REFERENCES

1) Meek, S. (2008). In The Implementation and Effectiveness of Transport Demand Management Measures: An International Perspective: Chapter-9: Park and ride. Ashate Burlington, VT.
2) Qin, H., Guan, H., \& Wu, Y. J. (2013). Analysis of park-and-ride decision behavior based on Decision Field Theory. Transportation research part F: traffic psychology and behavior, 18, 199-212.
3) Liu, Z., \& Meng, Q. (2014). Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes. International Journal of Systems Science, 45(5), 994-1006.
4) Rosli, N. S., Adnan, S., Alyia, S. A., Ismail, F. D., Hamsa, K., \& Azeez, A. (2012). A theoretical review on sustainable transportation strategies: the role of park and ride facility as a generator of public transport mode shift. In Proceedings of the 23rd EAROPH World Congress the Eastern Regional Organization for Planning and Human Settlement.
5) Noel, E. C. (1988). Park-and-ride: alive, well, and expanding in the United States. Journal of Urban Planning and Development, 114(1), 2-13.
6) Meek, S., Ison, S., \& Enoch, M. (2008). Role of bus-based park and ride in the UK: a temporal and evaluative review. Transport reviews, 28(6), 781-803.
7) Lam, W. H., Holyoak, N. M., \& Lo, H. P. (2001). How park-and-ride schemes can be successful in Eastern Asia. Journal of urban planning and development, 127(2), 63-78.
8) Barter, P. (2010). Park-and-Ride Comparison: Vancouver, Melbourne and Perth.
9) Borhan, M.Z., Rahamat, R.A.A.O.K., Ismail, A., Ismail, R. (2011). Prediction of travel behavior in Putrajaya, Malaysia, Research Journal of Applied Sciences, Engineering \& Technology, 3(5), 434-439.
10) Cameron, I., Lyons, T. J., \& Kenworthy, J. R. (2004). Trends in vehicle kilometres of travel in world cities, 1960-1990: underlying drivers and policy responses. Transport policy, 11(3), 287-298.
11) Bos, I. D., Van der Heijden, R. E., Molin, E. J., \& Timmermans, H. J. (2004). The choice of park and ride facilities: An analysis using a context-dependent hierarchical choice experiment. Environment and Planning A, 36(9), 1673-1686.
12) Turnbull, K. F. (1995). Effective use of park-and-ride facilities. Transportation Research Board, Washington, DC.
13) Dickins, I. S. (1991). Park and ride facilities on light rail transit systems. Transportation, 18(1), 23-36.
14) Smec, A. (2007). Park and Ride Strategy for the Australian Capital Territory.
15) Wiseman, N., Bonham, J., Mackintosh, M., Straschko, O., \& Xu, H. (2012). Park and ride: An Adelaide case study. Road \& Transport Research: A Journal of Australian and New Zealand Research and Practice, 21(1), 39.
16) Hamer, P., Currie, G., \& Young, W. (2009). Exploring travel and parking impacts of the Melbourne CBD parking levy. Planning and Transport Research Centre (PATREC).
17) Hamer, P. (2010). Analysing the effectiveness of park and ride as a generator of public transport mode shift. Road \& Transport Research: A Journal of Australian and New Zealand Research and Practice, 19(1), 51.
18) http://news.bbc.co.uk/2/hi/uk news/4072134.stm
19) Islam, S. T., Liu, Z., Sarvi, M., \& Zhu, T. (2015). Exploring the mode change behavior of park-and-ride users. Mathematical Problems in Engineering, 2015.
20) University of Moratuwa \& University of Peradeniya.(2011). Kandy city transport study.
21) Kumarage A.S.(2014). Kandy transport improvement program.

Applicability and Effectiveness of the Park and Ride System in Kandy City.

* Required

1. Your Current Residency ? *

Eg: Gampola,Matale,Kundasale

2. You are Currently *

Mark only one oval.
(D) Government Employed
(D) Private EmployedRetiredHigher StudiesSchoolingOther:
3. Your monthly Income *

Mark only one oval.
Less than Rs.50,000
Rs.50,000 - Rs.75,000
Rs.75,000-Rs.100,000
Rs.100,000-Rs.150,000
Above Rs.150,000
4. Nearest City or Suburb (GN Division) to your destination ? *

Mark only one oval.
Kandy
Buwelikada
Thalwatte
Lewella
Aruppola West
Aruppola East
Niththawela
Siyabalagasthenna
Mawilmada
Watapuluwa
Watapuluwa West
Watapuluwa south
Mahaweli Uyana
Dodanwela
Aniwatte West
Aniwatte East
Asgiriya
Bahirawakanda
Mapanawathura
Wattaranthenna
Mahaiyawa
Poornawatta West
Poornawatta East
Heerassagala
Mulgampola
Udabowala
Bowala
Ogastawatta
Bowalawatta
PalleperadeniyaUdaperadeniyaPitakandagamaSenkadagala
Ampitiya North
Ampitiya South
Malwatta
Katukelle
5. Purpose of entering Kandy city ?

Mark only one oval.
Work or Official purpose
School or Higher Studies
Business
Shopping or Leisure
Residence
Other:
6. Distance from your current resident to your destination (km) ? *
7. Mode of major transport which you use to enter Kandy city ? * Mark only one oval.Private Vehicle (Car/Van/Jeep/Cab)Bus
TrainBus + Train
Staff Vehicle
Bicycle
Three Wheeler
8. Average Travel time (min) ? *
9. If you use a private vehicle,Frequency of traveling to Kandy ? * Mark only one oval.DailyEvery week day2-4 days per week10-20 days per monthI don't use private vehicle
10. Your ability to use railway between Gatambe and Katugasthota *

Mark only one oval.Can Use
Can't UseCan use but I'm not preffered to use

Satisfaction level of your present transport mode

11. Current Travel time of present journey *

Mark only one oval.

0	1	2	3	4	5

Not Satisfied \square \square \square \square \square -
rer cuma

Not Satisfied \square
\square
\square Highly Satisfied
12. Current level of Safety of your present journey *

Mark only one oval.
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

Not Satisfied \square \square \square \square \square \square Highly Satisfied
13. Comfortability of your present transport mode *

Mark only one oval.

0	1	2	3	4	5

Not Satisfied \square
\square
\square \square \square \square Highly Satisfied
14. Reliability of your present transport mode *

Mark only one oval.

0	1	2	3	4	5

Not Satisfied \square
\square
\square
\square
\square
\square Highly Satisfied
15. Economy of your present travel mode *

Mark only one oval.

1	2	3	4	5

Not Satisfied \square \square \square
\square
\square Highly Satisfied
16. Operational frequency of your present travel mode *

Mark only one oval.

0	1	2	3	4	5

Not Satisfied $\square \square \square$ Highly Satisfied
17. Satisfactory level of Pedestrian walkways *

Mark only one oval.

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Not Satisfied \square
\square
\square \square \square
\square Highly Satisfied
18. Satisfactory level of Bus Stands,Bus Halts, Railway Stations and Halts/Stops *

Mark only one oval.

0	1	2	3	4	5

Not Satisfied \qquad \square \square \square \square \qquad Highly Satisfied
19. Other ...(Please specify and mark it's level of satisfaction)
20. Mark only one oval.

0	1	2	3	4	5

Not Satisfied \square
\square \square \square \square
\square Highly Satisfied

How far the following improvements will help for better "Park and Ride" system ?

21. Reliability of the proposed public transport system within the city *

Mark only one oval.

0	1	2	3	4	5

Not Important \square \square \square
\square
\square Very Important
22. Availability of parking lots at the parking areas in the Terminals (Gatambe,Thennekumbura \& Katugasthota) *
Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square
\square
\square
\square
\square Very Important
23. Security of the parked vehicle *

Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square
\square
\square
\square
\square Very Important
24. Comfortability of the proposed public transport system *

Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square o \square
\square
\square Very Important
25. Frequency of proposed public transport system within the city *

Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square \square \square
\square
\square Very Important
26. Introduce lower parking charges and attractive parking charging system at the Terminals * Mark only one oval.

0	1	2	3	4	5

Not Important \square \square \square \square \square Very Important
27. Increase the parking charges within the City *

Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square \square \square
\square
\square Very Important
28. Other... (Please specify and mark it's level of importance)
\qquad
29. Mark only one oval.

0	1	2	3	4	5

Not Important \square \square \square \square \square Very Important

How far the following improvements will help for attractiveness of railway between Gatambe and Katugasthota

30. Increase the number of frequency of travel between Gatambe and Katugasthota *

Mark only one oval.

0	1	2	3	4	5

Not Important
 \square \square \square \square \square Very Important
31. Increase the number of halts/stops between Gatambe and Katugasthota *

Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square \square \square
\square
\square Very Important
32. Increase the Comfortability of Trains *

Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square \square \square \square \square Very Important
33. Develop the stations and halts/stops up to proper standards with new technology. (Wi-fi,Traveler information system,Advance bookings parking lots and tickets) *
Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square
\square
\square
\square Very Important
34. Other... (Please specify and mark it's level of importance)
35. Mark only one oval.

0	1	2	3	4	5

Not Important \square
\square
\square
\square
\square
\square Very Important
36. If you are willing to use proposed public transport,Your expected waiting time on average journey (min) *
Mark only one oval.0-5
5-1010-1515-20
37. Average walking distance from the point of egress from public transport mode to your destination *
Mark only one oval.0-100m
$100 m-500 m$
500 m-1000 mabove 1000 m
38. Currently, If you are a private vehicle user, Your comfortable walking distance to change your traveling mode to public transport *
Mark only one oval.0-300 m
$300 \mathrm{~m}-500 \mathrm{~m}$
$500 \mathrm{~m}-750 \mathrm{~m}$above 750 mI use public vehicle
39. After all developments made, Do you wish to use public transport ? *

Mark only one oval.

YesNo
40. If No, Please specify the reasons?
\qquad
\qquad
\qquad
\qquad
\qquad

ANNEXURE II: ANALYZED RESULTS OF PRESENT TRANSPORT AND ACCEPTABILITY OF PROPOSED P\&R SYSTEM

```
CROSSTABS
    /TABLES=Mode BY Acceptance
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ
    /CELLS=COUNT EXPECTED
    /COUNT ROUND CELL
    /METHOD=EXACT TIMER(5).
```

Crosstabs

Output Created		26-MAR-2017 10:48:19
Comments		
	Data	J:IP\&R\Report-2017\Analysis 1.sav
	Active Dataset	DataSet1
	Filter	<none>
Input	Weight	<none>
	Split File	<none>
	N of Rows in Working Data	
	File	52
	Definition of Missing	User-defined missing values are treated as missing.
Missing Value Handling		Statistics for each table are based on all the cases with valid data in
	Cases Used	the specified range(s) for all variables in each table.
		CROSSTABS
		/TABLES=Mode BY Acceptance
		/FORMAT=AVALUE TABLES
Syntax		/STATISTICS=CHISQ
		/CELLS=COUNT EXPECTED
		/COUNT ROUND CELL
		/METHOD=EXACT TIMER(5).
	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.02
Resources	Dimensions Requested	2
	Cells Available	174762
	Time for Exact Statistics	0:00:00.01

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Travel Mode * Acceptability of $P \& R$	152	100.0\%		0.0\%	152	100.0\%

Travel Mode * Acceptability of P\&R Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	23.731^{a}	6	.001	.000	
Likelihood Ratio	30.322	6	.000	.000	
Fisher's Exact Test	26.944			.000	
Linear-by-Linear Association	$.689^{\mathrm{b}}$		1	.407	.451

Chi-Square Tests

	Point Probability
Pearson Chi-Square	
Likelihood Ratio	
Fisher's Exact Test	
Linear-by-Linear Association	$.042^{\text {b }}$
N of Valid Cases	

a. 10 cells (71.4%) have expected count less than 5 . The minimum expected count is .32 .
b. The standardized statistic is -.830 .

Test Hypothesis is;
Ho: Present mode of transport and Park and Ride acceptability are independent.

Ha: Present mode of transport and Park and Ride acceptability are not independent.

In this cases the assumption of Chi-square test is violated (expected count is less than 5 in more than 20% number of cells). Hence the hypothesis checked with the Fisher Exact test.

According to the outcome of SPSS, the P-value (0.000) is lesser than the significance level (0.05), hence null hypothesis cannot accept. Therefore, it is conclude that there is relationship between traveler's present mode of transport and acceptability of the proposed Park and Ride system.

ANNEXURE III: ANALYZED RESULTS OF MONTHLY INCOME LEVEL AND ACCEPTABILITY OF PROPOSED P\&R SYSTEM

```
CROSSTABS
    /TABLES=Income BY Acceptance
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ
    /CELLS=COUNT EXPECTED
    /COUNT ROUND CELL
    /METHOD=EXACT TIMER(5).
```


Crosstabs

Notes		
Output Created		26-MAR-2017 12:58:23
Comments		
	Data	J:\P\&R\Report-2017\Analysis 1.sav
	Active Dataset	DataSet1
	Filter	<none>
Input	Weight	<none>
	Split File	<none>
	N of Rows in Working Data	152
	File	
	Definition of Missing	User-defined missing values are treated as missing.
Missing Value Handling		Statistics for each table are based on all the cases with valid data in the
	Cases Used	specified range(s) for all variables in each table.
		CROSSTABS
		/TABLES=Income BY Acceptance /FORMAT=AVALUE TABLES
Syntax		/STATISTICS=CHISQ
		/CELLS=COUNT EXPECTED
		/COUNT ROUND CELL
		/METHOD=EXACT $\operatorname{TIMER(5).}$
	Processor Time	00:00:00.06
	Elapsed Time	00:00:00.05
Resources	Dimensions Requested	2
	Cells Available	174762
	Time for Exact Statistics	0:00:00.05

[DataSet1] J:\P\&R\Report-2017\Analysis 1.sav

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \text { Income * Acceptability of } \\ & \text { P\&R } \end{aligned}$	152	100.0\%	0	0.0\%	152	100.0\%

Income * Acceptability of P\&R Crosstabulation

			Acceptability of P\&R		Total
			Yes	No	
		Count	23	3	26
		Expected Count	17.6	8.4	26.0
		Count	12	2	14
	Rs 50,000 Rs 75,000	Expected Count	9.5	4.5	14.0
		Count	39	5	44
	Rs	Expected Count	29.8	14.2	44.0
		Count	20	19	39
	-Rs	Expected Count	26.4	12.6	39.0
		Count	9	20	29
	,	Expected Count	19.7	9.3	29.0
Total		Count	103	49	152
		Expected Count	103.0	49.0	152.0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	38.698^{a}	4	.000	.000	
Likelihood Ratio	39.907	4	.000	.000	
Fisher's Exact Test	38.112			.000	
Linear-by-Linear Association	28.675^{b}	1		.000	.000

Chi-Square Tests

	Point Probability
Pearson Chi-Square	
Likelihood Ratio	
Fisher's Exact Test	
Linear-by-Linear Association	
N of Valid Cases	$.000^{\text {b }}$

a. 1 cells (10.0%) have expected count less than 5 . The minimum expected count is 4.51 .
b. The standardized statistic is 5.355 .

Test Hypothesis is;

Ho: Monthly income level and Park and Ride acceptability are independent.
Ha: Monthly income level and Park and Ride acceptability are not independent.
In this cases the assumption of Chi-square test is satisfied (expected count is less than 5 in less than 20% number of cells). Therefore, the hypothesis checked with the Chi-squared test.

According to the outcome of SPSS, the P-value (0.000) is lesser than the significance level (0.05), hence null hypothesis cannot accept. Therefore, it is conclude that there is relationship between monthly income level and acceptability of the proposed Park and Ride system.
DATA

Monthly Income level	\% Acceptance
Rs $: 25000$	88
Rs $: 62500$	86
Rs $: 87500$	89
Rs $: 125000$	51
Rs $: 150000$	31

SUMMARY

Regression Statistics	
Multiple R	0.886662856
R Square	0.786171021
Adjusted R Square	0.714894694
Standard Error	14.17239175
Observations	5

ANOVA

					$\begin{array}{c}\text { Significance } \\ \text { F }\end{array}$
Regression		1	2215.429936	2215.43	11.0299

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0%	Upper 95.0%
Intercept	111.7643312	14.35179625	7.78748	0.004406	66.09051024	157.43815	66.090510	157.438152
X Variable 1	0.000475159	0.000143072	-3.32113	0.045016	0.000930477	$-1.984 \mathrm{E}-05$	-0.0009304	$-1.9842 \mathrm{E}-05$

```
ANNEXURE IV: ANALYZED RESULTS OF AVERAGE TRAVEL
DISTANCE AND ACCEPTABILITY OF PROPOSED P&R
SYSTEM
CROSSTABS
    /TABLES=Distance BY Accept
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ
    /CELLS=COUNT EXPECTED ROW
    /COUNT ROUND CELL
    /METHOD=EXACT TIMER(5).
```


Crosstabs

	Notes	
Output Created		27-MAR-2017 12:12:16
Comments		
	Data	J:\P\&R\Report-2017\Analysis 3.sav
	Active Dataset	DataSet1
	Filter	<none>
Input	Weight	<none>
	Split File	<none>
	N of Rows in Working Data	152
	File	
	Definition of Missing	User-defined missing values are treated as missing.
Missing Value Handling		Statistics for each table are based on all the cases with valid data in the
	Cases Used	specified range(s) for all variables in each table.
		CROSSTABS
		/TABLES=Distance BY Accept
		/FORMAT=AVALUE TABLES
Syntax		/STATISTICS=CHISQ
		/CELLS=COUNT EXPECTED ROW
		/COUNT ROUND CELL
		$/ \mathrm{METHOD}=\mathrm{EXACT}$ TIMER(5).
	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.02
Resources	Dimensions Requested	2
	Cells Available	174762
	Time for Exact Statistics	0:00:00.01

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Travel Distance * P\&R Accepatance	152	100.0\%		0.0\%	152	100.0\%

Travel Distance * P\&R Acceptance Cross tabulation

			P\&R Acceptance		Total
			No	Yes	
Travel Distance	Distance ≤ 5	Count	8	10	18
		Expected Count	5.8	12.2	18.0
		\% within Travel Distance	44.4\%	55.6\%	100.0\%
	5< Distance ≤ 10	Count	19	26	45
		Expected Count	14.5	30.5	45.0
		\% within Travel Distance	42.2\%	57.8\%	100.0\%
	10< Distance ≤ 20	Count	13	36	49
		Expected Count	15.8	33.2	49.0
		\% within Travel Distance	26.5\%	73.5\%	100.0\%
	20< Distance ≤ 30	Count	4	15	19
		Expected Count	6.1	12.9	19.0
		\% within Travel Distance	21.1\%	78.9\%	100.0\%
	$30<$ Distance ≤ 40	Count	1	7	8
		Expected Count	2.6	5.4	8.0
		\% within Travel Distance	12.5\%	87.5\%	100.0\%
	Distance > 40	Count	4	9	13
		Expected Count	4.2	8.8	13.0
		\% within Travel Distance	30.8\%	69.2\%	100.0\%
		Count	49	103	152
Total		Expected Count	49.0	103.0	152.0
		\% within Travel Distance	32.2\%	67.8\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)
Pearson Chi-Square	6.540^{a}	5	.257	.260
Likelihood Ratio	6.757	5	.239	.271
Fisher's Exact Test	6.192			.284
N of Valid Cases	152			

a. 2 cells (16.7%) have expected count less than 5 . The minimum expected count is 2.58 .

Test Hypothesis is;

Ho: average travel distance and Park and Ride acceptability are independent.
Ha: average travel distance and Park and Ride acceptability are not independent.

In this cases the assumption of Chi-square test is violated (expected count is less than 5 in more than 20% number of cells). Hence the hypothesis checked with the Fisher Exact test.

According to the outcome of SPSS, the P-value (0.260) is higher than the significance level (0.05), hence null hypothesis can accept. Therefore, it is conclude that average travel distance and Park and Ride acceptability are independent.

ANNEXURE V: ANALYZED RESULTS OF AVERAGE TRAVEL TIME AND ACCEPTABILITY OF PROPOSED P\&R SYSTEM

CROSSTABS
/TABLES=time BY Accept
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ
/CELLS=COUNT EXPECTED ROW
/COUNT ROUND CELL
/METHOD=EXACT TIMER(5).

Crosstabs

Notes

Output Created		27-MAR-2017 12:18:38
Comments		
	Data	J:\P\&R\Report-2017\Analysis 3.sav
	Active Dataset	DataSet1
	Filter	<none>
Input	Weight	<none>
	Split File	<none>
	N of Rows in Working Data	
	File	
	Definition of Missing	User-defined missing values are treated as missing.
Missing Value Handling		Statistics for each table are based on all the cases with valid data in
	Cases Used	the specified range(s) for all variables in each table.
		CROSSTABS
		/TABLES=time BY Accept
		/FORMAT=AVALUE TABLES
Syntax		/STATISTICS=CHISQ
		/CELLS=COUNT EXPECTED
		ROW
		/COUNT ROUND CELL
		/METHOD=EXACT TIMER(5).
	Processor Time	00:00:00.03
	Elapsed Time	00:00:00.03
Resources	Dimensions Requested	2
	Cells Available	174762
	Time for Exact Statistics	0:00:00.03

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Travel Time * P\&R Accepatance	152	100.0\%		0.0\%	152	100.0\%

Travel Time * P\&R Acceptance Cross tabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)
Pearson Chi-Square	$13.724^{\text {a }}$	5	.017	.016
Likelihood Ratio	14.706	5	.012	.017
Fisher's Exact Test	13.132			.019
N of Valid Cases	152			

a. 3 cells (25.0%) have expected count less than 5 . The minimum expected count is 2.90 .

Test Hypothesis is;

Ho: average travel time and Park and Ride acceptability are independent.

Ha: average travel time and Park and Ride acceptability are not independent.

In this cases the assumption of Chi-square test is violated (expected count is less than 5 in more than 20% number of cells). Hence the hypothesis checked with the Fisher's Exact test.

According to the outcome of SPSS, the P-value (0.019) is lesser than the significance level (0.05), hence null hypothesis cannot accept. Therefore, it is conclude that there is relationship between travel time and acceptability of the proposed Park and Ride system.

ANNEXURE VI: ANALYZED RESULTS OF AVERAGE WALKING DISTANCE FROM POINT OF EGRESS FROM PUBLIC TRANSPORT TO DESTINATION AND ACCEPTABILITY OF PROPOSED P\&R SYSTEM

```
CROSSTABS
    /TABLES=walking_distance BY Acceptance
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ
    /CELLS=COUNT EXPECTED TOTAL
    /COUNT ROUND CELL
    /METHOD=EXACT TIMER(5).
```


Crosstabs

Notes		
Output Created		26-MAR-2017 15:24:46
Comments		
	Data	J:IP\&R\Report-2017\Analysis 2.sav
	Active Dataset	DataSet1
	Filter	<none>
Input	Weight	<none>
	Split File	<none>
	N of Rows in Working Data	114
	File	
	Definition of Missing	User-defined missing values are treated as missing.
Missing Value Handling		Statistics for each table are based on all
	Cases Used	the cases with valid data in the specified range(s) for all variables in each table. CROSSTABS
		/TABLES=walking_distance BY Acceptance
Syntax		/FORMAT=AVALUE TABLES
		/STATISTICS=CHISQ
		/CELLS=COUNT EXPECTED TOTAL /COUNT ROUND CELL
		/METHOD=EXACT $\operatorname{TIMER(5).}$
	Processor Time	00:00:00.03
	Elapsed Time	00:00:00.02
Resources	Dimensions Requested	2
	Cells Available	174762
	Time for Exact Statistics	0:00:00.02

[DataSet1] J:\P\&R\Report-2017\Analysis 2.sav

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Avg. walking distance from point of egress public transport to destination * Acceptance	114	100.0\%	0	0.0\%	114	100.0\%

Avg. walking distance from point of egress public transport to destination * Acceptance

Crosstabulation					
			Acceptance		Total
			yes	no	
Avg. walking distance from point of egress public transport to destination	0-100 m	Count	17	11	28
		Expected Count	16.2	11.8	28.0
		\% of Total	14.9\%	9.6\%	24.6\%
		Count	41	24	65
	$100 \mathrm{~m}-500 \mathrm{~m}$	Expected Count	37.6	27.4	65.0
		\% of Total	36.0\%	21.1\%	57.0\%
		Count	8	9	17
	$500 \mathrm{~m}-1000 \mathrm{~m}$	Expected Count	9.8	7.2	17.0
		\% of Total	7.0\%	7.9\%	14.9\%
		Count	0	4	4
	Above 1000 m	Expected Count	2.3	1.7	4.0
		\% of Total	0.0\%	3.5\%	3.5\%
		Count	66	48	114
Total		Expected Count	66.0	48.0	114.0
		\% of Total	57.9\%	42.1\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	7.126^{a}	3	.068	.062	
Likelihood Ratio	8.544	3	.036	.049	
Fisher's Exact Test	6.738			.070	
Linear-by-Linear Association	3.521^{b}	1	.061	.070	.040
N of Valid Cases	114				

Chi-Square Tests

	Point Probability
Pearson Chi-Square	
Likelihood Ratio	
Fisher's Exact Test	
Linear-by-Linear Association	
N of Valid Cases	$.018^{\mathrm{b}}$

a. 2 cells (25.0%) have expected count less than 5 . The minimum expected count is 1.68 .
b. The standardized statistic is 1.876 .

Test Hypothesis is;
Ho: average walking distance from point of egress public transport mode to destination and Park and Ride acceptability are independent.

Ha: average walking distance from point of egress public transport mode to destination and Park and Ride acceptability are not independent.

In this cases the assumption of Chi-square test is violated (expected count is less than 5 in more than 20% number of cells). Hence the hypothesis checked with the Fisher's Exact test.

According to the outcome of SPSS, the P-value (0.070) is higher than the significance level (0.05), hence null hypothesis can accept. Therefore, it is conclude that average walking distance from point of egress public transport mode to destination and Park and Ride acceptability are independent.

ANNEXURE VII: ANALYZED RESULTS OF EXPECTED WAITING TIME ON AVERAGE JOURNEY
 AND ACCEPTABILITY OF PROPOSED P\&R SYSTEM

```
CROSSTABS
    /TABLES=waiting time BY Acceptance
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ
    /CELLS=COUNT EXPECTED TOTAL
    /COUNT ROUND CELL
    /METHOD=EXACT TIMER(5).
```


Crosstabs

Output Created		26-MAR-2017 15:36:58
Comments		
	Data	J:IP\&R\Report-2017\Analysis 2.sav
	Active Dataset	DataSet1
	Filter	<none>
Input	Weight	<none>
	Split File	<none>
	N of Rows in Working Data	
	File	
	Definition of Missing	User-defined missing values are treated as missing.
Missing Value Handling		Statistics for each table are based on all the cases with valid data in
	Cases Used	the specified range(s) for all variables in each table.
		CROSSTABS
		/TABLES=waiting_time BY
		Acceptance
		/FORMAT=AVALUE TABLES
Syntax		/STATISTICS=CHISQ
		/CELLS=COUNT EXPECTED
		TOTAL
		/COUNT ROUND CELL
		/METHOD=EXACT TIMER(5).
	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.02
Resources	Dimensions Requested	2
	Cells Available	174762
	Time for Exact Statistics	0:00:00.02

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
	114	100.0%		0	0.0%	114

waiting time * Acceptance Cross tabulation

			Acceptance		Total
			yes	no	
waiting time		Count	7	21	28
	0-5 min	Expected Count	16.2	11.8	28.0
		\% of Total	6.1\%	18.4\%	24.6\%
		Count	42	25	67
	$5-10 \mathrm{~min}$	Expected Count	38.8	28.2	67.0
		\% of Total	36.8\%	21.9\%	58.8\%
		Count	14	2	16
	10-15 min	Expected Count	9.3	6.7	16.0
		\% of Total	12.3\%	1.8\%	14.0\%
		Count	3	0	3
	15-20 min	Expected Count	1.7	1.3	3.0
		\% of Total	2.6\%	0.0\%	2.6\%
		Count	66	48	114
Total		Expected Count	66.0	48.0	114.0
		\% of Total	57.9\%	42.1\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	20.995^{a}	3	.000	.000	
Likelihood Ratio	23.115	3	.000	.000	
Fisher's Exact Test	20.599			.000	
Linear-by-Linear Association	19.817^{b}		1	.000	.000

a. 2 cells (25.0%) have expected count less than 5 . The minimum expected count is 1.26 .
b. The standardized statistic is -4.452 .

Test Hypothesis is;
Ho: Expected waiting time on average journey and Park and Ride acceptability are independent.
Ha: Expected waiting time on average journey and Park and Ride acceptability are not independent.

In this cases the assumption of Chi-square test is violated (expected count is less than 5 in more than 20% number of cells). Hence the hypothesis checked with the Fisher's Exact test.

According to the outcome of SPSS, the P-value (0.000) is lesser than the significance level (0.05), hence null hypothesis cannot accept. Therefore, it is conclude that there is relationship between expected waiting time on average journey of private vehicle users and acceptability of the proposed Park and Ride system

