H Finished Dim's : 259 x 61 x 80 mm Fe Weight : 18.75 kg Tot. Weight : 24.524 kg : 2000 VA : 84/100 deg.C Induction : 0.745 T Tot. Power Frequency : 50 Hz Temp. Rise : 1:1.32 Fe+ : 33.1 % Excitation: 25 mA Optimized Core/Coil : 3.3:1 kg Window Fill : 75.2 % Wire Fill Windings. Primary Sec 1 0 0 Rated Volts rms. 230v 222v Rated Amps rms. 9.27A 9.01A --Duty Cycle %. 100% -2000 VA rms. Conductor. Cu Cu 311ts 314ts Turns. Wire Gauge. 1.180mm 1.700mm Filars. (x2) (x2) Ohms @ 20°C. 0.701 0.374 Copper grams. 1716 3941 _ 219.4v Full-Load Volts. No-Load Volts. 232.2v -Regulation %. 3.7% 5.5% Watts Loss Hot. 84.57 42.67 ---Insulation Tape. Width. mm. -13 Thickness. mm. -0.05 -Lavers. 3 _ -Screening Tape. --Width. mm. ---Thickness. mm. ---Layers. _ A/mm^2. 4.24 1.98 Copper Fill %. 10.69% 22.41% ToroidEZE-AL v.2.6.1 Page 1 of 1.

TI-173618D (3000VA) – Uncut centre core

		Т	OROIDAL TRANSFORMER DESIGN	SUMMARY.	
Design No : TI- Customer : Customer P/N :	173618D (30	000VA) - 1	Uncut core	Pri Des Nor	nted : 2017-10-31 igner : Sameera atel SL
Notes:					
Design File : 173	618D- un-cu	it core.t	fx		
Core : 180 x 90 x Fe Weight : 11.48 Induction : 1.311 Frequency : 50 Hz Excitation: 250.3 Core/Coil : 1.7:1	80 mm CK-37 kg T mA kg	,	Iron Loss : 20.75 W Coil Weight : 6.57 kg Load Loss : 201.6 W Sec Loss : 36.33 W Pri Loss : 165.2 W Window Fill : 86.1 %	Finished Dim's Tot. Weight Tot. Power Temp. Rise Optimized Wire Fill	: 197 x 56 x 105 mm : 18.139 kg : 2999 VA : 140/168 deg.C : 1:0.7 Wdg+ : 41.5 %
Windings.	Primary	Sec 1			
Rated Volts rms. Rated Amps rms.	230v 14.01A	222v 13.51A			
Duty Cycle %.	-	100%			
VA rms. Conductor.	- Cu	2999 Cu			
Turns.	231ts	231ts			
Wire Gauge. Filars.	1.600mm	2.000mm (x3)			
Ohms @ 20°C.	0.513	0.121			
Copper grams.	1060	5511			
Full-Load Volts.	-	216.7v			
No-Load Volts.	-	230v			
Regulation %.	4.8% -	5.8% _			
Watts Loss Hot.	165.2	36.33			
Insulation Tape.	-	-			
Width. mm.	-	13			
Thickness. mm.	-	0.05			
Layers.	-	3			
Screening Tape.	-	-			
Width. mm.	-	-			
Thickness. mm.	-	-			
Layers.	-	-			
A/mm^2.	6.97	1.43			
Copper Fill %.	7.3%	34.22%			
ToroidEZE-AL v.2.6	.1				Page 1 of 1.

TI-173618D (3000VA) - Composite core

		3	OROIDAL TRANSFORMER DESIGN	SUMMARY.
Design No : TI-: Customer : Customer P/N :	173618D (30	000VA) -	Composite core	Printed : 2017-10-31 Designer : Sameera Noratel SL
Notes:				
Design File : ED-:	173618D — t	total cor	e.tfx	
Core : 247 x 90 x 80 mm 27-M0H Fe Weight : 25.01 kg Induction : 0.752 T Frequency : 50 Hz Excitation: 33.8 mA Core/Coil : 3.1:1 kg		Iron Loss : 5.25 W Coil Weight : 8.07 kg Load Loss : 245.5 W Sec Loss : 42.6 W Pri Loss : 202.9 W Window Fill : 86.1 %	Finished Dim's : 261 x 56 x 103 mm Tot. Weight : 33.219 kg Tot. Power : 2999 VA Temp. Rise : 124/149 deg.C Optimized : 1:1.24 Fe+ Wire Fill : 41.5 %	
Windings.	Primary	Sec 1		
Rated Volts rms.	230v	222v		
Rated Amps rms.	14.13A	13.51A		
Duty Cycle %.	-	100%		
	-	-		
VA rms.	-	2999		
Conductor.	Cu	Cu		
Turns.	231ts	231ts		
Wire Gauge.	1.600mm	2.000mm	L	
Filars.	-	(x3)		
	-	-		
Ohms @ 20°C.	0.645	0.148		
a	-	-		
Copper grams.	1334	6/38		
Full-Load Volte	_	213 977		
No-Load Volts	_	230v		
Regulation %	5.9%	7%		
Regulation 0.	-	-		
Watts Loss Hot.	202.9	42.6		
	-	-		
Insulation Tape.	-	-		
Width. mm.	-	13		
Thickness. mm.	-	0.05		
Layers.	-	3		
	-	-		
Screening Tape.	-	-		
Width. mm.	-	-		
Thickness. mm.	-	-		
Layers.	-	-		
	-	-		
A/mm^2.	7.03	1.43		
Copper Fill %.	7.3%	34.22%		
ToroidEZE-DI. V 2 6	. 1			Page 1 of 1
101010000 AD V.2.0	• -			raye i or i.

TI-173618E (4500VA) – Uncut centre core

		Т	OROIDAL TRANSE	ORMER DESIGN	SUMMARY.	
Design No : TI- Customer : Customer P/N :	173618E (45	500VA) - 1	Uncut core			Printed : 2017-10-31 Designer : Sameera Noratel SL
Notes:						
Design File : 173	618E- un-cu	it core.t:	fx			
Core : 180 x 90 x 100 mm CK-37 Fe Weight : 14.36 kg Induction : 1.303 T Frequency : 50 Hz Excitation: 302.1 mA Core/Coil : 1.8:1 kg		Iron Loss : 25.54 W Coil Weight : 7.88 kg Load Loss : 509.3 W Sec Loss : 74.02 W Pri Loss : 435.3 W Window Fill : 87.6 %		Finished D Tot. Weigh Tot. Power Temp. Rise Optimized Wire Fill	im's : 198 x 55 x 126 mm t : 22.338 kg : 4500 VA : 163/185 deg.C : 1:0.73 Wdg+ : 42.8 %	
Windings.	Primary	Sec 1				
Rated Volts rms.	230v	222v				
Rated Amps rms.	21.89A	20.27A				
Duty Cycle %.	-	100%				
	-	-				
VA rms.	-	4500				
Conductor.	Cu	Cu				
Turns.	186ts	183ts				
Wire Gauge.	1.700mm	2.000mm				
Filars.	-	(x4)				
	-	-				
Ohms @ 20°C.	0.422	0.084				
Copper grams.	1112	6767				
Full-Load Volts.	_	204.7v				
No-Load Volts.	-	226.3v				
Regulation %.	8.2%	9.5%				
-	-	-				
Watts Loss Hot.	435.3	74.02				
Insulation Tape.	-	-				
Width. mm.	-	13				
Thickness. mm.	-	0.05				
Layers.	-	3				
	-	-				
Screening Tape.	-	-				
Width. mm.	-	-				
Thickness. mm.	-	-				
Layers.	-	-				
2 /	-	-				
A/mm^2.	9.64	1.61				
copper Fill %.	0.64≷	30.15%				
ToroidEZE-AL v.2.6	.1					Page 1 of 1.

TI-173618E (4500VA) - Composite core

Design No : 71-173618E (4500%) - Composite core Printed : 2017-10-31 Customer F/N Designer : Sameera Noratel SL Noratel SL Metes: Special///- cut core Design File : ED-173618E - total core.tfx Finished Dim's : 261 x 55 x 124 mm Totuetomer F/N Coll Weight : 9.39 kg Tot. Weight : 261 x 55 x 124 mm Totuetomer F/N Coll Weight : 9.39 kg Tot. Weight : 317/185 deg.C Tot. Weight : 31.26 kg Coll Weight : 9.39 kg Tot. Weight : 137/185 deg.C Receiver(Coll : 3.3:1 kg Window Fill : 97.6 % Wire Fill : 42.8 % Windings. Primary Sec 1 0 0 Rated Volts rms. 22.02 X 20.27X 22x Rated Volts rms. 22.00 22 22x Rated Wolts rms. 22.02 X 20.37X Duty Cycle % - 100% Vy rms. - - Turnas - - Sec Loss 131.2 - Natts Loss Not. 521.6 80.46 - Onms @ 20^*C. 0.77.6 0.099 Copper grams. 1360 802.9 <			Т	OROIDAL TRANSFORMER DESIGN	SUMMARY.	
Notes: Opecial/!!- cut core Design File : ED-173618E - total core.tfx Core : 247 x 90 x 100 mm 27-NOH Iron Loss : 6.48 W Finished Dim's : 261 x 55 x 124 mm Prewight : 31.26 kg Coil Weight : 9.39 kg Tot. Neight : 40.8 kg Prewight : 31.26 kg Coil Weight : 9.39 kg Tot. Neight : 40.8 kg Prewight : 31.26 kg Coil Weight : 9.39 kg Tot. Power : 4500 VA Core/coil : 3.31 kg Window Fill : 87.6 % Tot. Power : 4500 VA Katci Atom ms. 22.22 kg 20.27A Optimized : 11.33 Fe+ Window Fill : 87.6 % Wire Fill : 42.8 % Mindow Fill : 87.6 % Wire Scape. 1 0 0 Rated App ms. 22.22 kg 20.27A Duty Cycle % - Uty Cycle % - 100% - VA ms. - 4500 - Conductor. Cu Cu - Va ms. - - - Pilars. - 0.05 - Copper grams. 1360 8029 - Full-Load Volts. <	Design No : TI- Customer : Customer P/N :	173618E (45	500VA) - (Composite core	Printed : 2017-10-31 Designer : Sameera Noratel SL	
Special/!!- out core Design File : ED-173613E - total core.tfx Core : 247 x 90 x 100 mm 27-MON Iron Loss : 6.48 W Few Msight : 31.26 kg Tot. Loss : 6.61 W Frequency : 50 Hz Sec Loss : 605.1 W Frequency : 50 Hz Sec Loss : 521.6 W Excitation: 41.8 mA Fri Lose : 521.6 W Ocre/Coll : 3.31 kg Window Fill : 97.6 % Windings. Frimary Sec 1 Rated Volts ms. 2.222 22.22 22.27A Duty Cycle %. - Ond 0 0 VA ms. - Goody Coll : 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts. - Full - Sci.6 0 81.40 Mutts Loss Hot. - Sciening Tape. - - - Witth mm. - - - Sci.6 0 81.40 Thrus. - - - - - Sciencing Tape. - - - - - - -	Notes:					
Design File : ED-173018E - total core.tfx Core : 247 x 90 x 100 mm 27-MOH Fe Weight : 31.26 kg Tron Loss : 6.48 W Coil Weight : 9.39 kg Load Loss : 605.1 W Frequency : 50 Hz Finished Din's : 261 x 55 x 124 mm Tot. Weight : 40.8 kg Tot. Fower : 4500 VA Penp. Rise : 137/185 deg.C Prequency : 50 Hz Sec Loss : 531.6 W Window Fill : 87.6 % Tot. Fower : 4500 VA Penp. Rise : 137/185 deg.C Optimized : 1:1.33 Fer Core/coil : 3.3:1 kg Window Fill : 87.6 % Wire Fill : 42.8 % Windings. Frimary Sec 1 0 0 0 0 Rated Volts rms. 230v 222v Rated Amps rms. 2.00.27A 000 Duty Cycle %. - 100 % Va rms. - 4500 Comme 2:000mm Filars. - (x4) Ohms 8:20°C. 0.016 0.099 Copper grams. 1360 8029 Fulltond Volts. - 26.8 xj Natts Loss Hot. 521.6 83.49 Insulation Tape. - - - - - Screening Tape. - - - - - State Amps res. - - - - - Screening	Special!!!- cut co	re				
Core: 247 x 90 x 100 mm 27-M0H Iron Loss : 6.48 W Finished Dim's : 261 x 55 x 124 mm Fe Weight : 31.26 kg Coil Weight : 9.39 kg Tot. Weight : 40.8 kg Induction : 0.747 T Load Loss : 605.1 W Tot. Weight : 40.8 kg Frequency: 50 Hz Sec Loss : 83.49 W Tom, Nie : 137/185 deg.C Excitation: 41.8 mA Fri Loss : 521.6 W Optimized : 117.33 Fet Core/Coil : 3.3:1 kg Window Fill : 87.6 % Optimized : 11.33 Fet Windings. Primary Sec 1 0 0 0 0 0 0 Rated Augs rms. 22.0 27A Douby Cycle %. - Duty Cycle %. - 100% - VA rms. - 4500 Conductor. Cu Copper grams. 1360 8029 - - Full-Load Volts. - 20'v - - No-Load Volts. - 20'v - - Puil-Load Volts. - 20'v - - No-Load Volts. - 20'v - - No-Load Volts. - 20'v - -<	Design File : ED-	173618E – t	total core	e.tfx		
Windings. Primary Sec 1 0 0 Rated Volts rms. 230v 222v Rated Amps rms. 22.22.22 22.22.22 Duty Cycle %. - 100% VA rms. - - - Observe Cu Cu Cu Turns. 186ts 183ts - Wire Gauge. 1.700mm 2.000mm Filars. - (x4) Ohms % 20°C. 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. - - Zayers. - - - - - <	Core : 247 x 90 x 100 mm 27-M0H Fe Weight : 31.26 kg Induction : 0.747 T Frequency : 50 Hz Excitation: 41.8 mA Core/Coil : 3.3:1 kg		Iron Loss : 6.48 W Coil Weight : 9.39 kg Load Loss : 605.1 W Sec Loss : 83.49 W Pri Loss : 521.6 W Window Fill : 87.6 %	Finished Dim's : 261 x 55 x 124 m Tot. Weight : 40.8 kg Tot. Power : 4500 VA Temp. Rise : 137/185 deg.C Optimized : 1:1.33 Fe+ Wire Fill : 42.8 %	m	
Rated Volts rms. 230v 222v Rated Amps rms. 22.22A 20.27A Duty Cycle %. - 100% VA rms. - 4500 Conductor. Cu cu Turns. 186ts 183ts Wire Gauge. 1.700mm 2.000mm Filars. - (x4) Ohms @ 20°C. 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - - A/mm^2. 9.79 1.61 Copper Fill %. - - A/mm^2. 9.79 1.61 Copper Fill %. - - Toroid552-AL v.2.6.1 Pare 1 of 1.	Windings.	Primary 0	Sec 1			
Duty Cycle v. - 100% VA ms. - 4500 Conductor. Cu Cu Turns. 186ts 183ts Wire Gauge. 1.700mm 2.000mm Filars. - (x4) Ohms @ 20°C. 0.716 0.099 Copper grams. 1360 8029 Pull-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - - - 3 Screening Tape. - - - - - Nidth. mm. - - - - - Vidth. mm. - - Layers. - - - - - N/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Rated Volts rms. Rated Amps rms.	230v 22.22A	222v 20.27A			
VA rms 4500 Conductor. Cu Cu Turns. 166ts 183ts Wire Gauge. 1.700mm 2.000mm Filars (x4) Ohms 8 20°C. 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts 201V No-Load Volts 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape Width. mm 13 Thickness. mm 0.05 Layers 3 Screening Tape Midth. mm Layers A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Ducy cycle %.	-	- 1001			
Nire Gauge. 1.700mm 2.000mm Filars. - (x4) Ohms & 20°C. 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts. - 201v No-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Thsulation Tape. - - Vatts Loss Hot. 521.6 83.49 Thickness.mm. - 0.05 Layers. - 3 Screening Tape. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	VA rms. Conductor.	- Cu	4500 Cu			
Filars. - (x4) Ohms @ 20°C. 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - - Nidth.mm. - - Midth.mm. - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Wire Gauge.	1.700mm	2.000mm			
Ohms @ 20°C. 0.716 0.099 Copper grams. 1360 8029 Full-Load Volts. - 201v No-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - - Nidth. mm. - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Filars.	-	(x4)			
Copper grams. 1360 8029 Full-Load Volts. - 201v No-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 - - - Watts Loss Hot. 521.6 83.49 - - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 Screening Tape. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Ohms @ 20°C.	- 0.716 -	- 0.099 -			
Full-Load Volts. - 201v No-Load Volts. - 226.3v Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 Screening Tape. - - Width. mm. - - Thickness. mm. - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Copper grams.	1360	8029			
No-Load Volts. - 226.3v Regulation %. 9.6% 11.2% - - - Watts Loss Hot. 521.6 83.49 - - - Watts Loss Hot. 521.6 83.49 - - - Watts Loss Hot. 521.6 83.49 - - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 - - - Width. mm. - - Thickness. mm. - - Layers. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Full-Load Volts.	-	201v			
Regulation %. 9.6% 11.2% Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 - - - Width. mm. - - - - - Screening Tape. - - - - - Width. mm. - - Thickness. mm. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	No-Load Volts.	-	226.3v			
Watts Loss Hot. 521.6 83.49 Insulation Tape. - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 - - - Screening Tape. - - - - - Width. mm. - - Thickness. mm. - - Layers. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Regulation %.	9.6%	11.2%			
Insulation Tape. - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 - - - Screening Tape. - - - - - Width. mm. - - Thickness. mm. - - Layers. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Watts Loss Hot.	521.6	83.49			
Width. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 Screening Tape. - - Width. mm. - - Thickness. mm. - - Layers. - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Insulation Tape.	-	-			
Thickness. mm. - 0.05 Layers. - 3 - - - Screening Tape. - - Width. mm. - - Thickness. mm. - - Layers. - - - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Width. mm.	-	13			
Layers 3 Screening Tape Width. mm Thickness. mm Layers A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15% ToroidEZE-AL v.2.6.1 Page 1 of 1.	Thickness. mm.	-	0.05			
Screening Tape. - Width. mm. - Thickness. mm. - Layers. - - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Layers.	-	3			
Width.mm. - - Thickness.mm. - - Layers. - - A/mm^22. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Screening Tape	-	-			
Thickness. mm. - - Layers. - - A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15%	Width. mm.	-	-			
Layers A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15% ToroidEZE-AL v.2.6.1 Page 1 of 1.	Thickness. mm.	-	-			
A/mm^2. 9.79 1.61 Copper Fill %. 6.64% 36.15% ToroidEZE-AL v.2.6.1 Page 1 of 1.	Layers.	-	-			
Copper Fill %. 6.64% 36.15%	7. /mm^2	- 0 70	-			
ToroidEZE-AL v.2.6.1 Page 1 of 1.	Copper Fill %.	6.64%	36.15%			
	ToroidEZE-AL v.2.6	. 1			Page 1 of 1.	

Appendix B – Design simulations with ToroidEZE programme for designs with different steel area ratios

TI-173628 (1000VA with Cut:Uncut ratio = 0.6:1.0) – Uncut centre core

		T	OROIDAL TRAN	SFORMER DESIGN	SUMMARY.		
Design No : TI-: Customer : Customer P/N :	173628 (100	0VA) - U	ncut core		Printed : 2017-11-03 Designer : Sameera Noratel SL		
Notes:							
Design File : 1736	528- un-cut	core.tf	ĸ				
Core : 133 x 90 x 9 Fe Weight : 5.1 kg	90 mm CK-37		Iron Loss Coil Weight	: 9.2 W : 5.66 kg	Finished Dim's : 153 x 5 Tot. Weight : 10.827 ;	7 x 116 mm kg	
Induction : 1.311	r		Load Loss	: 34.7 W	Tot. Power : 999 VA		
Frequency : 50 Hz			Sec Loss	: 18.45 W	Temp. Rise : 42/50 d	eg.C	
Excitation: 110.9 r	nA		Pri Loss	: 16.24 W	Optimized : 1:0.36	Wdg+	
Core/Coil : 0.9:1]	¢g		Window Fill	: 83.6 %	Wire Fill : 38.3 %		
Windings.	Primary O	Sec 1 0					
Rated Volts rms.	230v	222v					
Rated Amps rms.	4.54A	4.5A					
Duty Cycle %.	-	100%					
	-	-					
VA rms.	-	999					
Conductor.	Cu	Cu					
Turns.	430ts	430ts					
Wire Gauge.	1.900mm	1.900mm					
Filars.	-	-					
Ohms @ 20°C.	0.641	0.74					
Copper grams.	2629	3035					
	-	-					
Full-Load Volts.	-	222.9v					
No-Load Volts.	-	230v					
Regulation %.	1.5%	3.1%					
Watts Loss Hot.	16.24	18.45					
	-	-					
Insulation Tape.	-	-					
Width. mm.	-	13					
Thickness. mm.	-	0.05					
Layers.	-	3					
	-	-					
Screening Tape.	-	-					
Width. mm.	-	-					
Thickness. mm.	-	-					
Layers.	-	-					
7. /	1 6	1 50					
Copper Fill %.	19.16%	19.16%					
ToroidEZE-AL v.2.6	. 1				Page	: 1 of 1.	

TI-173628 (1000VA with Cut:Uncut ratio = 0.6:1.0) – Composite core

		Ţ	OROIDAL TRANSFORMER DESIGN S	SUMMARY.	
Design No : TI-1 Customer : Customer P/N :	173628 (100	00VA) - C	Printed : 2017-11-03 Designer : Sameera Noratel SL		
Notes:					
Special!!					
Design File : ED-1	L73628.tfx				
Core : 161 x 90 x 90 mm 27-M0H Fe Weight : 9.48 kg Induction : 0.794 T Frequency : 50 Hz Excitation: 14.1 mA Core/Coil : 1.5:1 kg		Iron Loss : 2.18 W Coil Weight : 6.18 kg Load Loss : 36.75 W Sec Loss : 19.39 W Pri Loss : 17.35 W Window Fill : 83.6 %	Finished Dim's : 179 x 57 x 115 mm Tot. Weight : 15.743 kg Tot. Power : 999 VA Temp. Rise : 34/41 deg.C Optimized : 1:0.61 Wdg+ Wire Fill : 38.3 %		
Windings.	Primary	Sec 1			
Rated Volts rms.	230v	222v			
Rated Amps rms.	4.51A	4.5A			
Duty Cycle %.	_	100%			
	-	-			
VA rms.	-	999			
Conductor.	Cu	Cu			
Turns.	430ts	430ts			
Wire Gauge.	1.900mm	1.900mm	L		
Filars.	-	-			
	-	-			
Ohms @ 20°C.	0./1	0.798			
Coppor grama	2012	2072			
copper grams.	2912	5275			
Full-Load Volts.	_	222.4v			
No-Load Volts.	-	230v			
Regulation %.	1.6%	3.3%			
	-	-			
Watts Loss Hot.	17.35	19.39			
	-	-			
Insulation Tape.	-	-			
Width. mm.	-	13			
Thickness. mm.	-	0.05			
Layers.	-	3			
Screening Mono	-	_			
Width mm	-	-			
Thickness. mm	-	-			
Lavers.	_	_			
	-	-			
A/mm^2.	1.59	1.59			
Copper Fill &	19.16%	19 16%			
cobber titt o.		10.100			

<u>TI-173630 (1000VA with Cut:Uncut ratio = 0.8:1.0) – Uncut centre core</u>

		<u>1</u>	OROIDAL TRAN	SFORMER DESIGN	SUMMARY.		
Design No : TI-: Customer : Customer P/N :	173630 (100)0VA) - U	ncut core		Printed : 2017-11-03 Designer : Sameera Noratel SL		
Notes:							
Design File : TI-:	173630- un-	-cut core	.tfx				
Core : 133 x 90 x 90 mm CK-37 Fe Weight : 5.1 kg Induction : 1.311 T Frequency : 50 Hz Excitation: 110.9 mA Core/Coil : 0.9:1 kg		Iron Loss : 9.2 W Coil Weight : 5.66 kg Load Loss : 34.69 W Sec Loss : 18.45 W Pri Loss : 16.24 W Window Fill : 83.6 %		Finished Dim's : 153 x 57 x 116 mm Tot. Weight : 10.827 kg Tot. Power : 999 VA Temp. Rise : 42/50 deg.C Optimized : 1:0.36 Wdg+ Wire Fill : 38.3 %	n		
Windings.	Primary	Sec 1					
Rated Volts rms.	230v	222v					
Rated Amps rms.	4.54A	4.5A					
Duty Cycle %.	-	100%					
	-	-					
VA rms.	-	999					
Conductor.	Cu	Cu					
Turns.	430ts	430ts					
Wire Gauge.	1.900mm	1.900mm	L				
Filars.	-	-					
	-	-					
Ohms @ 20°C.	0.641	0.74					
	-	2025					
copper grams.	2629						
Full-Load Volts.	_	222.9v					
No-Load Volts.	-	230v					
Regulation %.	1.5%	3.1%					
	_	-					
Watts Loss Hot.	16.24	18.45					
	-	-					
Insulation Tape.	-	-					
Width. mm.	-	13					
Thickness. mm.	-	0.05					
Layers.	-	3					
	-	-					
Screening Tape.	-	-					
Width. mm.	-	-					
Thickness. mm.	-	-					
Layers.	-	-					
- /	-	-					
A/mm^2.	1.6	1.59					
Copper Fill ≷.	19.10%	19.16%					
ToroidEZE-AL v.2.6	. 1				Page 1 of 1.		

TI-173630 (1000VA with Cut:Uncut ratio = 0.80:1.0) – Composite core

		2	OROIDAL TRANSFORMER DESIGN	SUMMARY.
Design No : TI-: Customer : Customer P/N :	173630 (100	00VA) - C	omposite core	Printed : 2017-11-03 Designer : Sameera Noratel SL
Notes:				
Special!!				
Design File : TI-:	173630 – Co	mposite.	tfx	
Core : 169 x 90 x 90 mm 27-M0H Fe Weight : 10.88 kg Induction : 0.713 T Frequency : 50 Hz Excitation: 13.5 mA Core/Coil : 1.7:1 kg			Iron Loss : 2.08 W Coil Weight : 6.34 kg Load Loss : 37.65 W Sec Loss : 19.87 W Pri Loss : 17.78 W Window Fill : 83.6 %	Finished Dim's : 186 x 57 x 114 mm Tot. Weight : 17.304 kg Tot. Fower : 999 VA Temp. Rise : 34/41 deg.C Optimized : 1:0.69 Wdg+ Wire Fill : 38.3 %
Windings.	Primary	Sec 1		
Dated Valta yma	0	0		
Rated Volts rms. Pated Amps rms	230V 4 52b	222 0 4 5 b		
Duty Cycle %		100%		
Ducy cycle 0.	-	-		
VA rms.	-	999		
Conductor.	Cu	Cu		
Turns.	430ts	430ts		
Wire Gauge.	1.900mm	1.900mm	L	
Filars.	-	-		
Ohma A 20°C		0 010		
OILLIS @ 20 C.	-	0.019		
Copper grams.	2982	3358		
	-	-		
Full-Load Volts.	-	222.2v		
No-Load Volts.	-	230v		
Regulation %.	1.6%	3.4%		
Makka 7 11.4	-	-		
Walls Loss not.	1/./0	19.07		
Insulation Tape.	-	-		
Width. mm.	-	13		
Thickness. mm.	-	0.05		
Layers.	-	3		
	-	-		
Screening Tape.	-	-		
Width. mm.	-	-		
Thickness. mm.	-	-		
Layers.	-	-		
A/mm^2.	1.59	1.59		
Copper Fill %.	19.16%	19.16%		
ToroidEZE-AL v.2.6	. 1			Page 1 of 1.

TI-173618M (2500VA with Cut:Uncut ratio = 0.6:1.0) – Uncut centre core

Design No : TI-:	L73618M (25		Uncut core	Printed : 2017-11-03
Customer : Customer P/N :			Designer : Sameera Noratel SL	
Notes:				
Design File : 1730	518M- uncut	core.tf:	x	
Core : 180 x 90 x 8	30 mm CK-37	,	Iron Loss : 20.75 W	Finished Dim's : 197 x 57 x 105 r
7e Weight : 11.48]	cg		Coil Weight : 6.42 kg	Tot. Weight : 17.991 kg
Induction : 1.311 !	r		Load Loss : 140.8 W	Tot. Power : 2500 VA
requency : 50 Hz			Sec Loss : 23.11 W	Temp. Rise : 108/130 deg.C
Excitation: 250.3 r	nA		Pri Loss : 117.7 W	Optimized : 1:0.71 Wdg+
Core/Coil : 1.8:1 }	cg		Window Fill : 84.7 %	Wire Fill : 40.6 %
Windings.	Primary	Sec 1		
Rated Volts rms.	0 230v	0 222v		
Rated Amps rms.	11.57A	11.26A		
Duty Cycle %.	-	100%		
	-	-		
VA rms.	-	2500		
Conductor.	Cu	Cu		
Turns.	231ts	231ts		
Wire Gauge.	1.500mm	2.000mm	L. Contraction of the second se	
Filars.	-	(x3)		
	-	-		
Ohms @ 20°C.	0.582	0.121		
Copper grams	930.2	5494		
copper grams.	-	_		
Full-Load Volts.	-	218.8v		
No-Load Volts.	-	230v		
Regulation %.	4.2%	4.9%		
-	-	-		
Watts Loss Hot.	117.7	23.11		
	-	-		
Insulation Tape.	-	-		
Width. mm.	-	13		
Thickness. mm.	-	0.05		
Layers.	-	3		
Screening Tare	_	_		
Width mm	-	-		
Thickness mm	-	-		
Lavers	-	-		
	_	_		
A/mm^2.	6.55	1.19		
Copper Fill %.	6.42%	34.22%		

<u>TI-173618M (2500VA with Cut:Uncut ratio = 0.6:1.0) – Composite core</u>

Note:: Special/!!- cut core Design File : ED-173618M - composite core.tfx Sore:: 238 x 90 x 80 mm 27-MOH Iron Loss : 5.33 W Finished Dim's : 252 x 57 x 103 mm Fore:: 238 x 90 x 80 mm 27-MOH Coll Weight : 7.71 kg Tot. Weight : 30.776 kg Frequency:: 50 Hz Load Loss : 165.6 W Tot. Weight : 30.776 kg Kniduction:: 0.797 T Load Loss : 165.6 W Tot. Power : 2500 VA Krequency:: 50 Hz Sec Loss : 26.5 W Tomp, Rise : 93/112 deg, C Knidings. Primary Sec 1 Primary Window Fill : 84.7 % Wire Fill : 40.6 % Windings. Primary Sec 1 Primary Primary Primary Primary Window Fill : 84.7 % Wire Fill : 40.6 % Primary Primary Primary Window Fill : 84.7 % Primary Primary Primary Primary Window Fill : 84.7 % Primary Primary Primary Primary Window Fill : 84.7 % Primary Primary Primary Primary Primary Co Co Primary Primary Wintres	esign No : TI-1 Sustomer : Sustomer P/N :	L73618M (25	300VA) - (Printed : 2017-11-03 Designer : Sameera Noratel SL		
Special III- cut core Design File : ED-173618M - composite core.tfx Sore : 238 x 90 x 80 mm 27-MOH Iron Loss : 5.33 W Finished Dim's : 252 x 57 x 103 mm Few Neight : 22.94 kg Coil Weight : 7.71 kg Tot. Weight : 30.776 kg Induction : 0.797 T Load Loss : 165.6 W Tot. Weight : 30.776 kg Viregemeny: 50 Hz See Loss : 265.9 W Topp, Rise : 93/12 dg, C Kindings. Primary Sec 1 O O Rated Volts rms. 230v 222v Rated Volts rms. 230v 222v Rated Augs rms. 11.61A 11.26A Dutr Cycle %. - 100% VA rms. - 2500 Conductor. Cu Cu Turne. 231ts 231ts Wire Gauge. 1.300mm 2.000mm Filars. - (x3) Ohns & 20°C. 0.713 0.144 Copper grame. 139 6569 Full.tond Volts. - - Turne. - - Watts Loss Not. 139.1 26.5 Insulation Tape. - </th <th>otes:</th> <th></th> <th></th> <th></th> <th></th> <th></th>	otes:					
	pecial!!!- cut com	re				
tore : 238 x 90 x 80 mm 27-M0H tore : 238 x 90 x 80 mm 27-M0H reweight : 22.94 kg coil Weight : 7.71 kg traduction : 0.797 T Load Loss : 165.6 W Tot. Power : 2500 VA Tot. Power : 2500 VA Tot. Power : 2500 VA Tot. Power : 2500 VA Tot. Power : 2500 VA Pri Loss : 139.1 W Window Fill : 84.7 % Wine Fill : 40.6 % Windings. Primary Sec 1 0 0 Rated Volts rms. 2300 222v Rated Amps rms. 11.61A 11.26A Duty Cycle %. - 100% VA rms. - 2500 VA rms. - 2500 Conductor. Cu Cu Turns. 231ts 231ts Wire Guige. 1.500mm 2.000mm Filars. - (x3) Matts Loss Hot. 139.1 26.5 Insulation Tape. Midth. mm. - 13 Screening Tape. Midth. mm. Layers. Midth. mm. Layers. A/mm^2. 6.57 1.19 	esign File : ED-1	173618M - d	composite	core.tfx		
Window Fill . 61.7 % Window Fill . 61.7 % Window Fill . 61.7 % Window Fill . 61.7 % Window Fill . 61.7 % Window Fill . 61.7 % Mated Volts rms. 230v 222v Rated Amps rms. 1.61.8 1.26A Duty Cycle %. - 100% VA rms. - 2500 Conductor. Cu Cu Turns. 231ts 231ts Wire Gauge. 1.500mm 2.000mm Filars. - (x3) Ohms @ 20°C. 0.713 0.144 Copper grams. 1139 5669 Full-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Width. mm. - 13 Thickness. mm. - 0.05 Layers. - - - - - Watts Loss Imm. - - - - - Width. mm. - - - -<	ore : 238 x 90 x 8 e Weight : 22.94) nduction : 0.797 requency : 50 Hz xcitation: 34.3 mJ	30 mm 27-M0 rg r)H	Iron Loss : 5.33 W Coil Weight : 7.71 kg Load Loss : 165.6 W Sec Loss : 26.5 W Pri Loss : 139.1 W	Finished Dim's Tot. Weight Tot. Power Temp. Rise Optimized Wire Fill	: 252 x 57 x 103 mm : 30.776 kg : 2500 VA : 93/112 deg.C : 1:1.19 Fe+ : 40.6 %
Windings. Frimary Sec 1 0 0 Rated Volts rms. 230v Duty Cycle %. - - 100% VA rms. - - 2500 Conductor. Cu Turns. - 231ts 231ts Wire Gauge. 1.500mn Filars. - - - Copper grams. 139 - - - - Pull-Load Volts. - - - Watts Loss Hot. 139.1 26.5 Insulation Tape. - - - Witth.mm. - - - Width.mm. - - - Varm2. <t< td=""><td>01e/0011 . 5.1 kg</td><td></td><td></td><td>WINDOW FILL . 04.7 6</td><td>WITE FITT</td><td>. 40.0 %</td></t<>	01e/0011 . 5.1 kg			WINDOW FILL . 04.7 6	WITE FITT	. 40.0 %
Rated Volts rms. 230v 222v Rated Amps rms. 11.61A 11.26A Duty Cycle %. - 100% VA rms. - 2500 Conductor. Cu Cu Turns. 231ts 231ts Wite Gauge. 1.500mm 2.000mm Filars. - (x3) Ohms % 20°C. 0.713 0.144 Copper grams. 1139 659 Full-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Layers. - - Midth. mm. - 3 Screening Tape. - - Juyers. - - Juyers. - - A/mm^2. 6.42% 34 22%	Windings.	Primary O	Sec 1 0			
Rated Amps rms. 11.61A 11.26A Duty Cycle %. - 100% VA rms. - 2500 Conductor. Cu Cu Turns. 231ts 231ts VA rms. - 2000mm Filars. - (x3) - - - Ohms @ 20°C. 0.713 0.144 - - - Full-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 - - - Vidth. mm. - 13 Thickness. mm. - 0.05 Layers. - - - - - Witth. mm. - - - - - Screening Tape. - - - - - Jayers. - - - - - Copper grans. - - - -	Rated Volts rms.	230v	222v			
Duty Cycle % 100% VA rms 2500 Conductor. Cu Cu Turns. 231ts 231ts Wire Gauge. 1.500mm 2.000mm Filars (x3) Ohms @ 20°C. 0.713 0.144 Copper grams. 1139 6569 Full-Load Volts 230v Regulation %. 4.9% 5.7% Vatts Loss Hot. 139.1 26.5 Insulation Tape Width. mm 13 Thickness. mm 0.05 Layers 3 Screening Tape Nidth. mm Layers Nidth. mm Layers Nidth. mm Layers Nidth. mm Layers Compare Fill & 6.42% 34.23%	Rated Amps rms.	11.61A	11.26A			
VA rms 2500 Conductor. Cu Cu Turns. 231ts 231ts Wire Gauge. 1.500mm 2.000mm Filars (x3) Copper grams. 1139 6569 Full-Load Volts 216.9v No-Load Volts 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 266.5 Insulation Tape Nidth. mm 13 Thickness. mm 0.05 Layers 3 Screening Tape Nidth. mm tayers Screening Tape Midth. mm Screening Tape Midth. mm Screening Tape Midth. mm Screening Tape Midth. mm Comper Fill %. 6.423 34 228	Duty Cycle %.	-	100% -			
Conductor. Cu Cu Turns. 231ts 231ts Wire Gauge. 1.500mm 2.000mm Filars. - (x3) Ohms @ 20°C. 0.713 0.144 Copper grams. 1139 6569 Full-Load Volts. - 26.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% Matts Loss Hot. 139.1 26.5 Insulation Tape. - - Screening Tape. - - Screening Tape. - - Hickness.mm. - - Layers. - - A/mn^2. 6.57 1.19	VA rms.	-	2500			
Turns. 231ts 231ts Wire Gauge. 1.500mm 2.000mm Filars. - (x3) Ohms @ 20°C. 0.713 0.144 - - - Copper grams. 1139 659 Full-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Vatts Loss Hot. 139.1 26.5 Screening Tape. - - Width.mm. - 3 Screening Tape. - - Hickness.mm. - - Layers. - - A/mm^2. 6.57 1.19	Conductor.	Cu	Cu			
Wire Gauge. 1.500mm 2.000mm Filars. - (x3) Ohms @ 20°C. 0.713 0.144 Copper grams. 139 6569 Full-Load Volts. - 216.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Vatts Loss Imm. - 0.05 Layers. - 3 Screening Tape. - - Width.mm. - - Thickness.mm. - - A/mm^2. 6.57 1.19 Comper Fill & 6.42% 34.22%	Turns.	231ts	231ts			
Filars. - (x3) Ohms @ 20°C. 0.713 0.144 Copper grams. 1139 6569 Full-Load Volts. - 216.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Vidth.mm. - 13 Thickness.mm. - 0.05 Layers. - - Vidth.mm. - - Vidth.mm. - - Layers. - - A/mm^2. 6.57 1.19 Comper Fill % 6.42% 34.22%	Wire Gauge.	1.500mm	2.000mm	L		
Ohms @ 20°C. 0.113 0.144 Copper grams. 1139 6569 Full-Load Volts. - 216.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Vidth. mm. - 13 Thickness. mm. - 0.05 Layers. - 3 Corper Tape. - - Midth. mm. - - Jayers. - - A/mm^2. 6.57 1.19 Corper Fill & 6.428 34.228	Filars.	-	(x3)			
Copper grams. 1139 6569 Full-Load Volts 216.9v No-Load Volts 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Width. mm 13 Thickness. mm 0.05 Layers 3 Screening Tape Midth. mm Layers Kither Screening Tape Layers Kither Note Nickness. mm Layers Layers Name Layers Layers Layers Note Layers Layers Layers Layers Layers Note Note Note Note Layers Layers Note Layers Layers Layers Note Layers 	Ohms @ 20°C	- 0 713	0 144			
Copper grams. 1139 6569 Full-Load Volts. - 216.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% - - - Watts Loss Hot. 139.1 26.5 - - - Watts Loss Hot. 139.1 26.5 - - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - - Vidth.mm. - - Layers. - - - - - A/mm^2. 6.57 1.19 Compare Fill & & 6.42& 34.22%	0111103 @ 20 0.	-	-			
Full-Load Volts. - 216.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - - Width.mm. - - Layers. - - A/mm^2. 6.57 1.19 Comper Fill & 6.428 34.228	Copper grams.	1139	6569			
Full-Load Volts. - 216.9v No-Load Volts. - 230v Regulation %. 4.9% 5.7% - - - Watts Loss Hot. 139.1 26.5 - - - Watts Loss Hot. 139.1 26.5 - - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - 3 - - - Width.mm. - - Thickness.mm. - - Layers. - - - - - A/mm^2. 6.57 1.19 Compare Fill & 6.428 34.228		-	-			
No-Load Volts. - 230v Regulation %. 4.9% 5.7% - - - Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - 3 Screening Tape. - - Width.mm. - - Nothkinss.mm. - - A/ma^2. 6.57 1.19 Compare Fill % 6.42% 34.22%	Full-Load Volts.	-	216.9v			
Regulation %. 4.9% 5.7% - - Watts Loss Hot. 139.1 Insulation Tape. - - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - - - Width.mm. - - - Width.mm. - - - Width.mm. - - - Midth.mm. - - - A/mm^2. 6.57 6.42% 34.22%	No-Load Volts.	-	230v			
Watts Loss Hot. 139.1 26.5 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - 3 Creening Tape. - - Width.mm. - - Width.mm. - - Thickness.mm. - - Jayers. - - A/mm^2. 6.57 1.19 Comper Fill & 6.478 34.228	Regulation %.	4.9%	5.7%			
Matts 1055 H01. 139.1 20.5 Insulation Tape. - - Width.mm. - 13 Thickness.mm. - 0.05 Layers. - 3 - - - Width.mm. - - Screening Tape. - - - - - Width.mm. - - Thickness.mm. - - Layers. - - - - - A/mm^2. 6.57 1.19 Comper Fill \$ 6.428 34.228	Webbe Tree Urb	100 1	-			
Insulation Tape Width.mm 13 Thickness.mm 0.05 Layers 3 Screening Tape Width.mm Thickness.mm Layers Layers Layers Layers	walls Loss Hol.	139.1	20.5			
Width.mm. - 13 Thickness.mm. - 0.05 Layers. - 3 - - - Screening Tape. - - Width.mm. - - Thickness.mm. - - Layers. - - A/mm^2. 6.57 1.19 Comper Fill % 6.42% 34.22%	Insulation Tape.	_	-			
Thickness.mm. - 0.05 Layers. - 3 - - - Screening Tape. - - Width.mm. - - Thickness.mm. - - Layers. - - - - - A/mm^2. 6.473 34.223	Width. mm.	-	13			
Layers 3 Screening Tape Width.mm Thickness.mm Layers A/mm^2. 6.57 1.19 Comper Fill & 6.4/3 34.228	Thickness. mm.	-	0.05			
	Layers.	-	3			
Screening Tape. - - Width.mm. - - Thickness.mm. - - Layers. - - - - - A/mm^2. 6.57 1.19 Conper Fill % 6.42% 34.22%		-	-			
Width.mm Thickness.mm Layers A/mm^2. 6.57 1.19 Comper Fill & 6.42% 34.22%	Screening Tape.	-	-			
Thickness.mm Layers A/mm^2. 6.57 1.19 Comper Fill & 6.42% 34.22%	Width. mm.	-	-			
Layers A/mm^2. 6.57 1.19 Copper Fill & 6.42% 34.22%	Thickness. mm.	-	-			
A/mm^2. 6.57 1.19 Copper Fill \$ 6.42% 34.22%	Layers.	-	-			
A/um 2. 0.3/ 1.19 Conner Fill & 6.42% 3.4.22%	7. /mm 6.2	-	- 1 10			
	Copper Fill %	6.27%	34 228			

TI-173618N (3500VA with Cut:Uncut ratio = 0.8:1.0) – Uncut core

Design No : TI-1 Customer : Customer P/N :	L73618N (35	500VA) - 1	Printed : 2017-11-03 Designer : Sameera Noratel SL	
Notes:				
Design File : TI-1	173618N- ur	icut core	.tfx	
Core : 180 x 90 x 8 Fe Weight : 11.48 }	30 mm CK-37	,	Iron Loss : 20.75 W Coil Weight : 6.42 kg	Finished Dim's : 197 x 57 x 105 mm Tot. Weight : 17,991 kg
Induction : 1 311 7	-9 P		Load Loss : 423 6 W	Tot Power : 3501 VA
Frequency : 50 Hz	-		Sec Loss : 63.19 W	Temp. Rise : 151/301 deg.C
Excitation: 250.3 m	nA		Pri Loss : 360.4 W	Optimized : 1:0.71 Wdg+
Core/Coil : 1.8:1 }	cg		Window Fill : 84.7 %	Wire Fill : 40.6 %
Windings.	Primary	Sec 1		
	0	0		
Rated Volts rms.	2300	2227		
Rated Amps rms.	17.15A	15.77A		
Duty cycie ৰ.	_	1004		
VA rms	_	3501		
Conductor.	Cu	Cu		
Turns.	231ts	231ts		
Wire Gauge.	1.500mm	2.000mm		
Filars.	_	(x3)		
	-	-		
Ohms @ 20°C.	0.582	0.121		
	-	-		
Copper grams.	930.2	5494		
Full-Load Volte	_	207 1.		
No-Load Volts	_	2307		
Regulation &	8 6%	10%		
Regulation 0.	-	-		
Watts Loss Hot.	360.4	63.19		
	-	-		
Insulation Tape.	-	-		
Width. mm.	-	13		
Thickness. mm.	-	0.05		
Layers.	-	3		
	-	-		
Screening Tape.	-	-		
Width. mm.	-	-		
Thickness. mm.	-	-		
Layers.	-	-		
2 /	- 71	-		
A/mm^2.	9./1	1.67		
copper Fill %.	6.42%	34.22%		

TI-173618N (3500VA with Cut:Uncut ratio = 0.8:1.0) – Composite core

esign No : TI-: ustomer : ustomer P/N :	L73618N (35	00VA) -		Printed : 2017-11-03 Designer : Sameera Noratel SL		
iotes:						
esign File : ED-1	173618N - C	Composite	core.tfx			
Core : 256 x 90 x 80 mm 27-M0H Fe Weight : 27.14 kg Induction : 0.711 T Frequency : 50 Hz Excitation: 33.6 mA Core/Coil : 3.4:1 kg		Iron Loss : 5.16 W Coil Weight : 8.09 kg Load Loss : 560.3 W Sec Loss : 77.3 W Pri Loss : 483 W Window Fill : 84.7 %		Finished Dim's : 269 x 57 x 10 Tot. Weight : 35.378 kg Tot. Power : 3501 VA Temp. Rise : 138/286 deg.0 Optimized : 1:1.34 Fe+ Wire Fill : 40.6 %		
Nindings.	Primary	Sec 1				
Bated Volts rms	2301	2227				
Rated Amps rms.	17.68A	15.77A				
Duty Cycle %.	_	100%				
	-	-				
VA rms.	-	3501				
Conductor.	Cu	Cu				
Turns.	231ts	231ts				
Wire Gauge.	1.500mm	2.000mm				
Filars.	-	(x3)				
	-	-				
Ohms @ 20°C.	0.753	0.152				
	-	-				
Copper grams.	1204	6891				
Full-Lord Volta	_	200 5				
No-Load Volts	_	2307				
Regulation %	11 2%	12 8%				
Regulation 8.	-	-				
Watts Loss Hot.	483	77.3				
	-	-				
Insulation Tape.	-	-				
Width. mm.	-	13				
Thickness. mm.	-	0.05				
Layers.	-	3				
	-	-				
Screening Tape.	-	-				
Width. mm.	-	-				
Thickness. mm.	-	-				
Layers.	-	-				
	-	-				
A/mm^2.	10	1.67				
Copper Fill %.	6.42%	34.22%				

Appendix C – Test equipment details

Mixed Signal Oscilloscope (DPO3000)

Data Sheet

Discover – Fast waveform capture rate - over 50.000 wfm/s - maximizes the probability of capturing elusive glitches and other infrequent events.

Comprehensive Features Speed Every Stage of Debug

The MSO/DPO3000 Series offers a robust set of features to speed every stage of debugging your design – from quickly discovering an anomaly and capturing it, to searching your waveform record for the event and analyzing its characteristics and your device's behavior.

Discover

To debug a design problem, first you must know it exists. Every design engineer spends time looking for problems in their design, a time-consuming and frustrating task without the right debug tools.

The MSO/DPO3000 Series offers the industry's most complete visualization of signals, providing fast insight into the real operation of your device. A fast waveform capture rate – greater than 50,000 waveforms per second – enables you to see glitches and other infrequent transients within seconds, revealing the true nature of device faults. A digital phosphor display with intensity grading shows the history of a signal's activity by intensifying areas of the signal that occur more frequently, providing a visual display of just how often anomalies occur.

Capture – Triggering on a specific transmit data packet going across an RS-232 bus. A complete set of triggers, including triggers for specific serial packet content, ensures you quickly capture your event of interest.

Capture

Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause.

The MSO/DPO3000 Series provides a complete set of triggers – including runt, logic, pulse width/glitch, setup/hold violation, serial packet, and parallel data – to help quickly find your event. With up to a 5 Mpoint record length, you can capture many events of interest, even thousands of serial packets, in a single acquisition for further analysis while maintaining high resolution to zoom in on fine signal details.

From triggering on specific packet content to automatic decode in multiple data formats, the MSO/DPO3000 Series provides integrated support for the industry's broadest range of serial buses – I²C, SPI, CAN, LIN, RS-232/422/485/UART, and I²S/LJ/RJ/TDM. The ability to decode up to two serial and/or parallel buses simultaneously means you gain insight into system-level problems quickly.

To further help troubleshoot system-level interactions in complex embedded systems, the MSO3000 Series offers 16 digital channels in addition to its analog channels. Since the digital channels are fully integrated into the oscilloscope, you can trigger across all input channels, automatically time-correlating all analog, digital, and serial signals. The MagniVu™ high-speed acquisition enables you to acquire fine signal detail (up to 121.2 ps resolution) around the trigger point for precision measurements. MagniVu is essential for making accurate timing measurements for setup and hold measurements, clock delay, signal skew, and glitch characterization.

Search – I²C decode showing results from a Wave Inspector search for Address value 50. Wave Inspector controls provide unprecedented efficiency in viewing and navigating waveform data.

Search

Finding your event of interest in a long waveform record can be time consuming without the right search tools. With today's record lengths pushing beyond a million data points, locating your event can mean scrolling through thousands of screens of signal activity.

The MSO/DPO3000 Series offers the industry's most comprehensive search and waveform navigation with its innovative Wave Inspector[®] controls. These controls speed panning and zooming through your record. With a unique force-feedback system, you can move from one end of your record to the other in just seconds. User marks allow you to mark any location that you may want to reference later for further investigation. Or, automatically search your record for criteria you define. Wave Inspector will instantly search your entire record, including analog, digital, and serial bus data. Along the way it will automatically mark every occurrence of your defined event so you can quickly move between events.

Mixed Signal Oscilloscopes - MSO3000 Series, DPO3000 Series

Analyze – FFT analysis of a pulsed signal. A comprehensive set of integrated analysis tools speeds verification of your design's performance.

Analyze

Verifying that your prototype's performance matches simulations and meets the project's design goals requires analyzing its behavior. Tasks can range from simple checks of rise times and pulse widths to sophisticated power loss analysis and investigation of noise sources.

The MSO/DPO3000 Series offers a comprehensive set of integrated analysis tools including waveform- and screen-based cursors, 29 automated measurements, advanced waveform math including arbitrary equation editing, FFT analysis, and trend plots for visually determining how a measurement is changing over time. Specialized application support for serial bus analysis, power supply design, and video design and development is also available.

For extended analysis, National Instrument's LabVIEW SignalExpress™ Tektronix Edition provides over 200 built-in functions including time and frequency domain analysis, limit testing, data logging, and customizable reports.

Data Sheet

Wave Inspector controls provide unprecedented efficiency in viewing, navigating, and analyzing waveform data. Zip through your 5 Mpoint record by turning the outer pan control (1). Cell from the beginning to end in seconds. See something of interest and want to see more details? Just turn the inner zoom control (2).

Wave Inspector® Navigation and Search

A 5 Mpoint record length represents thousands of screens of information. The MSO/DPO3000 Series enables you to find your event in seconds with Wave Inspector, the industry's best tool for navigation and search. Wave Inspector offers the following innovative controls:

Zoom/Pan

A dedicated, two-tier front-panel control provides intuitive control of both zooming and panning. The inner control adjusts the zoom factor (or zoom scale); turning it clockwise activates zoom and goes to progressively higher zoom factors, while turning it counterclockwise results in lower zoom factors and eventually turning zoom off. No longer do you need to navigate through multiple menus to adjust your zoom view. The outer control pans the zoom box across the waveform to quickly get to the portion of waveform you are interested in. The outer control also utilizes force-feedback to determine how fast to pan on the waveform. The farther you turn the outer control, the faster the zoom box moves. Pan direction is changed by simply turning the control the other way.

Play/Pause

A dedicated **Play/Pause** front-panel button scrolls the waveform across the display automatically while you look for anomalies or an event of interest. Playback speed and direction are controlled using the intuitive pan control. Once again, turning the control further makes the waveform scroll faster and changing direction is as simple as turning the control the other way.

Search step 2: Wave Inspector automatically searches through the record and marks each event with a hollow white triangle. You can then use the **Previous** and **Next** buttons to jump from one event to the next.

User Marks

Press the **Set Mark** front-panel button to place one or more marks on the waveform. Navigating between marks is as simple as pressing the **Previous** (\leftarrow) and **Next** (\rightarrow) buttons on the front panel.

Search Marks

The Search button allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the front-panel **Previous** (\leftarrow) and **Next** (\rightarrow) buttons. Search types include edge, pulse width/glitch, runt, logic, setup and hold, rise/fall time parallel bus, and I²C, SPI, CAN, LIN, RS-232/422/485/UART, and I²S/LJ/RJ/TDM packet content.

Digital phosphor technology enables greater than 50,000 wfm/s waveform capture rate and real-time intensity grading on the MSO/DPO3000 Series.

Digital Phosphor Technology

The MSO/DPO3000 Series' digital phosphor technology provides you with fast insight into the real operation of your device. Its fast waveform capture rate – greater than 50,000 wfm/s – gives you a high probability of quickly seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more.

Waveforms are superimposed with one another and waveform points that occur more frequently are intensified. This quickly highlights the events that over time occur more often or, in the case of infrequent anomalies, occur less often.

With the MSO/DPO3000 Series, you can choose infinite persistence or variable persistence, determining how long the previous waveform acquisitions stay on-screen. This allows you to determine how often an anomaly is occurring.

Mixed Signal Design and Analysis (MSO Series)

The MSO3000 Series Mixed Signal Oscilloscopes provide 16 digital channels. These channels are tightly integrated into the oscilloscope's user interface, simplifying operation and making it possible to solve mixed-signal issues easily.

Mixed Signal Oscilloscopes — MSO3000 Series, DPO3000 Series

The MSO Series provides 16 integrated digital channels enabling you to view and analyze time-correlated analog and digital signals.

With the color-coded digital waveform display, groups are created by simply placing digital channels together on the screen, allowing the digital channels to be moved as a group. You can set threshold values for each pod of eight channels, enabling support for up to two different logic families.

Color-coded Digital Waveform Display

The MSO3000 Series has redefined the way you view digital waveforms. One common problem shared by both logic analyzers and mixed-signal oscilloscopes is determining if data is a one or a zero when zoomed in far enough that the digital trace stays flat all the way across the display. The MSO3000 Series has color-coded digital traces, displaying ones in green and zeros in blue.

Mixed Signal Oscilloscopes — MSO3000 Series, DPO3000 Series

Characteristics

Vertical Oystein And	alog onanners						
Characteristic	MSO3012 DPO3012	MSO3014 DPO3014	MSO3032 DPO3032	MSO3034 DPO3034	DP	O3052	MSO3054 DPO3054
Input Channels	2	4	2	4		2	4
Analog Bandwidth (–3 dB)	100 MHz	100 MHz	300 MHz	300 MHz	50) MHz	500 MHz
Calculated Rise Time 5 mV/div (typical)	3.5 ns	3.5 ns	1.17 ns	1.17 ns	7(00 ps	700 ps
Hardware Bandwidth Limits	20 M	1Hz		20	MHz, 150 MHz		
Input Coupling			AC, DO	C, GND			
nput Impedance		1 MΩ±1%, 75 Ω	2±1%, 50 Ω±1%				
Input Sensitivity Range, 1 MΩ			1 mV/div t	to 10 V/div			
lnput Sensitivity Range, 75 Ω, 50 Ω			1 mV/div	to 1 V/div			
Vertical Resolution			8 bits (11 bits	s with Hi Res)			
Maximum Input Voltage, 1 MΩ			300 V_{RMS} with p	beaks $\leq \pm 450$ V			
Maximum Input Voltage, 75 Ω, 50 Ω			5 V_{RMS} with p	eaks $\leq \pm 20$ V			
DC Gain Accuracy			±1.5% for 5 m ¹ ±2.0% for ±2.5% for	V/div and above r 2 mV/div r 1 mV/div			
Channel-to-Channel Isolation (Any Two Channels at Equal Vertical Scale)		≥100:1 a	t ≤100 MHz and ≥30:1	at >100 MHz up to	the rated BW		
Offset Range			Horizo	ontal System A	Analog Chani	nels	
Offset Range Range	1 MΩ	50 Ω, 75 Ω	Horizo 2 Charao	ontal System A	Analog Chani All MSO3000	nels Models	
Offset Range Range 1 mV/div to 99.5 mV/div	1 MΩ ±1 V	50 Ω, 75 Ω ±1 V	Horizo	ontal System A	Analog Chanı All MSO3000 All DPO3000 I	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 995 mV/div	1 ΜΩ ±1 V ±10 V	50 Ω, 75 Ω ±1 V ±5 V	2 Horizo 2 Charao Maximu (all char	m Sample Rate	Analog Chani All MSO3000 All DPO3000 I 2.5 GS/s	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 995 mV/div 1 V/div	1 MΩ ±1 V ±10 V ±100 V	50 Ω, 75 Ω ±1 V ±5 V ±5 V	2 Charace Maximu (all char Maximu	m Sample Rate	Analog Chani All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints	n els Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 995 mV/div 1 V/div 1.01 V/div to 10 V/div	1 ΜΩ ±1 V ±10 V ±100 V ±100 V	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char (all char (all char	m Sample Rate nels) m Record Length nels)	All MSO3000 All DPO3000 2.5 GS/s 5 Mpoints	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu (all char Maximu Sample	m Sample Rate nnels) m Darot Length nnels) m Duration of aptured at Highest Rate	Analog Chani All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1 1 V/div to 10 V/div Vertical System Dig Characteristic Input Channels	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0)	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu Maximu (all char Maximu (all char Maximu (all char Maximu (all char Maximu (all char Maximu Maximu (all char Maximu Maximu (all char Maximu Maxima	m Sample Rate moles) m Record Length nnels) m Duration of aptured at Highest Rate nnels) mo Darao (a/dt 2)	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Characo Maximu (all characo Maximu (all characo (all characo Sample (all characo (all characo	m Sample Rate mnels) m Record Length nnels) m Duration of sptured at Highest Rate nnels) ise Range (s/div) was Delay Timo	Analog Chann All MSO3000 <u>All DPO3000</u> 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s 10 division to 1	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Threshold Selections	1 MΩ ±1 V ±10 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL. PEC	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA NA NA NA NA	A Horizo Charac Maximu (all char (all char Maximu (all char (all char (all char Time Ca Sample (all char Time-ba Rance	cteristic m Sample Rate nnels) m Record Length nnels) m Duration of aptured at Highest Rate nnels) Isse Range (s/div) Isse Delay Time	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to 1	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu Time Ca Sample (all char Time-ba Range Channe Deskew	cteristic m Sample Rate unels) m Record Length unels) m Duration of pptured at Highest Rate unels) use Range (s/div) use Delay Time	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to s ±100 ns	nels Models Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range Maximum Input Voltage	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu (all char Maximu Time-ba Range Channe Deskew Time-ba	cteristic m Sample Rate inels) m Record Length inels) m Duration of aptured at Highest Rate inels) isse Range (s/div) isse Delay Time I-to-Channel Range isse Accuracy	Analog Chann All MSO3000 <u>All DPO3000</u> 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to ±100 ns ±10 ppm over ar	nels Models Models 5000 s ny≥1 ms interval	
Diffset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 1 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of three)	50 Ω, 75 Ω ±1 V ±5 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu (all char Maximu (all char Maximu Time-ba Time-ba Channe Deskew Time-ba	cteristic m Sample Rate nnels) m Record Length nnels) m Duration of aptured at Highest Rate nnels) see Range (s/div) se Delay Time I-to-Channel Range see Accuracy	Analog Chann All MSO3000 <u>All DPO3000</u> 2.5 GS/s 5 Mpoints 2 ms -10 divisions to ±100 ns ±10 ppm over an	nels Models Models 5000 s 1y≥1 ms interval	
Offset Range Range I mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Dynamic Range	1 MΩ ±1 V ±10 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of three) 50 V _{PP} (threshold setting)	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo	A cteristic m Sample Rate inels) m Record Length inels) m Duration of pptured at Highest Rate inels) ise Range (s/div) ise Delay Time I-to-Channel Range ise Accuracy contal System I contal System I	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to ±100 ns ±100 pm over ar Digital Chann	nels Models Models 5000 s ny ≥1 ms interval els Models	
Offset Range Range I mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 100 mV/div to 995 mV/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Upnamic Range Minimum Voltage Swinge	1 MΩ ±1 V ±10 V ±100 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of three; 500 mV -	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo	Acteristic m Sample Rate inels) m Record Length inels) m Duration of aptured at Highest Rate inels) isse Dalay Time I-to-Channel Range isse Accuracy ontal System I cteristic m Sample Rate	Analog Chann All MSO3000 <u>All DPO3000</u> 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to : ±100 ns ±10 ppm over an Digital Chann All MSO3000	nels Models Models 5000 s ny≥1 ms interval els Models	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 100 mV/div to 995 mV/div 1 V/div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Threshold Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Upnamic Range Minimum Voltage Swing Input Impedance	1 MΩ ±1 V ±10 V ±10 V ±100 V ±100 V ±100 V ital Channels All MSO3000 Mode 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of three 50 V _{PP} (threshold settin 500 mV _{PP} 101 kΩ	50 Ω, 75 Ω ±1 V ±5 V NA NA NA NA NA NA NA NA NA NA	A Horizo	A cteristic m Sample Rate inels) m Record Length inels) m Duration of aptured at Highest Rate inels) ise Delay Time I-to-Channel Range ise Accuracy Cteristic m Sample Rate ill channels)	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to ±100 ns ±100 pm over an Digital Chann All MSO3000 500 MS/s (2 ns r	nels Models Models 5000 s ny ≥1 ms interval els Models esolution)	
Offset Range Range I mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 100 mV/div to 995 mV/div 1 V/div 1 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Voltage Minimum Voltage Swing Input Impedance Probe Loading Vertical Resolution	1 MΩ ±1 V ±10 V ±100 V ±100 V ±100 V ital Channels All MSO3000 Model 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of three) 50 V _{PP} (threshold settin 500 mV _{PP} 101 kΩ 8 pF 1 bit	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu (all char Maximu Time-ba Time-ba Range Charao Deskew Time-ba Range Charao Charao Maximu (Main, a Maximu (Main, a	A cteristic m Sample Rate inels) m Record Length inels) m Duration of aptured at Highest Rate m Duration of aptured at Highest Rate ise Range (s/div) ise Delay Time I-to-Channel Range ise Accuracy charles cteristic m Sample Rate II channels) m Record Length II channels)	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to : ±10 pm over an Digital Chann All MSO3000 500 MS/s (2 ns n 5 Mpoints	nels Models Models 5000 s 1y≥1 ms interval els Models esolution)	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 //div 1.01 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Voltage Threshold Accuracy Maximum Input Upnamic Range Minimum Voltage Swing Input Impedance Probe Loading Vertical Resolution	$\begin{array}{c} 1 \ M\Omega \\ \pm 1 \ V \\ \pm 10 \ V \\ \pm 100 \ V \\ \pm 100 \ V \\ \hline \end{array} \\ \begin{array}{c} 100 \ V \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 100 \ V \\ \hline \end{array} \\ \begin{array}{c} 100 \ V \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 100 \ V \\ \end{array} \\ \end{array} \\ \begin{array}{c} 100 \ V \\ \end{array} \\ \end{array} \\ \begin{array}{c} 100 \ V \\ \end{array} \\ \end{array} \\ \end{array} $	50 Ω, 75 Ω ±1 V ±5 V ±5 V sto V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu (all char Maximu (all char Maximu (all char Maximu Time-ba Channe Deskew Time-ba Horizo Charao Maximu (Main, a Maximu (Main, a)	Acteristic m Sample Rate inels) m Record Length inels) m Duration of aptured at Highest Rate inels) isse Delay Time I-to-Channel Range isse Accuracy Dontal System I Cteristic m Sample Rate II channels) m Record Length II channels) m Sample Rate (u, all channels)	Analog Chann All MSO3000 <u>All DPO3000</u> 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to ±100 ns ±10 ppm over ar Digital Chann All MSO3000 500 MS/s (2 ns n 5 Mpoints 8.25 GS/s (121.2)	nels Models Models 5000 s 1y≥1 ms interval els Models esolution)	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div 101 V/div to 10 V/div Vertical System Dig Characteristic Input Channels Thresholds Threshold Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Voltage Threshold Accuracy Maximum Input Dynamic Range Minimum Voltage Swing Input Impedance Probe Loading Vertical Resolution	1 MΩ ±1 V ±10 V ±100 V ±100 V ±100 V ital Channels All MSO3000 Model 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of threshold setting 500 mV _{PP} 101 kΩ 8 pF 1 bit	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu Time Ca Sample (all char Time-ba Time-ba Time-ba Channe Deskew Time-ba Channe Charao Charao Maximu (Main, a Maximu (Main, a) Maximu (Magni)	A cteristic m Sample Rate unels) m Record Length unels) m Duration of aptured at Highest Rate m Duration of aptured at Highest Rate se Range (s/div) use Delay Time I-to-Channel Range use Accuracy Cteristic m Sample Rate II channels) m Sample Rate II channels) m Sample Rate (u, all channels)	Analog Chann All MSO3000 All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to : ±100 ns ±100 pm over an Digital Chann All MSO3000 500 MS/s (2 ns r) 5 Mpoints 8.25 GS/s (121.2 10 kpoints cente	nels Models Models 5000 s 5000 s els Models esolution) resolution) red on the trigger	
Offset Range Range 1 mV/div to 99.5 mV/div 100 mV/div to 99.5 mV/div 1 V/div 1 V/div Vertical System Dig Characteristic Input Channels Thresholds Selections User-defined Threshold Range Maximum Input Voltage Threshold Accuracy Maximum Input Dynamic Range Minimum Voltage Swing Input Impedance Probe Loading Vertical Resolution	1 MΩ ±1 V ±10 V ±100 V ±100 V ±100 V ital Channels All MSO3000 Model 16 Digital (D15 to D0) Threshold per set of 8 TTL, CMOS, ECL, PEC -15 V to +25 V -20 V to +30 V ±(100 mV +3% of threstood setting) 50 V _{PP} (threshold setting) 101 kΩ 8 pF 1 bit	50 Ω, 75 Ω ±1 V ±5 V ±5 V NA	A Horizo Charao Maximu (all char Maximu (all char Maximu Time Ca Sample (all char Maximu Time-ba Time-ba Time-ba Channe Deskew Time-ba Channe Deskew Time-ba Charao Maximu (Main, a Maximu (Magni) (Magni) Maximu (Magni) (Maximu (Magni) (Maximu (Magni) (Maximu (Magni) (Maximu (Magni) (Maximu (Magni) (Maximu (Magn	Acteristic m Sample Rate mels) m Record Length mels) m Duration of aptured at Highest Rate moles) use Range (s/div) use Delay Time I-to-Channel Range I-to-Channel Range	All MSO3000 All MSO3000 I All DPO3000 I 2.5 GS/s 5 Mpoints 2 ms 1 ns to 1000 s -10 divisions to : ±10 ppm over ar Digital Channa All MSO3000 500 MS/s (2 ns r 5 Mpoints 8.25 GS/s (121.2 10 kpoints cente 2.0 ns	nels Models Models 5000 s ty ≥1 ms interval els Models esolution) : ps resolution) red on the trigger	

Current Probes (DPO3000)

Datasheet

Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

Characteristic	A621	A622
Frequency range	5 Hz to 50 kHz	DC to 100 kHz
Maximum input current	2000 A peak	100 A peak
Output	1 mV/A, 10 mV/A, 100 mV/A	10 mV/A, 100 mV/A
Maximum conductor diameter	54 mm (2.13 in.)	11.8 mm (0.46 in.)
Termination	BNC ¹	BNC ¹
Maximum bare-wire voltage	600 V (CAT III)	600 V (CAT III)
Safety	UL3111-2-032, CSA1010.2.032, EN61010-2-032, IEC61010-2-032	UL3111-2-032, CSA1010.2.032, EN61010-2-032, IEC61010-2-032

Ordering information

A621	2000 A AC Current probe/BNC.
A622	100 A AC/DC Current probe/BNC.

Recommended accessories

Adapter, lead; discrete – MLD, 2, 18 AWG, dual insul, BNC, female X 4 mm dual insul; banana jack X dual insul plug, shield banana

Options

012-1450-xx

Service options

Opt. R5	Repair Service 5 Years (including warranty)
CE	

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Zero crossing detecting circuit (SIEMENS 3RF2050-1AA02)

Number of NC contacts / for main contacts		0
	_	•
+ at AC 1 / at 400 V / rated value	٨	50
• at AC-17 at 400 V / fated value	A .	50
• at AC-51 / fated value	A	50
Operating current / minimum	mA	500
Operating voltage		
• at 50 Hz / at AC / rated value	V	24 230
• at 60 Hz / at AC / rated value	V	24 230
Working area related to the operating voltage		
• at 50 Hz / for AC	V	20 253
• at 60 Hz / for AC	V	20 253
Operating frequency		
rated value	Hz	50 60
Relative symmetrical tolerance / of the operation frequence	су %	10
Insulation voltage / rated value	V	600
Voltage slew rate / at the thyristor / for main contacts / maximum permissible	V/µs	1,000
Block voltage / at the thyristor / for main contacts / maxim permissible	num V	800
Reverse current / of the thyristor	mA	10
Derating temperature	°C	40
Active power loss / total / typical	W	66
Resistance against the impulse current / rated value	А	600
12t-level / maximum	A²·s	1,800
Control circuit:		
Type of voltage / of the controlled supply voltage		DC
Control supply voltage / 1		
• for DC		
initial rated value	V	15
final rated value	V	24
Control supply voltage		
 for DC / final value for signal<0>-recognition 	V	5
Relative symmetrical tolerance / of the supply voltage frequency	%	10
Control current		
• at minimum control supply voltage / for DC	mA	2
• for DC / rated value	mA	15
Fuse assignments		https://www.automation.siemens.com/cd- static/material/info/3RF20_eng.pdf

Type of mounting		screw fixing
Type of fixing/fixation / series installation		Yes
Design of the thread / of the screw for fastening of the operating resource		M4
Tightening torque / of the screw for fastening of the operating resource	N∙m	1.5
Width	mm	45
Height	mm	58
Depth	mm	48
Connections:		
Design of the electrical connection / for main current circuit		screw-type terminals
Design of the thread / of the connection screw / for main contacts		M4
Tightening torque / for main contacts / with screw-type terminals		
• minimum	N∙m	2
• maximum	N∙m	2.5
Tightening torque (Ibf·in) / for main contacts / with screw-type terminals		
• minimum	lbf∙in	7
• maximum	lbf∙in	10.3
Type of the connectable conductor cross-section		
for main contacts		
• solid		2x (1.5 2.5 mm²), 2x (2.5 6 mm²)
finely stranded		
with conductor end processing		2x (1 2.5 mm ²), $2x$ (2.5 6 mm ²), $1x$ 10 mm ²
for AWG conductors		
for main contacts		2x (14 10)
for auxiliary and control contacts		1x (AWG 20 12)
for auxiliary and control contacts		
• solid		1x (0.5 2.5 mm²), 2x (0.5 1.0 mm²)
finely stranded		
with conductor end processing		1x (0.5 2.5 mm²), 2x (0.5 1.0 mm²)
without conductor final cutting		1x (0.5 2.5 mm²), 2x (0.5 1.0 mm²)
Conductor cross section that can be connected		
for main contacts		
• solid	mm²	1.5 6
stranded wire		
with conductor end processing	mm²	1 10
for auxiliary and control contacts		

• solid	mm²	0.5 2.5	
stranded wire			
with conductor end processing /	mm²	0.5 2.5	
without conductor final cutting	mm²	0.5 2.5	
AWG number / as coded connectable conductor cross-section / for main contacts		14 10	
Design of the electrical connection / for auxiliary and control current circuit		screw-type terminals	
Design of the thread / of the connection screw / of the auxiliary and control pins		M3	
AWG number / as coded connectable conductor cross-section			
 for auxiliary and control contacts 		20 12	
Skinning length / of the cable / for main contacts	mm	10	
Skinning length / of the cable / for auxiliary and control contacts	mm	7	
Tightening torque / for auxiliary and control contacts			
with screw-type terminals	N∙m	0.5 0.6	
Tightening torque (Ibf·in) / for auxiliary and control contacts			
with screw-type terminals	lbf∙in	4.5 5.3	
Certificates/approvals:			
General Product Approval	EMC	Declaration o	f Test Certificates
		Conformity	
	С-ТІСК	EG-Konf.	Certificates/Test Report
other			
Environmental Confirmations			
Further information:			
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs			
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall			
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax			
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://suport.automation.siemens.com/WW/view/en/38F2050-1AA02/			
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/a Image database (product images, 2D dimension drawings, 3D moc	all dels, device c	circuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/a Image database (product images, 2D dimension drawings, 3D moon http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF205	all dels, device d 50-1AA02	circuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/s Image database (product images, 2D dimension drawings, 3D moor http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF205	all Iels, device d 0-1AA02	circuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/z Image database (product images, 2D dimension drawings, 3D moc http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF205	all dels, device o 50-1AA02	circuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/s Image database (product images, 2D dimension drawings, 3D moo http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF205	all dels, device d 50-1AA02	circuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/c Image database (product images, 2D dimension drawings, 3D moc http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF2050	all dels, device d 0-1AA02	Sircuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/c Image database (product images, 2D dimension drawings, 3D moon http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF2050-1A402/c	all fels, device d 50-1AA02	circuit diagrams,)	
Further information: Information- and Downloadcenter (Catalogs, Brochures,) http://www.siemens.com/industrial-controls/catalogs Industry Mall (Online ordering system) http://www.siemens.com/industrial-controls/mall CAx-Online-Generator http://www.siemens.com/cax Service&Support (Manuals, Certificates, Characteristics, FAQs,) http://support.automation.siemens.com/WW/view/en/3RF2050-1AA02/s Image database (product images, 2D dimension drawings, 3D mod http://www.automation.siemens.com/bilddb/cax_en.aspx?mlfb=3RF205	all dels, device d 50-1AA02	circuit diagrams,)	

Sound level measuring meter (Extech SL130G)

Measuring equipment (WT230/WT210)

Specifications

The latest product information is available at our web site http://www.yokogawa.com/tm/. Review the specifications to determine which model is right for you.

Parameter	Voltage	Current			
Input type	Floating input				
	Resistance voltage divider	Shunt input system			
Rated values (ranges)	15/30/60/150/300/600 V	Direct input: 5/10/20/50/100/200 mA (WT210 only)*			
rates faloo (langoo)		: 0.5/1/2/5/10/20 A (WT210/WT230)			
		External input (optional): 2.5/5/10 V or 50/100/200 mV			
Measuring instrument loss	Input resistance: Approximately 2 MΩ	Direct input: Approximately 500 mΩ + approximately 0.1 µH (5-200 mA; WT210)			
(input resistance)	Input capacitance: Approximately 13 pF	Approximately 6 mΩ + 10 mΩ (max) ² + approximately 0.1 µH (0.5-20 A; WT21			
		Approximately 6 mΩ approximately 0.1 µH (0.5-20 A; WT230)			
		External input: Approximately 100 kΩ (2.5/5/10 V), approximately 20 kΩ (50/100/200 mV)			
Maximum instantaneous allowed input	Peak voltage of 2.8 kV or rms value of 2.0 kV (whichever is less)	0.5-20 A (WT210/WT230): Peak current of 450 A or rms value of 300 A (whichever is less)			
(1 cycle, 20 ms duration)		5-200 mA (WT210): Peak current of 150 A or rms value of 100 A (whichever is less)			
		External input: Peak value of 10 times range or less			
Maximum instantaneous allowed input	Peak voltage of 2.0 kV or rms value of 1.5 kV (whichever is less)	0.5-20 A (WT210/WT230): Peak current of 150 A or rms value of 40 A (whichever is less)			
(1 second duration)		5-200 mA (WT210): Peak current of 30 A or rms value of 20 A (whichever is less)			
		External input: Peak value of 10 times range or less			
Maximum continuous allowed input	Peak voltage of 1.5 kV or rms value of 1.0 kV (whichever is less)	0.5-20 A (WT210/WT230): Peak current of 100 A or rms value of 30 A (whichever is less)			
		5-200 mA (WT210): Peak current of 30 A or rms value of 20 A (whichever is less)			
		External input: Peak value of 5 times range or less			
Maximum continuous common mode voltage	600 Vrms (with output connector protective cover), CAT II / 400 Vrms (with	out output connector protective cover) CAT II			
(with 50/60 Hz input)					
CMRR	50/60 Hz, -80 dB or higher (±0.01% of range or less) with voltage	input terminals shorted and current input terminals open and external input terminals shorted			
600 Vrms across input terminal and case	Reference value (up to 100 kHz): ±((Maximum range rating)/(Ran	ge rating) × 0.001 × f% of rng) or less (voltage range and 0.5-20 A current range and externa			
	input range")				
	±((Maximum range rating)/(Range rating) × 0.0002 ×1% of rng) or less (W1210; 5-200 mA range)				
	Note: 0.0176 of higher. Ha in kinz. 5 Decupie the above-formula t	bout the external input range.			
Input terminal type	Plug-in terminal (safety terminal)	Direct input: Large binding post			
		External input: BNC connector (insulation type)			
A/D converter	Simultaneous conversion of voltage and current inputs				
	Resolution: 16 bits				
	Maximum conversion speed: Approximately 20 µs (approximately 51 kHz)				
Range switching	Ranges can be set manually, automatically, or through online cor	trols.			
	Auto-range function				
	Range raising: When a measurement exceeds 130% of the rating, or when the peak value exceeds approximately 300% of the rating				
	Range lowering: When a measurement falls to 30% or less of the rating, and the peak value falls to approximately 300% or less of the rating for the low range				
Measurement mode switching	Any of the following, selected manually or through online controls	RMS (true rms value measurements for both voltage and current), V MEAN (calibration of			
	average-value-rectified rms value for voltage; true rms value mea	surement for current), DC (simple averages for both voltage and current)			

Measurement Functions			
Parameter	Voltage/current		Active power
System		Digital sampling; sum of averages	method
Frequency range		DC, and 0.5 Hz to 100 kHz	
Crest factor	3	3 (with rated input) 300 (with minimum e	ffective input)
Accuracy (three months after calibration)	DC: ±(0.2% or rdg + 0.2% of rng)* DC:	±(0.3% or rdg + 0.2% of rng)*
(Conditions)	$0.5 \ \text{Hz} \le \text{f} < 45 \ \text{Hz}: \qquad \pm (0.1\% \ \text{of rdg} \pm 0.2\% \ \text{of rng}$) 0.5 Hz ≤ f <	45 Hz: ±(0.3% of rdg + 0.2% of rng)
Temperature: 23±5°C	$45 \text{ Hz} \leq \text{f} \leq 66 \text{ Hz}: \qquad \pm (0.1\% \text{ of rdg} \pm 0.1\% \text{ of rng}$) 45 Hz ≤ f ≤ €	66 Hz: ±(0.1% of rdg + 0.1% of rng)
Humidity: 30-75% RH	$66 \ \text{Hz} < f \leq 1 \ \text{kHz}: \qquad \pm (0.1\% \ \text{of rdg} + 0.2\% \ \text{of rng}$) 66 Hz < f ≤ 1	1 kHz: ±(0.2% of rdg + 0.2% of rng)
Input waveform: Sinewave	1 kHz < f \leq 10 kHz: $\pm ((0.07 \times f)\% \text{ of rdg} + 0.3\%)$	of rng) 1 kHz < f ≤ 1	10 kHz: ±(0.1% of rdg + 0.3% of rng)
Power factor: $\cos \phi = 1$			±((0.067 × (f-1))% of rdg)
In-phase voltage: 0 V DC	10 kHz < f \leq 100 kHz: \pm ((0.5% of rdg + 0.5% of rng	3) 10 kHz < f <	100 kHz: ±(0.5% of rdg + 0.5% of rng)
Frequency filter: ON at 200 Hz or less	$\pm((0.04\times(f\text{-}10))\%~of~rdg)$		$\pm((0.09\times(\text{f-10}))\%~\text{of rdg})$
Display diate: 5 diata			
After CAL is even and			
Note: In the accuracy calculation formula, f is in kHz.	* Add $\pm 10~\mu A$ to the current DC accuracy.	* Add ±10 µ.	A × voltage reading to the power DC accuracy.
Power factor effect		For cosp = 0)
		45 Hz ≤ f ≤ 6	66 Hz: ±0.2% of VA (VA is a reading value of apparent po
		Reference d	ata (up to 100 kHz): ±((0.2 + 0.2 × f)% of VA)
		Indicated va	lue tolerance for 0 < cosφ < 1
Note: In the accuracy calculation formula, f is in kHz.		Add (tang × (e	effect when $\cos\phi = 0)\%$ of power reading to the above power accu
		Note: ø is the	e phase angle between voltage and current.
Effective input range	1-130% of voltage/current range rating (for accuracy a	at 110-130%, add the reading tolerance	× 0.5 to the above accuracy)
Accuracy (12 months after calibration)	Add the accuracy's reading tolerance (three months a	(fter calibration) \times 0.5 to the accuracy the	ree months after calibration.
Line filter function	A low-pass filter can be inserted in the input circuit for	measurement. The cutoff frequency (fc) is 500 Hz.
Accuracy with line filter on	Voltage and current: Add 0.2% of rdg at 45-66 Hz. Add	d 0.5% of rdg below 45 Hz.	
	Power: Add 0.3% of rdg at 45-66 Hz. Add 1% of rdg b	elow 45 Hz.	
Temperature coefficient	±0.03% of range/°C at 5-18°C and 28-40°C.		
Display updating intervals	0.1/0.25/0.5/1/2/5 seconds		
Lead/lag detecting	Lead/lag is detected correctly when phase difference	equal to or greater than ±5° with both vo	oltage and current inputs as sine waves equal to or great
	50% of rated range-value, and the frequency is between	en 20 Hz to 2 kHz.	
Measurement lower limit frequency	Data updating rate 0.1 second 0.25	second 0.5 second 1 second	2 seconds 5 seconds

Frequency Measurements	Communication Functions (Optional for the WT210)
Veasurement Inputs: V1, V2, V3, A1, A2, or A3 (select one) Veasurement system: Reciprocal system Veasurement frequency: range Veasurement for the system Veasurement for the system 100 ms : 20 km : 100 kHz 250 ms: 10 Hz ≤ 15:100 kHz 500 ms: 5 Hz ≤ 15:00 kHz 25 sec: 2.5 Hz ≤ 15:50 kHz 25 sec: 1.5 Hz ≤ 15:50 kHz 5 sec: 0.5 Hz ≤ 15:20 kHz Accuracy: -100 tim2 km it for the set 30% of voltage/current rated range. Frequency filter function ON at 200 Hz Kequency filter function ON at 200 Hz	GP-IB or serial interface (RS-232-C) (select one) GP-IB Electrical and mechanical specifications: Conform to IEEE Standard 488-1978 (JIS C1901-1987). Functional specifications: SH1, AH, T5, L4, SR1, RL1, PR0, DC1, DT1, C0 Protocol: Conforms to IEEE Standard 488.2-1992. Code used: ISO (ASCII) code Addresses: 0-30 talker/listener addresses can be set. Serial interface (RS-232-C) Transmission mode: Asynchronous Baud rates: 1200, 2400, 4800, 9600 bps

5

Specifications

Calculation Functions

		Single- phase 3- wire	Three-phase 3-wire (2 voltages, 2 currents)	Three-phase 3-wire (3 voltages, 3 currents)	Three- phase 4- wire
Voltage ∑V		(V1 + V3)/2	(V1 + V2 + V3)/3 (A1 + A2 + A3)/3	
Current ∑A		(A1 + A3)/2		
Active power ∑W		W1 + W3	3		W1+W2+W3
Reactive power var, ∑var	vari =√(VA² - W²)	var1 + va	ar3		var1 + var2 + var3
Apparent power VA, ΣVA		VA1 + VA3	√3/2 (VA1 + VA3)	√5/3 (VA1 + VA2 + VA3)	VA1 + VA2 + VA3
Power factor PF, ∑PF	Pfi = Wi/VAi	ΣW/ΣVA			
Phase angle deg, Σdeg	degi = cos ⁻¹ (Wi/VAi)	cos¹ (∑V	V/∑VA)		

- angle ording.
 cost* (WV/kn)

 Notes
 in an angle ordination of the superior of superior

Display Functions

6

Display unit: Display areas:	7-segment LED (light-emitting diode) 3			
Display area		Displayed information		
A	V, A, W, VA, var (fo	V, A, W, VA, var (for each element), integration elapsed time		
В	/, A, W, PF, deg (for each element, percentage (content percentage, THD)			
C V, A, W, V/AHz, Vpk, Apk, ±Wh, ±Ah (for each element), MATH				
Measurement parameters Maximum display Display resolution				
V, A, W, VA, var	99999	0.001%		
PF	±1.0000	0.01%		
dea	±180.0	0.1*		
±Wh. ±Ah	999999	0.0001%		
VHz AHz	99999	Input frequency/20.000		
Display digits: 4 Factory default s	or 5 digits (selectab etting is 5 digits.	le by user).		
Jnits: Jisplay updati Response time Vlaximum disp Vlinimum disp Vlinimum disp Vlinimum disp Setting ray Setting ray Setting ray Moving ave In cases constain Moving ave In cases constain Auto-range im An LED tur MAX hold fun This functiof WATH functior System:	m, k, M, J ag intervals: 0.1. and from for displa filter off, J, and from lay: 140% off ad from lay: 140% off ad from al average functions that function gits. Selected current r ge: 0.001 to clion a verage where response c where response c an be selected onitor not on when the in tion no can be used to selected the selected onitor not on when the in a diff the selected onitor selected the selected onitor selected the selected the selected onitor selected the selected onitor selected the selected onitor selected the selected onitor selected the selected onitor selected the selected onitor selected selected onitor selected selected the selected onitor selected se	V, A, W, AV, var, Hz, Hz, deg, % () 2500 5/1/25 seconds m 2 times the display updating interval (time required when range rating abruptly changes from 0% to 100%, 100% to 0%) is zero suppression. I automatically according to the digits in the voltage and anges. I automatically according to the digits in the voltage and anges. By By B		
Diaplay rapaly	frunctions	imum diaplay recelution abanges tegether with the		
Jispiay resolu	integrate	innum display resolution changes together with the ed value.		
Maximum disp Modes:	lay: -99999 to Standard	o 999999 MWh/MAh d integration mode (timer mode), continuous integration		
Timer:	Automati Setting ra	ic integration start/stop based on timer setting. ange: 000 h:00 min:00 sec to 10000 h:00 min:00 sec		
Count over flo Accuracy:	(If the tim w: When the to at leas operation +(display	ne is set to zero, manual mode is automatically set.) e integrated value exceeds 999999 MWh/MAh or falls it -99999 MWh/MAh, the elapsed time is saved and the n is stopped. y accuracy + 0 1% of rdo)		
Fimer accurac Remote contro	y: ±0.02% bl: Starting, external option /D	, stopping, and resetting can be controlled through contact signals. This function is only available when DA4, /DA12 or /CMP is installed.		

Internal Memory Functions

Stored data WT210 (760401) WT230 (760502) WT230 (760503)	Normal measureme	ent Harmonic measurement	
WT210 (760401) WT230 (760502) WT230 (760503)			
WT230 (760502) WT230 (760503)	Data for 600 sample	es Data for 30 samples	
W(12307760503)	Data for 300 sample	es Data for 30 samples	
W1200 (700000)	Data for 200 sample	es Data for 30 samples	
Store interval:	Display updating inte and 59 seconds	erval and 1 second to 99 h	iours, 59 minutes
Recall interval:	Display updating inte	erval and 1 second to 99 h	ours, 59 minutes
	(Both can be set in	1-second increments)	
anel setting information:	Four different pattern	ns of panel setting informat	ion can be written/
	read.		
Harmonic Mea System: Measurement frequ	Surement Funct PLL synchronizatior	t ion (optional)	
Maximum display:	Fundamental freque 99999	ency in range of 40-440 H	z
Display digits:	4 or 5 digits (selecta Factory default setti	able by user). ing is 5 digits.	
vieasurement parar	W3, deg1, deg2, deg voltage, rms current harmonic distortion	(WT210), V1, V2, V3, A1, g3 (WT230), individual hau t, active power, fundamer rate, individual harmonic	monic levels, rms mal frequency PF content
Measurement elem	ent: These parameters a single specified in	s can only be measured s put element.	imultaneously fo
Sampling speed, wi The values for the	ndow width, and analy ese parameters vary a	ysis orders ccording to the input funda	mental frequency
undamental frequency	Sampling speed	d Window width	Analysis orders
40 ≤ f < 70 Hz 70 ≤ f < 130 Hz	f × 512 Hz f × 256 Hz	2 periods of f 4 periods of f	50 50
130 ≤ f < 250 Hz 250 < f < 440 Hz	f × 128 Hz f × 64 Hz	8 periods of f	50
FFT data length:	1024	To perioda or i	50
FT processed wor Window function:	d length: 32 bits Rectangular		
Jisplay updating int	erval: 0.25/0.5/1/2/5 secor	nds Updating is slower du	ring online outpu
	according to the concernment of	ommunication speed an	d the number o
Accuracy:	Add ±0.2% of range	to normal measurement	accuracy.
	× (10/(m+1))%) to the	component input, add ((r he n+mth order and n-mth	ith order reading order.
D/A Output (op	ptional)		
Output voltage:	±5 V FS (maximum	approximately ±7.5 V) for	each rated value
Number of outputs: Output data selection:	 12 parameters with / Can be set separate 	DA12 option; 4 parameter	s with /DA4 optioi
Accuracy:	±(equipment accura	acy + 0.2% of FS)	
D/A converter: Response time:	12-bit resolution Maximum 2 times th	ne display updating interv	al
Updating interval:	Same as the equipr	ment's display updating in	terval
Temperature coeffic	ient: ±0.05%°C of F	FS	
Frequency			
DA	A output		
D/	7.5V	ç—	
DA	A output	oooooooo	
D/	A output 7.5V 5.0V	çç	
D/	A output 7.5V 5.0V		
עס	A output 7.5V 5.0V 2.5V		
עס	A output 7.5V 2.5V		
D	A output 7.5V 5.0V 2.5V		
DA	A output 7.5/ 2.5/ 0.5/ 0.5/ 0.5/ 0.5/ 0.5/ 0.5/ 0.5/ 0		value
Di	A output 7.5V 5.0V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0		value
D/ Integration D/A output	A cuput 7.5V 5.0V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0		value
Dr Integration DrA output	A output 7.5V 2.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 10KE 10KE 10KE		value
Di Integration DiA outpu 7.0V	A output 7.5V 5.0V 2.5V 0.		value
Di Integration DIA output 7.0V	A output 7.5V 2.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0	o 140% of nation	value
Di Integration DiA outpu 7.0V 5.0V	A output 7.5V 2.5V 0.		value
Di Integration DIA outpu 7.0V 5.0V	A output 7.5V 2.5V 0.		value
Di Integration DIA output 7.0V 5.0V	A output 7.50 2.50 0.50 0.5142 Hz Toke 100 7.50 0.5142 Hz Toke 100	o 140% of nation For rated input.	value
Di Integration DiA outpu 7.0V 5.0V	A output 7.5V 2.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0.5V 0	or 140% of ming For table input	value
Di Integration DiA outpu 7.0V 5.0V	A output 7.50 2.50 0.57 0.	D 140% of raining For rained input	value
Di Integration DiA output 5.0V	A culput 7.50 0.50 0.50 0.51 ke 1ke 10 For input equal to For input equal to 0.50 0.51 ke 1ke 10	Orac Tokke TOKKE Display	value gration time
Di Integration DiA output 7.0v 5.0v 0 Other paramete	A output 7.50 2.50 0.50 0.50 0.50 0.50 0.50 0.54 104 For input equal to For input equal to 0.50	Dial Charles (Contraction)	value gration time
Di Integration DiA output 5.0V C0ther parameter	A culput 7.50 5.00 2.50 0.50 0.50 0.54 114 104 10 For input equal to 10. Rated setting time rs	or 10% of railing For railed input	value gration time
Di Integration DiA outpu 7.0V 5.0V 0ther paramete Disp	A output 7.5V 2.5V 0.	For nated input	value gration time
Di Integration DIA output 7.0v 5.0v 0ther paramete 16 15 15 15 15 15 15 15 15 15 15 15 15 15	A output 7.5V 5.0V 0.5V 0.	Di 40% of nating For rated input	value gration time
Di Integration DiA outpu 7.8V 5.9V 0ther paramete Disp 0ther paramete 0ther 2.50V 0ther paramete 0ther 2.50V 0ther	A output 7.50 5.00 0.50 0.50 0.50 0.54 114 104 10 100. Rated setting time or Rated setting time re any 0. Rated setting time	o 140% of nating For rated input DX output 7,50 5,90 	value gration time
Di Integration DiA output 5.0V 5.0V 0 Other paramete 19 19 19 19 19 19 19 19 19 19 19 19 19	A output 7.5V 5.0V 2.5V 0.	For nated input	value gration time
Di Integration DIA output 7.0V 5.0V 0ther paramete 10 -100 -100 -100 -100 -100 -100 -100	A output 7.50 5.00 2.50 0.	Di 40% of nating For rated input Di 40% of nating For rated input	value gration time
Di Integration DiA output 7.0V 5.0V Other paramete Dise 3.00 -100 -100 -100 -100 -100 -100 -100 -	A output 7.50 5.00 2.50 0.50 0.50 0.50 0.50 0.54 0.	Dr Addynd 7.57 5.97 DDA odynd 7.57 5.97 00 100% 100% 100% 100% 100% 100% 100% 100%	value gration time
Di Integration DiA output 5.0V S.0V 0ther paramete 19 	A output 7.5/ 5.0/ 2.5/ 0.	For rates input	value gration time
Di Integration DIA ordpr 7.07 5.07 Other paramete 14 10 -100 -100 -100 -100 -100 -100 -10	A output 7.50 5.00 2.50 0.	Dia kongoli 2 SV View 1004 Diaglag Dia kongoli 2 SV 2 SV 0 SV View 1004 Diaglag Dia kongoli 2 SV 1004 Lagoni 2 SV 2	value gration time
Di Integration DiA supp 7.0V 5.0V Other paramete 10 -100 -100 -100 -100 -100 -100 -100	A output 7.5V 5.0V 2.5V 0.	Dr Aodyol Construction Dr Aodyol Dr Aodyo	value gration time

7