POTENTIAL FOR ENERGY CONSERVATION IN NWSDB WATER SUPPLY SCHEMES

K. G. N. Saman Kumara

128369U

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2017

POTENTIAL FOR ENERGY CONSERVATION IN NWSDB WATER SUPPLY SCHEMES

K. G. N. Saman Kumara

128369U

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2017

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	 	
Signature	 	•••

Date:

K. G. N. Saman Kumara

The above candidate has carried out research for the Master's Thesis under my supervision.

Signature:

Date:

Dr. R. A. C. P. RanasingheSenior Lecturer,Department of Mechanical Engineering,University of Moratuwa

Acknowledgement

First my sincere gratitude should equally be delivered to Dr. H. K. G. Punchihewa, Course Coordinator, MEng/PG Diploma in Energy Technology and Dr. R. A. C. P. Ranasinghe, Senior Lecturer, Department of Mechanical Engineering, University of Moratuwa for their continuous motivation exerted towards me with valued advices and kind assistance throughout the research. Their constant supervision behind make my effort worth towards completion the thesis and my professional capacity improved.

My mammoth appreciation is paid hereby to National Water Supply and Drainage Board for providing the opportunity and the financial assistance to attend the master of engineering programme.

I further appreciate the support and the guidance received towards the fulfilment of my carrier with master's degree programme from the lecturing staff in Mechanical Engineering Department of University of Moratuwa.

Special appreciation should go to Mr. S. D. L. Sandanayake and Mr. Priyantha Upul, members of the mechanical department for their valued assistance to the students in every activity for the fulfilment of the Master's degree.

I must extend my sincere appreciation to Eng. P. P. Kahaduwa, Project Director, Ruhunupura Water Supply Project for the immense support exerted towards my effort to fulfill the target and to Eng. J. K. S. Pathiranage, Deputy General Manager, Regional Support Centre, Southern Province of National Water Supply and Drainage Board for supporting me and arranging to collect data and to carry out the research.

Finally, I express my sincere gratitude and appreciation to Eng. Mrs. M. K. J. Prabodhini, Chief Engineer at Regional Support Centre, for her assistance exerted towards my carrier success.

Abstract

This research was aimed to study the potentials for conservation of energy in main schemes of NWSDB in Southern Province. The results are usable on benchmarking energy usage on water supply schemes those operating under NWSDB. From the history of operation of NWSDB over 40 years, energy audits for the resent past were studied for water supply schemes. Specific energy consumption is used to benchmark the energy consumption of each category of operations which leads to identify the potentials for energy conservation. An energy audit was carried out in Southern Province, region-vise Matara, Galle and Hambantota to evaluate the energy conservation potentials.

In electrical energy form, kinetic energy around 25 % of the total consumed is used for pumping raw water. Other 75% is used for major components including water treatments, treated water pumping and distribution networks. Apart from the energy usage on water treatment and pumping, component from total energy as high as 12% was identified as loss on non-revenue water, an area to work on reduction of energy usage.

The main area identified as need for improvements was pumping and transmission equipment and their unit operations where around 14% energy could be targeted for energy saving.

It is worth to improve water sources for free from algae, impurities, pollution and contamination through community awareness, national policy planning and programmed long term vision to meet huge energy conservation in future and to harvesting healthy generation out in danger with numerous diseases.

Direct distribution of water to consuming terminals with continuous pumping is better option to focus to save energy in vigorous amounts instead of distribution through elevated towers yet not ready to be implemented with prevailing electricity pattern in the country.

TABLE OF CONTENTS

De	claratio	n	i
Ac	knowle	dgement	ii
Ab	stract		iii
Tal	ole of co	ontent	iv
Lis	t of Fig	ures	viii
Lis	t of tab	les	xi
Lis	t of Ab	breviations	xiii
Lis	t of app	endices	xiv
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Aim and Objectives	4
	1.3	Scope of Study	4
2	LITE	RATURE REVIEW	5
	2.1	Energy Factor	5
	2.2	Energy on Water	6
	2.3	Treatment Process	7
	2.3.1	Water quality	7
	2.3.2	Dissolved substances	8
	2.4	Availability of Electricity in Sri Lanka	13
	2.5	Energy Consumption behavior in Water Supply Schemes	14
	2.5.1	Overall cost of energy consumption in water supply schemes	14
	2.5.2	Energy consumption in operations	15
	2.6	Benchmarking	20
	2.6.1	Benchmarking history and definitions	20

2.6.2	Types of benchmarking	22
2.6.3	Benchmarking process	22
2.7	Energy Benchmarking	25
2.8	Energy Auditing	29
2.8.1	Introduction	29
2.8.2	Types considered for energy audit	30
2.8.3	Process components for energy audit	31
2.9	Energy Consuming Equipment of Water Supply Schemes	37
2.10	Energy Consumption Assessment of Pumps	37
2.11	Assessment of Energy Consumption for Motors	40
2.12	Energy Conservation Methods	42
2.12.1	Schedule adjustments for pump operation	42
2.12.2	Reduce in pipe frictions in pumping lines	42
2.12.3	Throttling of pumping lines	43
2.12.4	Implementation of capacitor banks	43
2.12.5	Adjusting operation schedules to take advantage of tariff structure	44
2.12.6	Introduction of Variable Frequency Drives (VFD)	44
2.13	Energy Conservation Potential by Reducing Water Losses at Treatment Plant and Distribution	45
2.13.1	Reducing water losses in treatment plant	46
2.13.2	Reduction of Non-Revenue Water (NRW) in the distribution network	47
METH	IODOLOGY	49
3.1	Introduction	49
3.2	Selection of Water Supply Schemes for the Study	50
3.3	Primary and secondary data collection through energy audit	51

3.

	3.4	Secondary Data Collection for Creating Benchmarks	53
	3.5	Calculation of Energy Consumption and Efficiencies	54
	3.6	Energy Balance of Water Supply Schemes	54
	3.7	Benchmarking of Energy Consumption in Unit Processes	55
	3.8	Calculation of Energy Conservation Potential of Reducing Non- Revenue Water	57
	3.9	Investigate the Energy Conservation Methods	58
4	RESU	LTS AND DISCUSSION	59
	4.1	Electricity Consumption of Schemes and Benchmarking of Power Consumption in Water Treatment Unit Processes	59
	4.1.1	Preliminary audit of energy consumption in water supply schemes	60
	4.1.2	Boundary and the time frame for total specific energy consumption for drinking water supply schemes using surface water sources	63
	4.1.3	Total specific energy consumption for drinking water supply schemes using surface water sources	63
	4.1.4	Energy consumption of major components in water supply schemes	64
	4.1.5	Energy consumption for raw water and distribution pumping	65
	4.1.6	Energy consumption for surface water treatment	69
	4.1.7	Benchmarking of energy consumption of water treatment unit processes of surface water sources	71
	4.1.8	Benchmarks for energy consumption in water treatment unit processes for surface water sources	76
	4.1.9	Potentials of energy conservation through modification of the water treatment process	76
	4.1.10	Potentials for energy conservation through improving the energy efficiency of equipment such as pumps and motors	80
	4.1.11	Energy conservation potential of reducing NRW	85

	4.1.12	Cost Saving from Ceylon Electricity Board Tariff Structure	90
	4.1.13	Comparison of identified energy conservation potentials in the audited WSSs	92
	4.1.14	Total energy conservation and cost reduction potentials of identified options in audited water supply schemes	92
5.	CONC	LUSIONS AND RECOMENDATIONS	98
	5.1	Conclusion	98
	5.2	Recommendations and proposals	99
Refe	erences		101
6.	Appen	dix A	106
7.	Appen	dix B	115
8.	Appen	dix C	151

LIST OF FIGURES

Figure 2.1	Energy usage levels in water treatment	7
Figure 2.2	Conventional drinking water treatment processes for surface water sources	10
Figure 2.3	Load shape objectives of demand side management	14
Figure 2.4	Breakdown of expenses in National Water Supply and Drainage Board in 2012	15
Figure 2.5	Cost break down of Regions in Southern Province in year 2013	17
Figure 2.6	Energy use in Harris water treatment facility in City of Toronto	17
Figure 2.7	Graphic representation of power triangle	40
Figure 2.8	Effect of reducing pipe friction	43
Figure 2.9	The effect of installing a Variable Speed Drive	44
Figure 2.10	Non revenue water in major cities in Asia	48
Figure 3.1	Overall research plan	49
Figure 3.2	Typical energy consumption points in WSS	55
Figure 3.3	Typical energy consumption points in a drinking water treatment plant	56
Figure 4.1	Major components of energy consumption in a water supply scheme	59
Figure 4.2	Total specific energy consumption for water supply schemes using surface water sources	64
Figure 4.3	Energy consumption of major components in selected water supply schemes	65
Figure 4.4	Specific energy consumption for raw water and distribution pumping in kWh/m ³	66
Figure 4.5	Specific energy consumption for raw water and distribution pumping in kWh/m ³ /m lift	67

Figure 4.6	Specific energy consumption for raw water and distribution pumping in kWh/m ³ /m lift /km	68
Figure 4.7	Specific energy consumption of conventional drinking water treatment for surface water sources	69
Figure 4.8	Conventional gas chlorination arrangement	70
Figure 4.9	The Omohundro plant alum feed system, showing the feed pumps, pulsation dampeners, flow meters, carrier water system, isolation valves, and pressure relief valves	70
Figure 4.10	Specific energy consumption of water treatment unit processes in audited water supply schemes	73
Figure 4.11	Existing chlorinator arrangement at Hallala WSS	77
Figure 4.12	Modification of chlorinator arrangement at Hallala WSS	78
Figure 4.13	Proposed process for filter backwash recovery	80
Figure 4.14	Overall efficiency of pump and motor systems in audited water supply schemes	82
Figure 4.15	Annual energy saving potential of improving overall efficiency of pumps and motors	83
Figure 4.16	Percentage energy saving potential of improving overall efficiency of pump and motor systems	84
Figure 4.17	Percentage of average non-revenue water in audited water supply schemes in 2012	86
Figure 4.18	Reduction potential of physical losses in audited Sri Lankan Water Supply Schemes	87
Figure 4.19	Reduction potential of commercial losses in audited Sri Lankan Water Supply Schemes	88
Figure 4.20	Energy conservation potential for reducing NRW	89
Figure 4.21	Percentage energy saving potential of reducing NRW for unit volume of treated water	89
Figure 4.22	Annual cost saving from shifting the operation from peak to off Peak	91

Figure 4.23	Percentage of total energy conversation potential in audited water supply schemes	94
Figure 4.24	Annual total energy conversation potential for audited water supply schemes	95
Figure 4.25	Annual total cost saving potential for audited water supply schemes	96
Figure 4.26	Annual total cost reduction potential for water supply regions	97

LIST OF TABLES

Table 2.1	Energy Consumption Pattern for Different Capacity Water Treatment Plants	18
Table 2.2	Total Energy Use and GHG Emissions in Water Sector	18
Table 2.3	Range of Specific Energy Consumption for California Water Supply Schemes	19
Table 2.4	Specific Energy Consumption in Typical Urban Water Systems in California	19
Table 2.5	Organizations Engaged in Benchmarking of Water Supply Utilities	s 25
Table 2.6	Specific Energy Consumption for Drinking Water Supply in Different Cities of Australia and New Zealand	26
Table 2.7	Overall Specific Energy Consumption in Water Supply Schemes in Sri Lanka	26
Table 2.8	Specific Energy Consumption of Major Components of Drinking Water Supply in Bangkok, Thailand	27
Table 2.9	Specific Energy Consumption of Water Supply Processes in Different Regions in USA	27
Table 2.10	Specific Energy Consumption in Water Treatment and Supply in Different Cities of the World	28
Table 2.11	Specific Energy Consumption of Conventional Water Treatment Process	28
Table 2.12	Specific Energy Consumption of Water Treatment Unit Processes	29
Table 2.13	Energy Audit Data Required in Water Utilities	34
Table 2.14	Energy Conservation Potential of Reducing NRW in Hapugala Water Supply Scheme	46
Table 3.1	Comparison of Selected Water Supply Schemes as at 31 December 2015	52
Table 3.2	Primary and Secondary Data Collected During the Preliminary Energy Audit	53

Table 3.3	Primary and Secondary Data Collected During the Detailed Energy Audit	53
Table 4.1	Volume Flow Balance and Energy Balance of Selected Water Supply Schemes during Preliminary Energy Audit	61
Table 4.2	Comparison of Observed Range of Variation in Specific Energy Consumption of Water Treatment Unit Processes with Literature	74
Table 4.3	Benchmarks for Energy Consumption in Drinking Water Treatment Unit Processes for Surface Water Sources	76
Table 4.4	Filter Backwash Frequency of Audited Water Supply Schemes	78
Table 4.5	Effect on Filter Performance due to Changing of Filter Backwash Frequency	78
Table 4.6	Energy Saving Potential of Changing Filter Backwash Frequency	79
Table 4.7	Identified Potentials to Improve Overall Pump and Motor Efficiency	87
Table 4.8	Possible Technical and Management Solutions to Reduce NRW	90
Table 4.9	Tariff Structure of Ceylon Electricity Board	90
Table 4.10	Comparison of the Effect of Identified Energy Conservation Potentials in Audited Water Supply Schemes	93

List of Abbreviations

Abbreviation	Description
ADB	Asian Development Bank
AWWA	American Water Works Association
BPH	Booster Pump Hour
CARL	Current Annual Real Losses
CEB	Ceylon Electricity Board
DAF	Dissolved Air Floatation
DMS	Demand Side Management
ELL	Economic Level of Leakage
EPRI	Electrical Power Research Institute
GHG	Green House Gasses
GOSL	Government of Sri Lanka
ILI	Infrastructure Leakage Index
IWA	International Water Association
KPI	Key Performance Indicator
LECO	Lanka Electricity Company
LKR	Sri Lanka Rupee
NRW	Non-Revenue Water
NWSDB	National Water Supply and Drainage Board
PI	Performance Indicator
SCADA	Supervisory Control and Data Acquisition
SEC	Specific Energy Consumption
UARL	Unavoidable Annual Real Losses
VFD	Variable Frequency Drive
WHO	World Health Organization
WOP	Water Operators Partnership
WSS	Water Supply Scheme
WTP	Water Treatment Plan

List of Appendices

Appendix	Description	Page
Appendix A	Data on Selected Water Supply Schemes and Overall Energy Cost of Drinking Water Supply	106
Appendix B	Preliminary Audit Data and Benchmarking Calculations	115
Appendix C	Detailed Audit Data and Calculations for Energy Conservation Potentials	y 151