
INSTRUCTION SET ARCHITECTURE DESIGN FOR

VIDEO PLAYBACK DEVICE

Kudamage Nishadi Neranja

108411B

Degree of Master of Science

Department of Electronics and Telecommunication Engineering

University of Moratuwa

Sri Lanka

October 2017

INSTRUCTION SET ARCHITECTURE DESIGN FOR

VIDEO PLAYBACK DEVICE

Kudamage Nishadi Neranja

108411B

Dissertation submitted in partial fulfillment of the requirement for the degree Master

of Science in Electronics and Automation

Department of Electronics and Telecommunication Engineering

University of Moratuwa

Sri Lanka

October 2017

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such

as articles or books).

Signature: Date:

The above candidate has carried out research for the Master’s thesis under

my supervision.

Signature of the supervisor: Date:

ii

DEDICATION

To my family members and teachers

iii

ACKNOWLEDGEMENT

The research project provides a great opportunity to work on my desire research area

under supervision of Dr. Ajith Pasqual, Senior Lecturer, Department of Electronics

and Telecommunication Engineering. My sincere thanks go to him for guiding and

supporting me for carrying out the research in proper direction and successfully

completion of the project. I would like to thank the course coordinator Prof. Rohan

Munasinghe for the numerous support and advices given to me throughout the

course.

As a student of Master’s Degree, I gained a vast amount of knowledge and practice

from the taught course, mini research project and the design project during the

allocated period of the course. Therefore, I would like to thank all the academic staff

who taught us and non–academic staff for giving me their friendly support. My

sincere thanks go to Prof. (Mrs.) Dileeka Dias for supervising and guiding me for

completion of my design project and Mr.Lanka Wijesinghe, Mr.Hasla and the staff

who are working at the Dialog Research Laboratory for giving their numerous

supports. I would like to convey my sincere gratitude to Mr.Jayantha, Chief

Technical Officer for open the Postgraduate Lab without any interruption during the

study period and also staff of Digital Laboratory and workshop engineer for giving

me their friendly support.

I would like to thank Mr. D K Withanage, Dean, Faculty of Information

Technology who was guiding me and encouraging me for carrying out my higher

studies. And also my thanks go to Mr. B H Sudantha, Mr. Harshana Gunasekara,

Mr. Isuru Senarth, and Mr. Anushaka – Academic Staff for covering my duties

during my absence and also for Hardware Laboratory staff for their numerous

support given to me in various ways. And finally, I would like to thank my parents

and husband for giving me tremendous support during the period of study. This

journey would not have been possible without their support.

iv

ABSTRACT

Instruction Set Architecture Design for Video Playback Device

Keywords: Low Power, Processors, FFmpeg, decoders

Application specific processors are being considered for many applications which are used
to run on general purpose processors. The primary reason for this is the enhanced energy
efficiency while meeting the required performance targets. This thesis explores the design
of Instruction Set Architecture (ISA) for a video playback device.

Video is ubiquitous today due to camera being a standard accessory in mobile phones.
Video, at the same time, is a powerful learning tool for any age group particularly for
younger children. The primary objective of the work is to develop a minimalist ISA for a
single function video playback device which would allow longer run time on battery
(enhanced energy efficiency) and low silicon footprint to minimize cost. This would allow
video playback device to function without an operating system.

An extensive survey of low power processors was followed by a thorough investigation of
essential assembly instructions for video playback using the industry standard video
playback tool-ffmpeg. The minimal ISA developed was then validated by using Intel
Software Development Emulator through dynamic run-time analysis of ffmpeg trace. Here
most frequently used assembly instructions were found to be present in the minimal
instruction set.

v

TABLE OF CONTENTS
 Page

DECLARATION .. i

DEDICATION .. ii

ACKNOWLEDGEMENT .. iii

ABSTRACT... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS ... ix

LIST OF APPENDICES .. x

INTRODUCTION... 1

1.1 Objectives ... 2

1.2 Functionalities ... 2

1.3 Overview of the Thesis ... 3

LITREATURE REVIEW .. 4

2.1 Available Laptops in the Market for Kids ... 4

2.1.1 Barbie B-Smart Laptop .. 4

2.1.2 VTech Double Vision Notebook .. 4

2.1.3 Hot Wheels Accelerator Laptop JW88 ... 4

2.1.4 Meep ... 5

2.1.5 PeeWee Pivot 2.0 Laptop ... 5

2.2 Comparison with other Researches ... 5

2.2.1 XO laptop used as an educational tool for kids ... 5

2.2.2 Raspberry Pi Processor for playing videos ... 10

2.2.3 Playing video on Nokia color LCD using an Atmega32 16

vi

METHODOLOGY FOR THE DESIGN OF ISA FOR VIDEO PLAYBACK 17

3.1 The x86 Architecture ... 17

3.2 Analysis of FFmpeg decoder and testing .. 19

3.2.1 FFmpeg decoder .. 21

3.3 Optimized Instruction Set for Video playback .. 23

DESIGN OF ISA FOR VIDEO PLAYBACK .. 27

4.1 Instruction Set Architecture (ISA) ... 27

4.1.1 Instruction Format Design .. 28

4.1.2 Register File ... 31

4.1.3 Addressing Modes ... 31

VALIDATION OF MINIMAL INSTRUCTION SET .. 32

5.1 Dynamic Analysis of video playback at runtime ... 32

CONCLUSIONS AND FUTURE WORK ... 40

REFERENCES ... 41

vii

LIST OF FIGURES

 Page

Figure 2.1: Director OLPC Europe with introduced Laptop Project. 5

Figure 2.2 : XO-1.75 Block Diagram ... 8

Figure 2.3: ARM1176JZF-S Block Diagram ... 11

Figure 2.4: ARM instruction Set .. 15

Figure 2.5: Thumb Instruction Set ... 15

Figure 2.6: Playing video on nokia colour LCD using an 8-bit AVR [ATtmega 32]16

Figure 3.1: Basic Execution Environment of x86 architecture 19

Figure 3.2: Compilation process of FFmpeg Decoder ... 21

Figure 3.3: Part of C codes converted to Assembly codes. 22

Figure 3.4: Removed repeated instructions and count of repeated instructions 23

Figure 5.1: Play videos using Intel Software Development Basic Emulator 34

viii

LIST OF TABLES
Page

Table 2 1: Major differences of Raspberry pi models ... 12

Table 3.1: Optimized Instruction set for video playback on x86 platforms 23

Table 3 2: Optimized Instruction Set to design ISA for Video Playback 26

Table 5 1: Most frequently used Runtime Instructions in different formats when
playing videos ... 35

Table 5 2: Common Instructions used in three formats and its functions obtained
after Analysis .. 36

Table 5 3: Other Instructions found within mostly used instructions 37

Table 5 4: Minimal Instructions found among the runtime Instructions 39

Table 5 5: Minimal Instructions have not found among the runtime Instructions.... 39

ix

LIST OF ABBREVIATIONS

Abbreviation Description

TFT Thin Film Transistor

OLPC One Laptop Per Children

WMMX2 Wireless MMX2

LPDDR Low Power Double Data rate memory

MIPI Mobile Industry Processor Interface

DSI Display Serial Interface

HSI Horizontal Situation Indicator

SLIM Simple Login Manager

MMC Microsoft Management Console

HDMI High Definition Multimedia Interface

PHY Marvell Fast Ethernet Physical Layer

HD High Definition

ISP Image Signal Processor

x

LIST OF APPENDICES

Page

Appendix Description

Appendix A C files used in FFmpeg 3.2 decoder 43

1

CHAPTER 1

INTRODUCTION

Visual observation is a powerful means of obtaining information content of a given

source. Video has become an important part of education. Several meta-analysis

have shown that technology can enhance learning and multiple studies have shown

that video, specifically, can be a highly effective educational tool. One of the

strengths of video is the ability to communicate with viewers on an emotional, as

well as a cognitive, level. Because of this ability to reach viewers’ emotions, video

can have a strong positive effect on both motivation and affective learning. Not only

are these important learning components on their own, but they can also play an

important role in creating the conditions through which greater cognitive learning

can take place. Videos can be a very effective learning style for children that make

them curious in their early childhood. As an example, children become enthusiastic

of using Laptops and Mobile phones as they see their parents using them frequently

and waits impatiently until they get them. This practice may lead to unnecessary

complications such as loss of their valuable data. Notebooks, tablets, and laptops for

children are invading primary schools as it may become the part and parcel of

children in the near future. By far most computers used by children contain general

purpose processors for video playback. So, providing a separate processor in a

general-purpose computer for video playback would be always advantageous. As

DVD players and general-purpose computers currently available for children are so

expensive, the proposed video playback device can be an affordable one for many

people at a reasonable price not more than $100 with some functionalities similar to

an electronic digital photo album.

Researchers moved to carry out researches for developing Application Specific

Instruction Set Processors (ASIP) for long time as customized processors can gain

power efficiency and performance. Demanding applications like audio, security,

networking, baseband, control and industrial automation are ideal for ASIPs.

2

Embedded vision is another key domain, with applications such as advanced driver

assistance systems, gesture control and augmented reality calling for performance

and power optimized processors. This thesis explores the method of minimizing the

instruction set for playing video and design of particular Instruction Set Architecture

(ISA) to design the customized processor for video playback. Therefore, anyone can

use this ISA for designing video playback device.

Video can play in many formats, such as avi, mpeg2/4, ogg, etc. FFmpeg is a free

software project that produces libraries and programs for handling multimedia data.

It can record, convert and stream digital audio and video in numerous formats.

FFmpeg can be used to convert many multimedia formats to one another. It is a

command line tool that is composed of a collection of free software / open source

libraries. The name of the project comes from the MPEG video standards group,

together with "FF" for "fast forward”. [14] Therefore, FFmpeg decoder is considered

for designing an Instruction Set Architecture (ISA) for playing videos in this thesis.

1.1 Objectives

 Identify instructions that are essential for video playback and associated

activities through a systematic profiling of video playback software in x86.

 To design and develop a minimalistic Instruction Set Architecture (ISA)

customized for video playback.

1.2 Functionalities

Although some functionalities of the proposed video playback device are similar

to that of electronic digital photo album; it has been designed especially for

nursery school children. Instead of using keyboard, this device uses a button to

play and TFT LCD display to watch videos. SD card is used to store videos and

the proposed customized processor processes and play videos. This device can

be sold at an affordable price below $100.

3

1.3 Overview of the Thesis

 The remainder of this thesis is outlined as follows.

 Chapter 2 contains the Literature survey of customized processors for

video playback.

 Chapter 3 describes the methodology for the design of ISA for a video

playback device. The method of minimizing the instructions by using

FFmpeg decoder is described in this chapter.

 Chapter 4 contains the Instruction Set Architecture (ISA) design of a

video playback device.

 Chapter 5 contains the validation of minimal Instruction Set which is

used for designing the ISA for video playback device.

 Chapter 6 concludes the thesis with a brief description of future work.

4

CHAPTER 2

LITREATURE REVIEW

2.1 Available Laptops in the Market for Kids

Laptops are available for children with different processors in the market. Described

below are some of the latest laptops available for kids. [1]

2.1.1 Barbie B-Smart Laptop

This is a laptop which is specifically meant to be used by young girls who are Barbie

fans. Oregon Scientific has come up with this model which sports 60 activities in

English and 10 in Spanish. It even includes a mouse, mouse pad, QWERTY

keyboard, with the function to adjust color contrast and volume. This kids' laptop is

available for around $50.

2.1.2 VTech Double Vision Notebook

The main feature of this product is that it allows the user to combine color photos,

text, and audio to make presentations and view them on the television. It also has

programs that can help in developing the child's language, mathematics, and logical

skills. VTech Double Vision Notebook is available at a price just around $50.

2.1.3 Hot Wheels Accelerator Laptop JW88

This is more of a gaming laptop computer offered by Oregon Scientific, with a 'hot

wheels' theme. It is primarily intended to be used by boys. It comprises 50 games in

English and 10 games in Spanish. The games include word puzzles, memory games,

and number games. We can buy by this kid’s laptop around $50.

5

2.1.4 Meep

Oregon Scientific offers the Meep X2 as its newest Android based tablet for Kids.

They also offer the Meep, the MeepStar Blue Meep, and the MeepFrog Green Meep

and more.

2.1.5 PeeWee Pivot 2.0 Laptop

The PeeWee Pivot is considered to be one of the most advanced laptops available in

stores. It has a rotating touch screen which can easily be converted into a tablet. It is

embedded with a 1.66 GHz Intel Atom Processor N450, 160 GB hard disk capacity,

1 GB of RAM, and a 10.1-inch screen. It is available for under $600 on the

manufacturer's website. It uses Windows.

2.2 Comparison with other Researches

2.2.1 XO laptop used as an educational tool for kids

After completion of many researches, One Laptop per child (OLPC) programme has

been introduced to children in rural areas of several countries to explore their own

potential, to be exposed to innovative ideas, and to contribute to a more productive

world community.

Figure 2.1: Director OLPC Europe with introduced Laptop Project.

6

This is being launched by One Laptop Per Child (OLPC), a US based organization

in collaboration with the Education Department and several local and foreign

financial, technological and academic institutions. Director OLPC Europe, Middle

East and Asia Matt Keller, in an interview with The Sunday Times FT, said the

World Bank has stepped into fund a pilot project to introduce laptops as an

educational tool in nine provinces in the island. (Source: Article from Sunday Times

on February 10, 2008)

OLPC Lanka Foundation has been set up to implement this massive education

project aimed at supplying this learning tool into rural children’s hands.

A small machine with a big mission. The XO is a potent learning tool designed and

built especially for children in developing countries, living in some of the most

remote environments. It’s about the size of a small textbook. It has built-in wireless

and a unique screen that is readable under direct sunlight for children who go to

school outdoors. It’s extremely durable, brilliantly functional, energy-efficient, and

fun. [2]

Hardware specification of the XO (CL2) laptop

System architecture and hardware design requirements for the XO Children’s

Laptop version 1.75 (CL2). [2]

Functionality of the CL2 is similar to an ordinary notebook PC, it was designed by

One Laptop per Child as a laptop for elementary school children. The foremost goal

of the hardware design is low-power operation. To achieve this goal, the CL2

utilizes a very low power ARM processor and incorporates novel technologies such

as low power dual mode TFT LCD display and low power networking interfaces.

The CL2 is designed for outdoor use with a 19 cm (diagonal) 4:3 aspect ratio

color/monochrome dual mode TF LCD panel and a dust and moisture resistant

keyboard and case. For ruggedness and low power, it uses NAND Flash as storage

device in the system. To allow many hours of operation it supports a 20 WH battery.

7

The CL2 is a system/motherboard upgrade to the existing CL1C design. No changes

to the overall industrial design or tooling will be made. The addition of seven raised

dots to the hinge cover allows easy differentiation of CL1, CL1B and CL2 machines

in the field.

Environmental

The XO is the most energy-efficient and environmentally friendly laptop ever made,

based on independent evaluations and data. XO consumes the least power,

minimizes toxic materials, is extraordinarily rugged, has a long lifetime, works with

renewable power sources, and is itself recyclable. XO has earned the highest

environmental certifications: it is in full compliance with the European Union’s

rigorous Reduction of Harmful Substances (RoHS) standards; it is designed for

Energy Star Version 4.0 Category A Tier 2 performance, the most stringent level.

According to ENERGY STAR®, an average idle desktop computer uses 70 watts of

power and an average idling laptop computer consumes 20 watts of power. When

idle, the XO laptop uses one watt of electricity. Among the XO’s other

environmentally friendly attributes and innovations. XO is more rugged — it will

last longer, thus staying out of landfills longer. The XO has been designed for a five-

year lifetime even in extreme environments like the outdoors, the jungle, and the

desert. The average laptop has a two-year lifetime when used in an office and far

less when brought outside or to the desert. Doubling the lifetime of the laptop halves

its environmental impact. XO is about half the size and weight of typical laptops.

Less material halves the environmental impact. XO is designed for use with

renewable energy sources. It's the first laptop made with renewable energy

accessories: a hand crank, a small solar panel, a foot pedal, or a lawnmower style

rope pull will recharge the laptop.

XO uses a new battery using LiFePO4 (Lithium Ferro Phosphate) chemistry that

lasts four times longer than standard laptop batteries, and is vastly safer than the

current dominant technology of Lithium Ion.

8

Figure 2.2: XO-1.75 Block Diagram

General Specifications

Processor & core system:

 Marvell Armada 610 Application Processor

 Integrating an Marvell Sheeva ARM CPU (800 MHz)

 32KB/32KB L1 caches, 256KB unified L2 cache

 512MiByte or 1024 MiByte DDR3 SDRAM system memory, running at

800MHz

 Embedded controller for system monitoring, battery charging, and solar

power input

 ISA Compatibility: ARM v6 and v7, with Thumb and WMMX2* instruction

set extensions

9

Marvell Armada 610 Application Processor

The ARMADA™ 610 processor is Marvell®’s next generation application

processor that is designed for mainstream. Mobile Internet Devices (MIDs),

connected consumer products, eReaders, eBooks, tablets, media players and new

personal information appliances. Featuring a gigahertz-class CPU, integrated full

HD 1080p encode and decode, an integrated ISP capable of 16MP image captures,

an integrated audio processing engine for extremely low power audio playback and

exceptional high quality sound, an integrated EPD display controller and advanced

3D graphics, the ARMADA 610 delivers the best combination of fast, PC-caliber

processing, an uncompromised Internet experience all in the lightweight form

factors with extended battery life. The ARMADA 610 is based on a 1GHz Marvell-

designed ARM v7-compatible CPU offering best-in-class performance for the most

demanding software applications. An integrated 3D engine renders 45M triangles-

per-second via a complete floating-point pipeline and unified vertex and

fragment/pixel shading for an immersive game play experience with the ability to

drive the latest in 3D enabled user interfaces. The ARMADA 610 supports industry

standard APIs – ensuring complete compatibility with the most hotly anticipated

mobile game titles and easy porting of 3D enabled applications and user interfaces.

The ARMADA 610 features Marvell’s award-winning Qdeo™ technology with an

integrated video accelerator that can seamlessly encode and decode 1080p video at

30fps. In addition, the ARMADA 610 incorporates a complete Image Signal

Processor which can capture high resolution color pictures up to 16MP as well as

stream 1080p video at 30fps. The ARMADA 610 integrates a high performance, low

power EPD display controller. By integrating the controller, the ARMADA 610 can

drive EPD displays at up to 5x the speed of software based or external EPD display

controllers. This enables applications, such as HD IP cameras, full HD camcorders

and HD video playback, and high performance eReaders which do not suffer from

page turn lag, that were previously impossible for this class of device.

The ARMADA 610 offers the flexibility to use any standard memory (LPDDR and

standard DDR), a highly flexible display controller capable of five simultaneous

10

displays up to 2k x 2k resolution and a robust security subsystem that includes a

secure execution processor. The ARMADA 610 also features support for the next

generation of peripheral interfaces, through support for MIPI DSI display, MIPI CSI

camera, MIPI HSI and MIPI SLIM bus. Additional peripheral interfaces supported

include USB 2.0 HSIC, SD/SDIO/MMC, eMMC, HDMI v1.3a w/PHY and a

standard set of lower bandwidth peripherals. Legacy peripherals such as Parallel

LCD and Parallel Camera interfaces with integrated laser scanner support are also

included. The ARMADA 610 offers optimized OS support for Linux, Android™,

Windows® Mobile 6.5, Windows 7 and Flash® 10. The ARMADA 610 comes in a

12x12mm POP package, 12x12mm Discrete and a cost saving 21x21mm 0.65mm

ball pitch consumer package. ARMADA 610 customers will have one of the

broadest, most flexible choices of platform in the industry to create truly innovative

and marketable products. [3]

2.2.2 Raspberry Pi Processor for playing videos

The Raspberry Pi is a credit-card-sized single-board computer developed in the UK

by the Raspberry Pi Foundation with the intention of promoting the teaching of

basic computer science in schools. [4]

The Raspberry Pi is manufactured in two board configurations through licensed

manufacturing deals with Newark element14 (Premier Farnell), RS Components and

Egoman. These companies sell the Raspberry Pi online. Egoman produces a version

for distribution solely in China and Taiwan, which can be distinguished from other

Pis by their red coloring and lack of FCC/CE marks. The hardware is the same

across all manufacturers.

The Raspberry Pi has a Broadcom BCM2835 system on a chip (SoC), which

includes an ARM1176JZF-S 700 MHz processor, VideoCore IV GPU,and was

originally shipped with 256 megabytes of RAM, later upgraded to 512 MB. It does

not include a built-in hard disk or solid-state drive, but it uses an SD card for

booting and persistent storage.

11

The Foundation provides Debian and Arch Linux ARM distributions for download.

Tools are available for Python as the main programming language, with support for

BBC BASIC (via the RISC OS image or the Brandy Basic clone for Linux), C, Java

and Perl.

Figure 2.3: ARM1176JZF-S Block Diagram

12

Table 2 1: Major differences of Raspberry pi models

 Model A Model B

Target price: US$ 25 US$ 35

SoC: Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, and

single USB port)[3]

CPU 700 MHz ARM1176JZF-S core (ARM11 family,

ARMv6 instruction set)

GPU Broadcom Video Core IV @ 250 MHz
OpenGL ES 2.0 (24 GFLOPS)
MPEG-2 and VC-1 (with license), 1080p30
h.264/MPEG-4 AVC high-profile decoder and encoder.

Memory (SDRAM): 256 MB (shared with
GPU)

512 MB (shared with
GPU) as of 15 October
2012

USB 2.0 ports 1 (direct from BCM2835
chip)

2 (via the built in
integrated 3-port USB
hub)

Video Input A CSI input connector allows for the connection of a
RPF designed camera module

Video outputs Composite RCA (PAL and NTSC), HDMI (rev 1.3 &
1.4), raw LCD Panels via DSI

Audio outputs 3.5 mm jack, HDMI, and, as of revision 2 boards, I²S
audio[91] (also potentially for audio input)

Onboard storage: SD / MMC / SDIO card slot (3.3 V card power support
only)

Onboard network: None 10/100 Mbit/s Ethernet
(8P8C) USB adapter on
the third port of the USB
hub

Low-level peripherals: 8 × GPIO, UART, I²C bus, SPI bus with two chip
selects, I²S audio[93] +3.3 V, +5 V, ground

Power ratings: 300 mA (1.5 W) 700 mA (3.5 W)

Power source: 5 V via Micro USB or GPIO header

Size: 85.60 mm × 56 mm (3.370 in × 2.205 in)
Weight: 45 g (1.6 oz)
Operating systems: Arch Linux ARM, Debian GNU/Linux, Gentoo,

Fedora, FreeBSD, NetBSD, Plan 9, Inferno, Raspbian
OS, RISC OS, Slackware Linux

13

ARM1176JZF-S processor

The ARM1176JZF-S processor incorporates an integer core that implements the

ARM11 ARM architecture v6. It supports the ARM and Thumb™ instruction sets,

Jazelle technology to enable direct execution of Java byte codes, and a range of

SIMD DSP instructions that operate on 16-bit or 8-bit data values in 32-bit registers.

[4]

ARM1176JZF-S architecture with Jazelle technology

The ARM1176JZF-S processor has three instruction sets:

• the 32-bit ARM instruction set used in ARM state, with media instructions

• the 16-bit Thumb instruction set used in Thumb state

• the 8-bit Java byte codes used in Jazelle state.

Instruction compression

A typical 32-bit architecture can manipulate 32-bit integers with single instructions

and address a large address space much more efficiently than a 16-bit architecture.

When processing 32-bit data, a 16-bit architecture takes at least two instructions to

perform the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has

only 32-bit instructions, overall the 16-bit architecture has higher code density, and

greater than half the performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher

performance than on a 16-bit architecture, with higher code density than a 32-bit

architecture. The ARM1176JZ-S processor can easily switch between running in

ARM state and running in Thumb state. This enables you to optimize both code

density and performance to best suit your application requirements.

The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM

instructions. Thumb instructions are 16 bits long and have a corresponding 32-bit

14

ARM instruction that has the same effect on the processor model. Thumb

instructions operate with the standard ARM register configuration, enabling

excellent interoperability between ARM and Thumb states.

Thumb has all the advantages of a 32-bit core:

• 32-bit address space

• 32-bit registers

• 32-bit shifter and Arithmetic Logic Unit (ALU)

• 32-bit memory transfer.

Thumb therefore offers a long branch range, powerful arithmetic operations, and a

large address space. The availability of both 16-bit Thumb and 32-bit ARM

instruction sets, gives you the flexibility to emphasize performance or code size on a

subroutine level, according to the requirements of their applications. For example,

you can code critical loops for applications such as fast interrupts and DSP

algorithms using the full ARM instruction set, and linked with Thumb code.

Java byte codes

ARM architecture v6 with Janelle technology executes variable length Java byte

codes. Java byte codes fall into two classes:

Hardware execution

Byte codes that perform stack-based operations.

Software execution

Byte codes that are too complex to execute directly in hardware are executed in

software. An ARM register is used to access a table of exception handlers to

handle these particular byte codes.

XO Laptop uses Marvel Sheeva ARM processor and the Raspberry Pi uses

ARM1176JZF-S as a core which compatible with ARM v6 architecture. When

15

comparing video capabilities, XO laptops uses OGG video format and Raspberry Pi

uses MPEG-2 and MPEG-4 video format for playing videos.

Figure 2.4: ARM Instruction Set

Figure 2.5: Thumb Instruction Set

16

2.2.3 Playing video on Nokia color LCD using an Atmega32

The video player has been designed and developed by electronic hobbyists Vinod

from Kerala, India. Following items have been used to implement the video player.

[6]

o Microcontroller: AVR Atmega32

o LCD: 65K color LCD from old nokia 6030 mobile phone.

o LCD controller: Philips PCF8833

FFmpeg was used to convert a sample video to frames at 15 frames/second &

132x65 resolution. Used python script to convert each still image to pixel

information at 16 bit/pixel. Collected all the picture information of adjacent frames

into a single file and named as my_video.lcd. Then copied that file to memory card

and modified the AVR program to display it on the LCD. It accesses the FAT16 file

system.

 Figure 2.6: Playing video on Nokia colour LCD using an 8-bit AVR [ATtmega 32]

17

CHAPTER 3

METHODOLOGY FOR THE DESIGN OF ISA FOR VIDEO PLAYBACK

FFmpeg 3.2 decoder is used by many systems for video playback as it can be used to

process many video formats. Therefore, current research is moved to carry out the

survey of FFmpeg decoder to find out the minimal instruction set for video

playback. FFmpeg 3.2 decoder was compiled by using Visual Studio 2015 which

runs on windows 10 Operating System on Intel x86 platform.

3.1 The x86 Architecture

The Intel x86 platform used for analysis and testing of FFmpeg decoder. X86 is the

32 -bit version of the x86 instruction set. The Intel x86 processor uses complex

instruction set computer (CISC) architecture, which means there is a modest number

of special-purpose registers instead of large quantities of general-purpose registers.

The x86 architecture consists of the following unprivileged integer registers. Those
are general purposes registers

All integer registers are 32 bits. However, many of them have 16-bits or 8-bits sub
registers.

 eax - Accumulator

 ebx - Base register

 ecx - Count register

 edx - Double – precision register

 esi - Source index register

 edi - Destination index register

 ebp - Base pointer registers

 esp - Stack pointer register

18

16 bits registers

ax, bx, cx, dx, si, di, bp, sp

8 bits registers

al, ah, bl, bh, cl, ch, dl, dh

Special purpose registers

Segmented registers [16 bit -6]

CS - Code

DS - Data

SS - Stack

ES – Data

FS – Data

GS -Data

Two other registers are important for the processor's current state.

eip – Instruction pointer register

eflags – flags register

Addressing Modes

 Immediate

 Register Operand

 Displacement

 Base

 Base with Displacement

 Scaled Index with Displacement

 Base with Index and Displacement

 Base with Scaled Index and Displacement

 Relative

19

Figure 3.1: Basic Execution Environment of x86 architecture

3.2 Analysis of FFmpeg decoder and testing

FFmpeg is the leading multimedia framework, able to decode, encode, transcode,

mux, demux, stream, filter and play pretty much anything that humans and machines

have created. It supports the most obscure ancient formats up to the cutting edge. No

matter if they were designed by some standards committee, the community or a

corporation. It is also highly portable: FFmpeg compiles, runs, and passes our

testing infrastructure FATE across Linux, Mac OS X, Microsoft Windows, the

BSDs, Solaris, etc. under a wide variety of build environments, machine

architectures, and configurations. [9]

It contains libavcodec, libavutil, libavformat, libavfilter, libavdevice, libswscale and

libswresample which can be used by applications. As well as ffmpeg, ffserver,

ffplay and ffprobe which can be used by end users for transcoding, streaming and

playing.

20

FFmpeg Libraries for developers

Libavutil - is a library containing functions for simplifying programming, including

random number generators, data structures, mathematics routines, core multimedia

utilities, and much more.

Libavcodec - is a library containing decoders and encoders for audio/video codecs.

Libavformat- is a library containing demuxers and muxers for multimedia container

formats.

Libavdevice - is a library containing input and output devices for grabbing from and

rendering to many common multimedia input/output software frameworks,

including Video4Linux, Video4Linux2, VfW, and ALSA.

Libavfilter - is a library containing media filters.

Libswscale - is a library performing highly optimized image scaling and color

space/pixel format conversion operations.

Libswresample -is a library performing highly optimized audio resampling,

rematrixing and sample format conversion operations.

21

3.2.1 FFmpeg decoder

FFmpeg 3.2 decoder has been compiled on Visual Studio 2015 which runs on

Windows 10 and generated the object files.

Figure 3.2: Compilation process of FFmpeg Decoder

The assembly code has been generated by using Microsoft (R) Optimizing Compiler
Version 19.00.24215.1.

Following commands were added to the make file to generate Assembly code.

override CFLAGS += -FA

22

Figure 3.3: Part of C codes converted to Assembly codes.

After generation of the assembly file, duplicate instruction set was removed by
using perl and analyzed the count of repeated instructions.

23

Figure 3.4: Removed repeated instructions and count of repeated instructions

3.3 Optimized Instruction Set for Video playback

Based on the instruction set of x86 platform, Analysis of Instruction Set has been
carried out carefully and optimized the Instruction Set for playing video.

Table 3.1: Optimized Instruction set for video playback on x86 platforms

Format Opcode Operand Description

Arithmetic and Logical Instruction
add reg, const add eax, 1 add constant to register

add reg, reg add edi, eax add register value to
register

add reg, mem add
eax, DWORD PTR
_c$[ebp]

add value from memory to
register

sub reg,const add eax, 1 subtract constant from
registers

sub mem,const sub esp, 1048 subtract constant from
memory value

sub reg,reg sub ecx, eax subtract register value
from register

sub reg, mem sub eax, DWORD PTR subtract memory value
from register

24

_block_h$[ebp]

imul reg, reg, const imul
eax,DWORDPTR_blo
ck_type$[ebx], 640

Imul constant by memory
value and store results in
register

imul reg, mem, const imul
eax,DWORDPTR_blo
ck_type$[ebx], 640

Imul constant by register
value and store results in
register

imul reg, mem imul
eax,DWORDPTR_src
_stride$[ebp]

Imul memory value with
register value

neg reg neg

perform two’s
complement negation of
register value

and and eax, 1 perform and operation
with their operands

and and eax, ecx perform and operation
with their operands

xor xor eax, eax xor register value with
register value

xor xor eax, ebp xor memory value with
register

or or eax, edx or register value with
register value

Shift and Rotate

sar reg, const sar eax, 1
shift right register
value according to the
source constant

shl reg, const shl eax, 0
shift left register value
according to the
source constant

test reg,reg test eax, eax check register constant
is 0

Control Transfer

 cmp reg, const cmp DWORD PTR [eax], 16 compare constant with
register value

cmp reg, mem cmp
eax, DWORD
PTR_align_end$[ebp]

compare memory
value with register

cmp mem, reg cmp
DWORD PTR
_src_x$[ebp], ecx compare register value

with memory value

call mem call
DWORD PTR
_v_extend_var$[ebp]

call memory value

25

call reg call edx
call register value

call label call
@__security_check_cooki
e@4

ret ret

Data Movement

mov reg, const mov eax, 1 move constant to

register
mov reg, reg mov esp, ebx move register value to

register

mov mem, reg mov
DWORD PTR _b$[ebp],
eax move register value to

memory

mov mem const mov
DWORD PTR _w$[ebp],
3 move constant to

memory
pop mem pop ebp pop data from memory

location
push const push -64 push constant

push reg push eax
push data into register

push mem push ebp
push data into memory

lea reg, mem lea
eax,DWORD PTR
_half$[ebp]

compute load effective
address of memory
value to register value

lea reg, reg lea
eax, DWORD PTR
_ff_filters_16bpp[ecx+ed
x]

compute load effective
address of register to
register value

Ja label ja SHORT $LN2@ff_spatial
Je label je $LN1@emulated_e
Jg label jg SHORT

$LN1@ff_h264chr
Jge label jge $LN1@imdct36_bl
Jl label jl

SHORT
$LN1@deblock_v_

Jle label jle
SHORT
$LN1@ff_h264chr

Jmp label jmp $LN1@avg_rv40_q

26

Jne label jne $LN1@ff_h264_pr
Jns label jns

SHORT
$LN19@emulated_e

Miscellaneous

npad

Table 3 2: Optimized Instruction Set to design ISA for Video Playback

Binary
Arithmetic

Logical Control
Transfer

Shift
and
Rotate

Data Transfer Miscellaneous

ADD AND CMP SAR MOV NPAD
SUB XOR CALL SHL POP
IMUL OR TEST PUSH
NEG RET JA, JE, JG,

JGE, JL, JLE,
JMP

 JNE, JNS
 LEA

27

CHAPTER 4

DESIGN OF ISA FOR VIDEO PLAYBACK

In this chapter, new ISA design of customized processor for video playback is

presented. After completion of minimizing the instruction set by using FFmpeg

decoder (minimized instruction set is listed in table 3.2 in chapter 3), designing of

Instruction set format for proposed customized processor was commenced.

After conversion of FFmpeg decoder source code written in C to Assembly,

analyzed that all the instructions are designed according to the CISC architecture.

Therefore, considering the code simplicity and the Application specialty; it was

decided to design of Instruction Set by using RISC architecture.

4.1 Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) defines the microprocessor from a machine-

language programming perspective, including the following:

 Instruction set

 Structure of the register file

 Addressing modes

 Data types and data representation

This definition of the ISA makes the hardware structure and implementation details

transparent to the programmer.

The design of an instruction set or rather a good instruction set is a challenging task

since there is not any systematic way for achieving this goal. It is usually an iterative

process that involves balancing different contradicting factors in order to meet the

microprocessor requirements in an optimum way.

28

4.1.1 Instruction Format Design

Since the author was interested only in the architecture of a very simple RISC

processor, the proposed Custom Processor was made to follow Load/Store

Architecture.

Six core instruction formats (L/S/I/Y/R/C/J) have been introduced and described in

this chapter. All are fixed 32 bits in length and must be aligned on a four-byte

boundary in memory.

There are 26 instructions identified after the analysis of minimized instruction set.

Two new instructions were added to avoid direct memory accessing. Therefore,

Total instructions in ISA amounted to 28. Considering the total instructions, Opcode

length in instruction format was defined as 5 bits. As 13 General Purpose Registers

were used in ISA, 4 bits were defined for selecting Base, Source and Destination

Registers. Addressing Modes (AMOD) were used within the instruction format and

for selecting different type of Addressing Modes.

L and S type – Instruction Format

As the customized processor supports Load/Store architecture, it does not support

direct memory accessing.

Minimized instructions follow Memory to Register (MOV mem, reg) and Register

to Memory (MOV reg, mem) operations when transferring the data and Arithmetic

Operations (ADD reg, mem), new Load/Store instructions were introduced to avoid

direct memory accessing.

L type - Load
Opcode AMOD Destination

Register
Base Register Immediate

5bits 1bit 4 bits 4bits
32 bits

29

S type - Store
Opcode AMOD Base Register Source

Register
Immediate

5bits 1bit 4 bits 4bits
32bits

Two addressing modes used in Load and Store instruction format.

1] Base Register Addressing Mode
2] Immediate offset Addressing Mode

1] Base Register Addressing Mode
Ex:
Load R2, [R0] - load value of R0 which is located in memory to R2

STR [R0], R1 - Store R1 value to the memory location which is located by R0
location pointed by R0 is base register.

2] Immediate offset Addressing Mode
To specify memory address, Processor needs to specify two things.

1] A register which contains a pointer to memory.
2] A numerical offset (in bytes)

A desired memory address is the sum of these two values.

Ex: [R0, 28]
Specifies the memory address pointed by the value in R0, add 28. Offset is generally
used in accessing elements of array or structure. Base register points to beginning of
array or structure.

Ex:

LDR R2, [R0, 28]
STR [R0, 28], R1

When computing the arithmetic operation, processor has to use LDR and STR
instructions in addition to add instruction.

Following instructions show how to compute addl $8, -28 (% ebp) instructions in
RISC architecture instruction format.

LDR [R0, 28], R1
Add R1, 8
STR, [R0, 28], R1

30

I type Instruction format

Following instruction format was proposed for ADD/SUB/CMP/IMUL/
/SAR/SHL/Logical AND, OR, XOR, MOV, LEA, TEST instructions.

Opcode AMOD Destination

register
Source
register

Immediate

5bits 1bit 4 bits 4bits
32 bits

Addressing Modes are encoded as follows
1] Immediate -1
2] Register -0

Y type Instruction format

Following instruction format was proposed for NEG/POP/PUSH/CALL

R type Instruction format

Following instruction format was proposed for NPAD/RET
Opcode (5 bits)

32 bits

C type Instruction format

Following instruction format was proposed for IMUL
Opcode Destination

Register
Source
register

Immediate

5 bits 4 bits 4 bits

32 bits

J type Instruction format

Following instruction format was proposed for JA/JE/JG/JGE/JL/JLE/JMP/JNE/JNS
Opcode offset

5 bits 27 bits [0:26]

32 bits

Opcode Register

immediate

5bits 4bits
 32bits

31

4.1.2 Register File

 General Purposes Registers

32 bits registers (8)

 R0 – R7

16 bits registers (2)
 R8 - R9

8 bits registers (3)
 R10 – R12

 General Purposes Registers are encoded as follows
4 bits needed to represent the registers
R0 - 0001
R1 - 0010
R2 - 0011
R3 - 0100
R4 - 0101
R5 - 0110
R6 - 0111
R7 - 1000
R8 - 1001
R9 - 1010
R10 - 1011
R11 - 1100
R12 - 1101

 Special Purpose Registers

 FLAGS (Status & Control) register [32 bits -1]
 IP (Instruction Pointer) register [32 bits -1]
 MAR – Memory Address Registers
 MDR – Memory Data Registers
 PC – Program Counter
 IR – Instruction Register

4.1.3 Addressing Modes

4 addressing modes used for designing the custom processor
 Immediate
 Base Register
 Immediate offset (Base + Displacement)
 Register

32

CHAPTER 5

VALIDATION OF MINIMAL INSTRUCTION SET

5.1 Dynamic Analysis of video playback at runtime

Intel Software Development Emulator was used to dynamically trace video

application at runtime to capture runtime instructions of a video in different formats.

Intel Software Development Emulator (SDE)

Intel SDE is built upon the Pin dynamic binary instrumentation system and the XED

encoder decoder. Pin controls the execution of an application. Pin examines each

static instruction in the application approximately once, as it builds traces for

execution. During this process, which is called instrumentation, for each instruction

encountered Pin asks Intel SDE if this instruction should be emulated or not. If the

instruction is to be emulated, then Intel SDE tells Pin to skip over that instruction

and instead branch to the appropriate emulation routine. It also tells Pin how to

invoke that emulation function, what arguments to pass, etc. [10]

Intel SDE queries CPUID to figure out what features to emulate. It also modifies the

output of CPUID so that compiled applications that check for the emulated features

are told that those features exist.

Intel SDE comes with several useful emulator-enabled Pin tools and the XED

disassembler:

 The basic emulator

 The mix histogramming tool: This Pin tool can compute histograms by any

of: dynamic instructions executed, instruction length, instruction category,

and ISA extension grouping. This tool can also display the top N most

frequently executed basic blocks and disassemble them.

33

 The debugtrace ASCII tracing tool: This versatile tool is useful for observing

the dynamic behavior of your code. It prints the instructions executed, and

also the registers written, memory read and written, etc.

 The footprint tool: This simple tool counts how many unique 64-byte chunks

of data were referenced during the execution of the program.

 The XED command line tool which can disassemble PECOFF or ELF binary

executables.

Running the Histogram Tool

To generate the instruction, mix histograms by opcode (XED iclass, the default) or

instruction form (iform). As of version 4.29, the instruction length and instruction

category histograms are always included.

path-to-kit/sde -mix -- user-application [args]

path-to-kit/sde -mix -iform -- user-application [args]

Notes: The ISA extension histogram is also always computed and printed as star-

prefixed rows in the histograms. ISA extensions are things like (BASE, X87, MMX,

SSE, SSE2, SSE3, etc.). This is useful to see which instruction set extensions are

used in your application.

 The dynamic statistics are recorded and emitted several ways: (1) per-thread,

(2) per function per thread, and (3) summed for the entire run. Instruction

counts by function are also emitted if symbols are found for the application.

 The output is written to a sde-mix-out.txt file in the current directory. The

output file name can be changed using the -omix option:

path-to-kit/sde -mix -omix foo.out -- user-application [args]

 The top 20 basic blocks are always printed in the output with their execution

weights.

 "-top_blocks N" will allow you to change 20 to N that you specify.

34

 Iforms: "Iform" is the XED term for variants of instructions. In a simple

world they would be things like reg/reg or reg/mem, but things are more

complicated in general. The iform names come from XED. Consider them

experimental and subject to change. To see histograms by the more detailed

iforms, use the "-iform" command line option.

This mix histogram tool was used for dynamic analysis and the following commands were
used for analyzing the dynamic instructions when playing video.

H:\Intel SDE\ sde_h\-mix -- ffplay LTW.avi

H:\Intel SDE\ sde_h\-mix -- ffplay LTW.wmv

H:\Intel SDE\ sde_h\-mix -- ffplay LTW.mp4

Figure 5.1: Play videos using Intel Software Development Basic Emulator

35

Table 5 1: Most frequently used Runtime Instructions in different formats when
playing videos

AVI MP4 WMV
MOV MOV MOV

ADD ADD ADD

SUB MOVQ SUB

IMUL LEA SAR

LEA TEST IMUL

TEST CMP LEA

CMP JZ MOVSX

SBB PUSH TEST

JNZ POP CMP

JZ MOVZX MOVZX

MOVQ JNZ JZ

MOVDQA PADDW JNZ

MOVZX AND SHL

SHL MOVDQA PUSH

AND SUB POP

PUSH REP_STOSD MOVQ

ADC VPSUBUSB JMP

POP SHL SHR

MOVSX MOVSX NEG

SHR PUNPCKLBW CMOVZ

JMP VMOVDQA VMOVAPS

REP_STOSD CALL_NEAR JLE

SAR SAR AND

CALL_NEAR RET_NEAR MOVAPS

PADDSW PALIGNR XOR

PMADDWD PSUBW CALL_NEAR

PADDD MOVD FMUL

XOR IMUL CMOVNBE

JLE JMP RET_NEAR

RET_NEAR JNLE PXOR

MOVAPS DEC VMULPS

PXOR VPAVGB JNS

NEG SHR JS

36

BSWAP VMOVD FLD

PSUBSW VPAND MOVDQA

JNS VPXOR FSTP

REP_MOVSD PSRAW BSWAP

JS XOR REP_STOSD

MOVDQU PUNPCKHDQ MOVDQU

SHRD PACKUSWB VSUBPS

PADDUSW VPOR VADDPS

PSHUFD PSLLW JNLE

PSRAD PUNPCKLWD PADDW

PSRAW JL PANDN

OR OR PCMPEQW

PUNPCKLBW PUNPCKHWD PCMPGTW

JNLE VMOVAPS PMULLW

PACKSSDW PUNPCKHBW PADDUSW

PACKUSWB PREFETCHT0 VSHUFPS

PMULHW MOVDQU JL

Table 5 2: Common Instructions used in three formats and its functions obtained
after Analysis

Instruction Operation

ADD Integer add

AND Perform bitwise logical AND

CALL_NEAR Call Procedure

CMP Compare

IMUL Signed Multiply

JMP Jump

JNLE Jump if not or equal

LEA Load effective address

MOV Move data between general purpose and segment
registers MOVDQA Move aligned double quadword

MOVDQU Move unaligned double quadword

MOVQ Move quadword

37

MOVSX Move with sign-extension

MOVZX Move with zero -extend

POP Pop a value from stack

PUNPCKLBW Unpack high-order bytes

PUSH Push onto stack

RET_NEAR Return from procedure

SAR Shift arithmetic right

SHL Shift logical left

SHR Shift logical right

SUB Subtract

TEST Logical Compare

XOR Perform bitwise logical NOT

Table 5 3: Other Instructions found within mostly used instructions

ADC ADD with carry

BSWAP Byte Swap

CMOVNBE Conditional move if not below or equal
CMOVZ Conditional move if zero

DEC Decrement

FLD Load Floating point value

FMUL Fraction Multiply Unsigned

FSTP Store Floating Point Value

JL Jump if less

JLE Jump if less or equal

JNS Jump if not sign (not negative)

JNZ Jump if not Zero

JS Jump if Sign

JZ Jump if Zero

MOVAPS Move four aligned packed single -precision floating point
values between XMM registers or between and XMM register MOVD Move doubleword

NEG Negate

OR Perform bitwise logical AND

PACKSSDW Pack doublewords into words with signed saturation

PACKUSWB Pack words into bytes with unsigned saturation

PADDD Add packed doubleword integers

PADDSW Add packed signed word integers with signed saturation

PADDUSW Add packed unsigned word integers with unsigned saturation

38

PADDW Add packed word integers

PALIGNR Packed align right

PANDN Logical AND NOT

PCMPEQW Compare packed data for equal

PCMPGTW Compare packed signed integers for greater than

PMADDWD Multiply and add packed with Integers

PMULHW Multiply Packed signed integers and store high results

PREFETCHT0 Prefetch data into caches

PSHUFD Shuffle packed doublewords

PSLLW Shift packed data left logical

PSRAD Shift packed data with arithmetic

PSRAW Shift packed data right arithmetic

PSUBSW Subtract packed signed integers with signed saturation

PSUBW Subtract packed word integers

PUNPCKHDQ Unpacked high data

PUNPCKHWD Unpacked high data

PUNPCKLBW Unpack low data

PUNPCKLWD Unpack low data

PXOR Logical exclusive low

REP_MOVSD Move data from string to string

SBB Subtract with borrow

SHRD Shift right double

After completion of the Dynamic analysis, the mostly used runtime 50 instructions

were compared with the minimal instruction set which was used for designing the

Instruction Set Architecture for video playback device. Minimal Instruction Set had

a total of 26 instructions after the analysis. All most 21 instructions have found in

most frequently used runtime instructions and their functionalities are also the same.

Among those runtime instructions, 5 instructions were not found out of 26

instructions. Therefore, 5 instructions must be removed from designed ISA for video

playback.

39

Table 5 4: Minimal Instructions found among the runtime Instructions

ADD

AND

CALL

CMP

IMUL

JMP

LEA

MOV

POP

PUSH

RET

SAR

SHL

SUB

TEST

XOR

Table 5 5: Minimal Instructions have not found among the runtime Instructions

JA

JE

JGE

JNE

NPAD

40

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The main focus on this thesis was to design an Instruction Set Architecture of

customized processor for video playback. During this research, the author faced

many challenges particularly in finding the path to minimize the Instruction set.

Many low-cost processor architectures were referred and finally open source

multimedia decoder was used to for the task. After minimizing the instruction set,

designing of the ISA was another challenge as many open source ISAs were already

available in the market. When designing this ISA most popular open source ISAs

were analyzed and extracted necessary features that matches with the requirement.

The significant advantages of this newly created ISA are Application Specific (Used

only for Video Playback), Simplicity and User friendliness.

To publish this ISA yet much testing works remain. The author is determined in

making a broadly applicable user-level ISA and thereby to develop customized

processor in the future by incorporating this ISA. Notably, the privileged customized

processor architecture is incomplete. The reference hardware platform and the

various binary interfaces remain to be specified.

By far most computers used by children contain general purpose processors for

video playback. Therefore, by introducing a customized processor with minimal

input devices, this video playback device will be cost effective.

41

REFERENCES

[1] Marcus Wellington. (2015, Nov) “Laptop Computers for Children”

 [Online article] Available: http://wiki.mobileread.com/wiki/Laptop Computers

 for Children.html.

 [2] OLPC team (2014, Mar)” XO – 1.75” [Online article] Available:

 http://wiki.laptop.org/go/XO-1.75-OLPC.html.

[3] Marvell International Ltd., (2010, Feb) “Marvel ARMADA 610 Application

 Processor” [Online Article] Available: www.marvell.com/application-

 processors/armada-600/assets/armada610_pb.pdf

[4] Wikipedia (2014, Jan) “Raspberry Pi” [Online article] Available:

 http://en.wikipedia.org/wiki/Raspberry_Pi - Wikipedia.html

[5] Arm Limited (2004-2009) ARM1176JZF [Online]

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/index.ht

ml

[6] Vinod S. (June 2012) “Electronics the King of Hobbies” [Online article]

 Available: http://blog.vinu.co.in/2012/06/avr-video-player-on-nokia-color-

 lcd.html

[7] Krste Asanović and David A. Patterson [2014, Aug] “Instruction Sets Should

Be Free: The Case For RISC-V”[Online] Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

42

[8] Andrew Waterman, Yunsup Lee, David A. Patterson, Krste Asanovic [2014,

May] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version

2.0” Electrical Engineering and Computer Sciences, University of California at

Berkeley [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.pdf

 [9] FFmpeg Developers (2014, July] “FFmpeg Documentation” [Online Article]

 Available: https://ffmpeg.org/ffmpeg.html.

[10] Ady Tal [2012,June] Intel Software Development Emulator, Intel Corporation

[Online] Available: https://software.intel.com/en-us/articles/intel-software-

development-emulator.

[11] Intel Group [1997-2018] “The Intel® 64 and IA-32 Architectures Software

Developer's Manual” Intel Corporation [Online] Available:

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-

32-architectures-software-developer-vol-1-manual.html

43

APPENDIX A

C files used in FFmpeg 3.2 decoder

(1) aacpsdsp_init.c (30) mpegaudiodsp.c
(2) ac3dsp_init.c (31) mpegvideo.c
(3) alacdsp_init.c (32) mpegvideodsp.c
(4) audiodsp_init.c (33) pixblockdsp_init.c
(5) blockdsp_init.c (34) proresdsp_init.c
(6) bswapdsp_init.c (35) qpeldsp_init.c
(7) cavsdsp_init.c (36) rv34dsp_init.c
(8) constants.c (37) rv40dsp_init.c
(9) dcadsp_init.c (38) sbrdsp_init.c
(10) dct_init.c (39) simple_idct.c
(11) divac_dwt_init.c (40) snowdsp.c
(12) dirac_dwt_init.c (41) synth_filter_init.c
(13) fft_init.c (42) taksp_init.c
(14) flacdsp.c (43) ttadsp_init.c
(15) fmtconvert_init.c (44) v210_init.c
(16) g722dsp_init.c (45) vc1dsp_init.c
(17) h263dsp_init.c (46) vc1dsp_mmx.c
(18) h264_intrapred_init.c (47) videodsp_init.c
(19) h264_qpel.c (48) vorbisdsp_init.c
(20) h264chroma_init.c (49) vp3dsp_init.c
(21) h264dsp_init.c (50) vp6dsp_init.c
(22) hpeldsp_int.c (51) vp6dsp_init.c
(23) hutyuvdsp_init.c (52) vp8dsp_init.c
(24) idctdsp_init.c (53) vp9dsp_init.c
(25) jpeg2000dsp_init.c (54) vp9dsp_init10bpp.c
(26) lossless_audiodsp_init.c (55) vp9dsp_init_12bpp.c
(27) lossless_videodsp_init.c (56) xvidict_init.c
(28) me_cmp_init.c (57) mpegvideoenc.c
(29) mldsp_int.c (58) mpegvideoencdsp_init.c

