References

- [1] Li Jun, Dong Jiancong, and Li Chun. "The Analysis of the Unburned Carbon in Fly Ash for Tangentially Pulverized Coal-Fired Boiler Based on Factor Analysis Method", *Asia-PacificPower and Energy Engineering Conference* (APPEEC),2011.
- [2] Gabriel Vladut, Liana SimonaSbirna, Sebastian Sbirna, Clement IonescuandClementinaSabina Moldovan. "CFD simulation of controlling nitrogen oxides emissions reduction and loss-on-ignition for a corner-fired pulverized-coal furnace", 2012 16th International Conference on System Theory, Control and Computing (ICSTCC), 2012.
- [3] Ya-qing Zhu, Feng-ping Pan and Shi-he Chen. "Research on methods of forecasting unburned carbon content in the fly ash from coal-fired power plant",2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2013
- [4] Weijing Shi, Jingcheng Wang, Yuanhao Shi and Zhengfeng Liu. "Clustering LS-SVM Models for the Prediction of Unburned Carbon Content in Fly Ash", *The 27th Chinese Control and Decision Conference (CCDC)*, 2015
- [5] Weijing Shi, Jingcheng Wang, Yuanhao Shi and Guanglei Zhao. "Online Prediction of Unburned Carbon Content in Fly Ash with Clustering LS-SVM Models", 2015 34th Chinese Control Conference (CCC), 2015
- [6] Operation manual of Lakvijaya power station.
- [7] Operation manual of ash handling system of Lakvijaya power station
- [8] Operation and maintenance manual of HG-1025/17.3-YM boiler model, Harbin boiler co. ltd
- [09] http://www.statisticalsolution.com
- [10] http://www.iea-coal.org.uk/documents/82354/7536/Reducing-carbon-in-ash
- [11] http://en.wikipedia.org

[Appendix-A: Coal quality parameters]

Parameter	SYMBOL	UNIT	DESIGN COAL	CHECK COAL 1	CHECK COAL 2
High calorific value as received basis	Qv.ar	MJ/kg	26.4	25.3	24.7
Industrial analysis					
Total moisture content as received basis	Mt	%	12	16	19
Moisture content as air dried basis	Mad	%		6	
Ash content as received basis	Aar	%	11	15	10.1
Volatile matter content as received basis	Var	%	27	25	24.9
Elementary analysis					
Carbon content as received basis	Car	%	65	60	60.5
Hydrogen content as received basis	Har	%	3.8	3.6	3.4
Oxygen content as received basis	Oar	%	6.2	3	5.1
Nitrogen content as received basis	Nar	%	1.5	1.7	1.4
Sulphur content as received basis	Star	%	0.5	0.7	0.5
Grindability factor	HGI		50	42	50
Ash deformation temperature	DT	°C			
Ash softening temperature	ST	°C	1250	1170	1250

Source: Operation manual, Lakvijaya Power Station

[Appendix-B: Sample of data set obtained]

Date/Time	Power (MW)	Coal rate (T/h)	Air flow(T/h)	Furnace Pressure (Pa)	PA Pressure (kPa)	PA temp(°C)	Burner angle(°)	SA Pressure (kPa)	SA Temp(°C)	LoI(%)
1/26/17 00:00	301.388	110.65	1030.124	-56.627	10.636	167.62425	11.652	2.445	329.815	5.3
1/25/17 16:00	298.751	111.291	1012.849	-83.437	10.642	162.1045	11.638	2.406	326.107	4.91
1/25/17 08:00	298.943	109.217	1012.472	-68.872	11.208	153.195	11.661	2.466	338.413	3.86
1/25/17 00:00	299.053	110.013	1016.517	-66.296	11.101	160.242	4.474	2.553	336.869	4.48
1/24/17 16:00	274.416	101.266	962.222	-30.201	11.029	154.5025	13.62	2.47	331.893	3.21
1/24/17 8:00	223.412	84.021	831.54	-73.193	11.608	154.59	-9.561	1.716	317.233	3.45
1/24/17 00:00	224.264	83.604	830.15	-73.636	11.27	150.009333 3	-9.538	1.759	314.118	3.82
1/23/17 16:00	227.395	86.021	841.402	-56.091	11.345	148.090333 3	4.369	1.809	310.366	3.05
1/23/17 08:00	227.972	86.136	833.542	-79.983	11.364	154.941666 7	7.234	1.863	332.979	3.72
1/23/17 00:00	227.395	85.907	832.195	-51.287	11.376	146.743333 3	7.23	1.887	331.668	3.21
1/22/17 16:00	227.203	85.65	835.922	-41.106	11.684	149.18	7.244	1.825	329.869	3.73

[Appendix-C: Heteroscedasticity Test]

Heteroscedasticity Test: Breusch-Pagan-Godfrey

F-statistic	0.365610	Prob. F(4,80)	0.8324
Obs*R-squared	1.525946	Prob. Chi-Square(4)	0.8220
Scaled explained SS	1.195053	Prob. Chi-Square(4)	0.8789

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 12/04/17 Time: 12:51

Sample: 1 85

Included observations: 85

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AIR_TO_COAL_RATIO_ PA_PRESSURE_ PA_TEMP_ SA_PRESSURE_	0.588245 1787.756 -0.000326 -2.11E-10 -0.018665	0.324437 2629.833 0.000275 9.47E-10 0.146030	1.813125 0.679798 -1.185710 -0.223013 -0.127814	0.0736 0.4986 0.2392 0.8241 0.8986
R-squared	0.017952	Mean dependent var		0.355236
Adjusted R-squared S.E. of regression Sum squared resid	-0.031150 0.482520 18.62606	S.D. dependen Akaike info crite Schwarz criteri	0.475176 1.437434 1.581120	
Log likelihood	-56.09096	Hannan-Quinn	1.495229	

H₀: Homoscedasticity H₁: Heteroscedasticity

$P > \alpha$

0.8324 > 0.05 \longrightarrow Accept H_0

According to BPG test for checking the heteroscedasticity which is one of the violations of assumptions in OLS H0 is accepted at 5% significant level indicating that heteroscedasticity does not exist in the model.