
7 REFERENCES

- REN21 Secretariat, "Renewables 2016 Global Status Report," REN21 Secretariat, France, 2016.
- [2] "Global Trends in Renewable Energy Investment 2016," Frankfurt School of Finance & Management gGmbH, 2016.
- [3] "https://docs.google.com/file/d/0BwtHKWY5sCyVclpMR3pMM1lYVWM/edit,"[Online].
- [4] "Oxford Business Group," 2017. [Online]. Available: https://www.oxfordbusinessgroup.com/analysis/sustainable-generation-rolerenewable-power-sources-set-expand.
- [5] Ceylon Electricity Board, "Long Term Generation Expansion Plan 2015 -2034," July 2015.
- [6] Ministry of Power and Energy, "Energy Empowered Nation," Sri Lanka Energy Sector Development Plan for a Knowledge based Economy, 2015.
- [7] D. M. Lal, B. B. Dash and A. Akella, "Optimization of PV/Wind/Micro-Hydro/Diesel Hybrid Power System in," *International Journal on Electrical Engineering and Informatics - Volume 3*, p. 1, 3 November 2011.

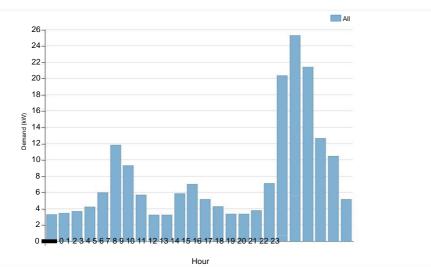
- [8] K. Ratneswaran, "Hybrid Power System for Eluvaithivu Island Sri Lanka," *Master of Science Thesis*, pp. 1 61, 2011.
- [9] M. G. Udayakanthi, "Design of a Wind-Solar Hybrid Power Generation System in Sri Lanka," *KTH Industrial Engineering and Management*, pp. 1 - 61, 2015.
- [10] S. Rehman, A. M. Mahbub, . J. Meyer and . L. M. Al-Hadhrami, "Feasibility study of a wind-pv-diesel hybrid power system for a village".
- [11] S. A. Shezan, R. Saidur, K. R. Ullah, W. T. Chong and S. Julai, "Feasibility analysis of a hybrid off-grid wind–DG-battery energy system for the eco-tourism remote areas," vol. 17, December 2015.
- [12] M. Hasan and O. B. Momin, "Performance Analysis and Feasibility Study of Solar-Wind-Diesel Hybrid Power system in Rural Areas of Bangaladesh," *International Journal of Engineering Research and General Science*, pp. 410 - 420, September 2015.
- [13] A. V. Anayochukwu, "Feasibility Assessment of PV Diesel Hybrid Power system for an Isolated off Grid Catholic Church," *Renewable Energies Reaseach Nucleus*, pp. 49 - 63, 2013.
- [14] M. Laidi, S. Hanini, B. Abbad, N. K. Merzouk and M. Abbas, "Study of a Solar PV-Wind-Battery Hybrid Power System for a Remotely Located Region in the Southern Algerian Sahara: Case of Refrigeration," pp. 30-38, 2012.

- [15] V. O. Okinda and N. A. Odero, "A REVIEW OF TECHNIQUES IN OPTIMAL SIZING OF HYBRID," *International Journal of Research in Engineering*, pp. 153 -161, November 2015.
- [16] J. G. FANTIDIS, D. V. BANDEKAS and . N. VORDOS, "Techno-economical study of hybrid power system for a remote village in Greece," *Recent Researches in Energy, Environment and Sustainable Development*, pp. 30 - 35.
- [17] T. Givler and P. Lilienthal, "Using HOMER® Software, NREL's Micropower Optimization Model, to Explore the Role of Gen-sets in Small Solar Power Systems," 2005.
- [18] Laboratory, National Renewable Energy, "HOMER, The Micropower Optimization Model".
- [65] H. S. Jacobus, "Solar-Diesel Hybrid Power System Optimization and Experimental Validation," *Thesis Submitted to the faculty of the Graduate School of the University of Maryland*, pp. 1 - 102, 2010.
- [66] R. Saidur, W. T. Chong, K. R. Ullah and S. Julai, "Feasiility Analysis of a hybrid off-gridwind-DG-Battery energy system for eco- tourism remote areas," *ResearchGate*, 12 August 2015.

APPENDIX A

APPENDIX B

Input Summary


Project title	Eluvathivu
Author	
Notes	

Project Location

Location	Unnamed Road, Sri Lanka
Latitude	9 degrees 41.33 minutes North
Longitude	79 degrees 48.72 minutes East
Time zone	Asia/Colombo

Load: Electric1

Data source	Synthetic
Daily noise	10%
Hourly noise	20%
Scaled annual average	189.215 kWh/d
Scaled peak load	40.9879 kW
Load factor	0.1923

Microgrid Controller: HOMER Cycle Charging

	Quantity	Capital	Replacement	0&M
·	1	\$0.00	\$0.00	\$0.00

Minimization strategy	Economic
Setpoint state of charge	80
Allow multiple generators to operate simultaneously	Yes
Allow systems with generator capacity less than peak load	Yes
Allow diesel off operation	Yes

Microgrid Controller: HOMER Load Following

Quantity	Capital	Replacement	O&M
1	\$0.00	\$0.00	\$0.00

Minimization strategy	Economic
Allow multiple generators to operate simultaneously	Yes
Allow systems with generator capacity less than peak load	Yes
Allow diesel off operation	Yes

PV:AC West

Size	Capital	Replacement	O&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Sizes to consider	11.5
Lifetime	25 yr
Derating factor	90%
Tracking system	No Tracking
Slope	20.000 deg
Azimuth	90.000 deg
Ground reflectance	0.0%

PV:AC East

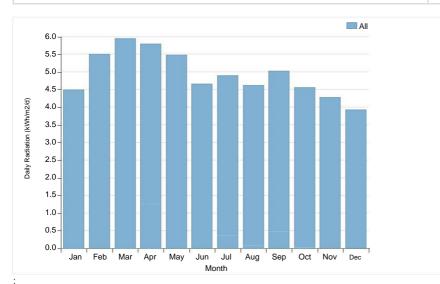
Size	Capital	Replacement	O&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Sizes to consider	13.5
Lifetime	25 yr
Derating factor	90%
Tracking system	No Tracking
Slope	20.000 deg
Azimuth	-90.000 deg
Ground reflectance	0.0%

PV:DC West

Size	Capital	Replacement	0&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Sizes to consider	9.75
Lifetime	25 yr
Derating factor	90%
Tracking system	No Tracking
Slope	20.000 deg
Azimuth	90.000 deg
Ground reflectance	0.0%

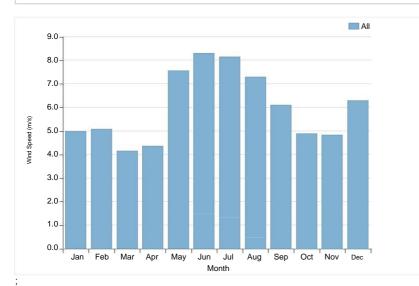

PV:DC East

Size	Capital	Replacement	0&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Size	Capital	Replace	nent	O&M	
Sizes to consider			10.5	10.5	
Lifetime 2		25 yr	25 yr		
Derating factor		90%	90%		
Tracking system		No Tracking	No Tracking		
Slope		20.000 deg	20.000 deg		
Azimuth		-90.000 deg			
Ground reflectan	се		0.0%		

Solar Resource

Scaled annual average	4.90 kWh/m2/d
-----------------------	---------------



Wind Turbine:Windspot 3.5

Quantity	Capital	Replacement	O&M
1	\$18,000.00	\$18,000.00	\$180.00

Wind Resource

Generator:50kW Genset

Size	Capital	Replacement	0&M
1.00	\$500.00	\$500.00	\$0.03

Sizes to consider	0,30
Lifetime	15,000 hrs
Min. load ratio	25%
Heat recovery ratio	0%
Fuel used	Diesel
Fuel curve intercept	0.0330 L/hr/kW
Fuel curve slope	0.2730 L/hr/kW

Fuel: Diesel

Price	\$ 1.00/L
Lower heating value	43.2 MJ/kg
Density	820.00 kg/m3
Carbon content	88.0%
Sulfur content	0.4%

Battery:Li-Ion 27.5 kWh

Quantity	Capital	Replacement	O&M
1	\$48,160.00	\$38,528.00	\$190.00
Quantities to consider	r		3

Converter

Size	Capital	Replacement	O&M
100.00	\$61,760.00	\$0.00	\$500.00
Sizes to consider		0,100 kW	
Lifetime		25 yr	
Inverter can parallel with AC generator		Yes	

Economics

Annual real interest rate	3%
Project lifetime	25 yr
Capacity shortage penalty	\$0/kWh
System fixed capital cost	0
System fixed O&M cost	0

System control

Timestep length in minutes	60
Multi-Year enabled	No
Allow systems with multiple generators	Yes
Allow systems with multiple wind turbine types	No
Battery autonomy threshold	2
Maximum renewable penetration threshold	55

Optimizer

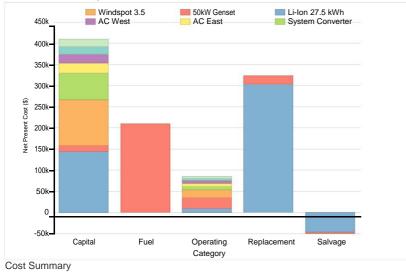
Maximum simulations	10000
System design precision	0.01
NPC precision	0.01
Minimum spacing	0
Focus factor	50
Optimize category winners	Yes
Use base case	Yes

Emissions

Carbon dioxide penalty	\$ O/t
Carbon monoxide penalty	\$ 0/t
Unburned hydrocarbons penalty	\$ 0/t
Particulate matter penalty	\$ 0/t
Sulfur dioxide penalty	\$ 0/t
Nitrogen oxides penalty	\$ 0/t

Constraints

Maximum annual capacity shortage	0
Minimum renewable fraction	0
Operating reserve as percentage of hourly load	10
Operating reserve as percentage of peak load	0
Operating reserve as percentage of solar power output	25
Operating reserve as percentage of wind power output	50

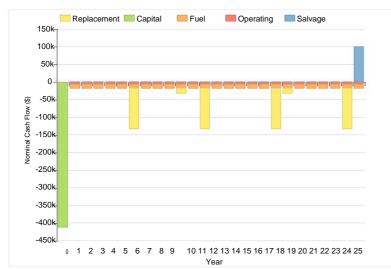

HOMER Energy, LLC © 2017

System Report

System architecture

by otomical of interotation			
PV	AC West	12	kW
PV #2	AC East	14	kW
PV #3	DC West	10	kW
PV #4	DC East	11	kW
Wind Turbine	Windspot 3.5	6	
Generator	50kW Genset	30	kW
Storage	Li-lon 27.5 kWh	3	strings
Converter	System Converter	100	kW
Dispatch Strategy	HOMER Cycle Charging		

Cost summary



Total net present cost	981215	\$
Levelized cost of energy	0.813	\$/kWh

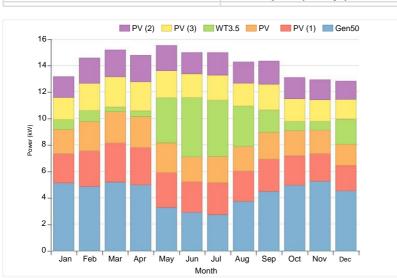
Net Present Costs

Component	Capital	Replacement	O&M	Fuel	Salvage	Total
AC West	20,700	0	6,027	0	0	26,727
AC East	24,300	0	7,076	0	0	31,376
DC West	17,550	0	5,110	0	0	22,660
DC East	18,900	0	5,503	0	0	24,403
Windspot 3.5	108,000	0	18,869	0	0	126,869
50kW Genset	15,000	20,015	25,001	209,273	-2,526	266,764
HOMER Cycle Charging	0	0	0	0	0	0
Li-Ion 27.5 kWh	144,480	303,818	9,958	0	-46,336	411,921
System Converter	61,760	0	8,735	0	0	70,495
System	410,690	323,833	86,280	209,273	-48,861	981,215

Component	Capital		Replacement		O&M	Fuel	Salvage	Total
AC West	1	,185		0	345	0	0	1,530
AC East	1	,391		0	405	0	0	1,796
DC West	1	,005		0	293	0	0	1,297
DC East	1	,082		0	315	0	0	1,397
Windspot 3.5	6	6,182		0	1,080	0	0	7,262
50kW Genset		859		1,146	1,431	11,978	-145	15,269
HOMER Cycle Charging		0		0	0	0	0	0
Li-Ion 27.5 kWh	8	3,270		17,390	570	0	-2,652	23,578
System Converter	3	3,535		0	500	0	0	4,035
System	23	3,507		18,536	4,939	11,978	-2,797	56,163

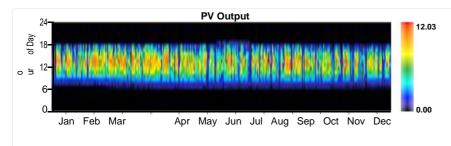
Electrical

Quantity	Value	Units
Excess electricity	52071	kWh/yr
Unmet load	3	kWh/yr
Capacity shortage	9	kWh/yr
Renewable percent	45	%


Component	Production(kWh/yr)		Percent (%)
PV		17,661	14
PV		20,985	17
PV		14,973	12
PV		16,321	13
Generator		38,111	31
Wind Turbine		16,492	13
Total		124,543	100

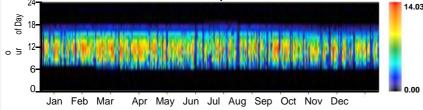
Load	Consumption(kWh/yr)	Percent (%)
AC primary load	69,061	100
DC primary load	0	0

Consumption(kWh/yr)

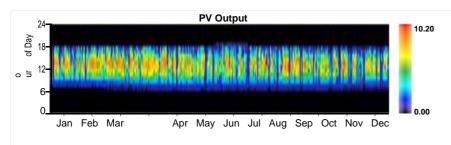

^{69,061} Percent (%)

100

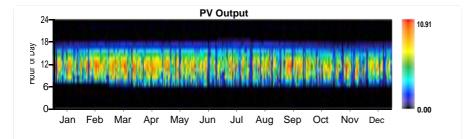
PV:AC West


Quantity	Value	Units
Rated capacity	12	kW
Mean output	2	kW
Mean output	48.39	kWh/d
Capacity factor	17.53	%
Total production	17661	kWh/yr
Minimum output	0.00	kW
Maximum output	12.03	kW
PV penetration	25.57	%
Hours of operation	4358	hrs/yr
Levelized cost	0.087	\$/kWh

PV:AC East


Quantity	Value	Units
Rated capacity	14	kW
Mean output	2	kW
Mean output	57.49	kWh/d
Capacity factor	17.74	%
Total production	20985	kWh/yr
Minimum output	0.00	kW
Maximum output	14.03	kW
PV penetration	30.38	%

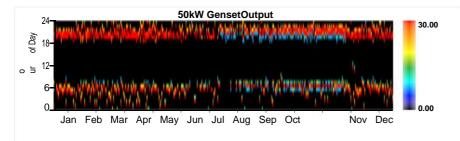
Hours of operation Quantity	Value	4358	hrs/yr Units
Levelized cost		0.086	\$/kWh
24 PV Output	14.03		


PV:DC West

Quantity	Value	Units
Rated capacity	10	kW
Mean output	2	kW
Mean output	41.02	kWh/d
Capacity factor	17.53	%
Total production	14973	kWh/yr
Minimum output	0.00	kW
Maximum output	10.20	kW
PV penetration	21.68	%
Hours of operation	4358	hrs/yr
Levelized cost	0.087	\$/kWh

PV:DC East

Quantity	Value	Units
Rated capacity	11	kW
Mean output	2	kW
Mean output	44.72	kWh/d
Capacity factor	17.74	%
Total production	16321	kWh/yr
Minimum output	0.00	kW
Maximum output	10.91	kW
PV penetration	23.63	%
Hours of operation	4358	hrs/yr
Levelized cost	0.086	\$/kWh

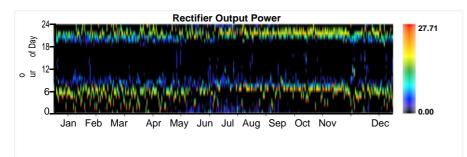


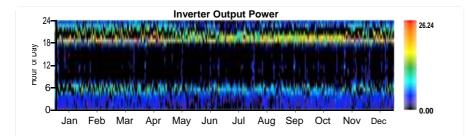
Wind Turbine:Windspot 3.5

Quantity	Value	Units
Total rated capacity	18	kW
Mean output	2	kW
Capacity factor	10.46	%
Total production	16492	kWh/yr
Minimum output	0.00	kW
Maximum output	22.53	kW
Wind penetration	23.88	%
Hours of operation	8760	hrs/yr
Levelized cost	0.440	\$/kWh

Generator:50kW Genset

Quantity	Value	Units
Hours of operation	1590	hrs/yr
Number of starts	707	starts/yr
Operational life	9	yr
Fixed generation cost	2.89	\$/hr
Marginal generation cost	0.27	\$/kWh
Electrical production	38111	kWh/yr
Mean electrical output	24	kW
Min. electrical output	8	kW
Max. electrical output	30	kW
Fuel consumption	11978	L/yr
Specific fuel consumption	0.31	L/kWh
Fuel energy input	117867	kWh/yr
Mean electrical efficiency	32	%


Battery:Li-Ion 27.5 kWh


Quantity	Value
String size	1
Strings in parallel	3
Batteries	3
Bus voltage	48

Quantity	Value	Units
Nominal capacity	76	kWh
Usable nominal capacity	46	kWh
Autonomy	6	hr
Battery wear cost	0.065	\$/kWh
Average energy cost	0.199	\$/kWh
Energy in	26209	kWh/yr
Energy out	25193	kWh/yr
Storage depletion	34	kWh/yr
Losses	982	kWh/yr
Annual throughput	25713	kWh/yr

Converter

Quantity	Inverter	Rectifier	Units
Capacity	100	95	kW
Mean output	3	2	kW
Minimum output	0	0	kW
Maximum output	26	28	kW
Capacity factor	3	2	%
Hours of operation	3,975	2,058	hrs/yr
Energy in	26,310	21,591	kWh/yr
Energy out	24,994	20,512	kWh/yr
Losses	1,315	1,080	kWh/yr

Emissions

Pollutant	Emissions	Units
Carbon dioxide	31358	kg/yr
Carbon monoxide	196	kg/yr
Unburned hydrocarbons	9	kg/yr
Particulate matter	1	kg/yr
Sulfur dioxide	77	kg/yr
Nitrogen oxides	184	kg/yr

HOMER Energy, LLC © 2017