OPTIMUM DESIGN FOR MEDIUM VOLTAGE POWER DISTRIBUTION IN PLANNED CITY UNDER CONSTARAINTS

A CASE STUDY: COLOMBO PORT CITY

YKBS Ranaweera

128783H

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

June 2017

OPTIMUM DESIGN FOR MEDIUM VOLTAGE POWER DISTRIBUTION IN PLANNED CITY UNDER CONSTARAINTS

A CASE STUDY: COLOMBO PORT CITY

YKBS Ranaweera

128783H

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

June 2017

DECLARATION

"I declare that this is my own work and this thesis / dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

••••••	
Signature:	
(YKBS Ranaweera)	

.....

Date:

The above candidate has carried out research for the Masters' Thesis/ Dissertation under my supervision.

.....

.....

Signature of the supervisor: (Dr. W D Asanka S Rodrigo)

Date

ABSTRACT

Rapid population growth, resource scarcity, rural-urban migration, severe poverty, socioeconomic inequality etc. can be recognized as the foremost challenges, faced by the most of the countries in the world including Sri Lanka. Almost all the major cities are now rapidly becoming urban, which leads to emergence of massive problems related to infrastructure, portable water & sanitation, electricity, housing development etc. As a result, planned cities have been introduced while giving solutions for complex processes of urban planning.

One of the critical challenges in urban planning is to provide sufficient medium voltage distribution, to cater the increasing demand associated with the development. Even though many numbers of researches has been conducted to introduce optimum solutions to address this matter in various places in the world, no literature was found to discuss the optimum value for medium voltage distribution and optimum locations for the complete distribution system. It was evident that common papers about optimal distribution design do not include practical examples of a true multi objective optimization of an actual complete system of significant dimensions as those papers were discussing on existing networks or extensions to existing networks as improvements.

This paper presents new criteria for medium voltage selection, optimum location selection and minimization of losses in the Medium Voltage network. Finally a general model was developed to assist city planners to arrange the medium voltage power distribution for the planned cities.

Due to easy access to information, Colombo port city was selected as the case study in this research study. There are four available locations (A, B, C & D) for GSS in port city conceptual master plan and it was found that "B" and "C" were optimum locations for GSS. The optimum value for the MV power distribution is 22kV. The significant gain of the discussed methodology is that, it provides a set of solutions that can be considered simultaneously. Accordingly, this guide will not only raise awareness and build capacities in this regard, but will also offer directions for upcoming initiatives in this regard.

Key Words - Mega cities, optimum solution, medium voltage (MV), Colombo port city, novel concept

DEDICATION

I dedicate this thesis, which I completed successfully as my first research work, to my mother Mrs. H A L Kulathunga and my father, late Mr. Y K D P Ranaweera, who were always there as my strong pillars and my source of inspiration, by supporting me to make my dreams come true. I also dedicate this to my wife, Mrs. Asha Ranaweera, to my children and to all other knowledge seekers, who attempt to develop a better future.

ACKNOWLEDGEMENT

First and foremost, I pay my sincere gratitude to my supervisor Dr. Asanka Rodrigo, who encouraged and guided me to conduct this investigation and to prepare the final dissertation; without his excellent guiding, there will not be a research like this.

I acknowledge the staff members of the Department of Electrical Engineering, University of Moratuwa and to all the coordinators, who arranged this Master's program in such a productive manner. I extend my gratitude to Prof. M.P. Dias, Head of the Department of Electrical Engineering and to the staff of the Department of Electrical Engineering for the support given to me, during my study period. Further, my gratitude offers to Prof. J. R. Lucas, Prof. N.K. Wickramarachchi, Prof. J.P. Karunadasa, Dr. S.S. Namasivayam, Dr. Thilak Siyambalapitiya, Dr. Upuli Jayathunga, Eng. Anura Wijayapala and others for the guidance given for studying various subjects of Electrical Installation during the master's degree programme.

My special thanks go to Eng. A. J Edirisinghe, Eng. UGJK Gamlath and Eng. D.T. Dissanayake, who helped me for the investigation and finalization of the thesis work. Further, I would like to take this opportunity to extend my sincere thanks to Eng. Yasith Nupearachchi and all other office staff of the Colombo City Office of Ceylon Electricity Board and China Harbour Engineering Corporation (Port City Development office) who gave their co-operation to conduct my research work successfully.

It is a great pleasure to remember the kind co-operation and motivation provided by my friends and my family, especially my wife Asha, my son Seniru and my daughter Sanuki who helped me to continue the studies from the beginning to end.

TABLE OF CONTENTS

DECLARATIONiii		
ABSTRACT iv		
DEDICATIONv		
ACKNOWLEDGEMENT		
TABLE OF CONTENTS vii		
LIST OF FIGURES		
LIST OF TABLES		
LIST OF ABBREVIATIONS		
CHAPTER 01: INTRODUCTION		
1.1. Background		
1.2. Planned Cities in the World	2	
1.3. Planned Cities in Sri Lanka (Colombo Port City)	3	
1.4. Problem Identification	4	
1.5. Motivation		
1.6. Objectives of the Research	5	
1.7. Research Methodology	6	
CHAPTER 02: LITERATURE REVIEW	8	
2.1. Overview of Sri Lankan Power System	8	
2.2. Literature Reviews for Research Papers and Publications	9	
2.2.1. "Reliability & Cost Optimization for Distribution Networks Expansion U Evolutionary Algorithm"		
2.2.2. "Genetic Algorithm for Open Loop Distribution System Design"	9	
2.2.3 "Techno – Economic Feasibility Study on HTS Power Cables"	10	
2.2.4 "Optimization of Electrical Distribution Feeders Using Simulated Annea	ling" 11	
2.2.5 "Research on Optimization Planning Method of Distribution Network Ba Spatial Load Forecast"		
2.2.6 "Load Determination and Selection of Transformer Substations' Optimal for Tasks of Urban Networks' Development"		
2.2.7 "A Review on Building Energy Consumption Information"	14	
2.2.8 "Building Energy Benchmarking Report, 2014"	15	
2.3 Standard Values for the Medium Voltage (MV) Power Distribution	17	
2.4 Supply Record of few Leading Manufacturers in Last 10-15 years of Period	d18	
2.5 Most Common MV Distribution Values in Sri Lanka		
2.6 Importance of Selection of Medium Voltage Value for Power Distribution		
 2.7 Environmental Issues Concerned of MV Power Distribution Networks in a Pl City 	lanned	

	MV Distribution Arrangements	
2.9	Comparison of Overhead and Underground Power Distribution	
	Selection of the Type of Underground Cable	
	Cable Laying Methods and Arrangements	
	Details on Cable Trenches, Cable Laying and Testing	
2.13	Major Cost Components of GSS	27
	Estimates on Supply, Delivery, Installation and Commissioning of a GSS	
2.15	(N-1) Criteria for GSS	28
	ER 03: RESEARCH METHODOLOGY	
	ER 04: OPTIMUM VOLTAGE SELECTION CRITERIA	
4.1	Importance of Optimum Voltage	
4.2	Demand Calculation	
4.3	Possible Arrangement of Grid Substations	
4.4	Required Number of GSS	36
4.5	Price Variation of Panels, Cables and Power Transformers against the Medium Voltage Value	
4.:	5.1 Cost of Medium Voltage GIS Panels	41
4.:	5.2. Underground Cable Cost Variation with MV Value	42
4.:	5.3.Power Transformer Cost Variation with MV (Secondary Side) Value	44
4.6	Total Cost of few GSS Arrangements	45
4.7	Total Cost Variation of GSS / MVA	47
CHAPT	ER 05: OPTIMUM LOCATION SELECTION CRITERIA	48
5.1.7	Typical Arrangement of a Planned City During The Planning Stage	50
5.2	Losses of the Medium Voltage Network	51
5.3	Operation & Maintenance Cost of UG Cable Network	53
5.4	Optimum Location for GSS	53
5.5.	Methodology to Allocate Spot Loads to GSS	55
CHAPT	ER 06: CASE STUDY OF COLOMBO PORT CITY	59
6.1	Introduction to the Development Process of Colombo Port City	59
6.2	Load Calculation of Colombo Port City	60
6.3.	Calculation of Total Demand - For Stage 01	61
6.4.	Calculation of Total Demand - For Stage 02	62
6.5.	Calculation of Total Demand - For Stage 03	63
6.6.	Summary of the Demands of the Development	64
6.7.	Required Number of GSS for Stage - 01	65
6.8.	Further Analysis of Selected GSS Arrangements	66
6.9.	Optimum Value for MV Distribution	67
	1	

6.10. Land Cost Variation of Colom	bo Port City	67
6.11. Available Lands for Construct	ion of GSS	69
6.12. Supply & Installation Cost of	Under Ground Cables	69
6.13. Calculation of Total Cost of G	SS Combinations	70
6.14. Optimum Location for GSS		70
6.15. Outcome of the Case Study		79
CHAPTER 07: CONCLUSION ANI	O RECOMMENDATION	80
7.1. Optimum Arrangement for Co	lombo Port City	83
7.2. Recommendations		85
7.3. Limitations and Future Work.		86
REFERENCES		
ANNEXTURES		92

LIST OF FIGURES

Figure 2.1: Usage of different distribution voltage Classes	18
Figure 2.2: Historical variation of copper prices	20
Figure 3.1: Conceptual Master Plan of Colombo Port	32
Figure 3.2: Conceptual Master Plan of Colombo Port	32
Figure 4.1: Methodology to determine the required number of GSS	37
Figure 4.2: Variation of MV Panel Cost Vs Voltage	42
Figure 4.3: Variation of MV Underground Cable Cost Vs Voltage	43
Figure 4.4: Variation of Transformer Cost Vs Capacity & MV side Voltage	45
Figure 4.5: Total Cost of GSS Arrangements	46
Figure 4.6: Total Cost of GSS/ MVA	47
Figure 5.1: Optimum location selection criteria	49
Figure 5.2: Typical Area to be developed as a Planned City	50
Figure 5.3: Location of land, spot load and MV cable	52
Figure 6.1: Topographical Plan for Colombo Port City Complex	59
Figure 6.2: Conceptual Master Plan	60
Figure 6.3: Pictorial view of stage – 01	61
Figure 6.4: Pictorial view of stage - 02	62
Figure 6.5: Pictorial view of stage – 03	63
Figure 6.6: Locations of Available lands for constructing GSS on the stage -01 .	68
Figure 6.7: Available locations for GSS in Conceptual Master Plan	68
Figure 7.1: Methodology to determine the required No. of GSS	81
Figure 7.2: Optimum location selection criteria	82

LIST OF TABLES

Table 2.1: Accepted voltages for Power Generation, Transmission & Distribution8
Table 2.2: Standard voltages for MV power distribution 17
Table 2.3: Standard Medium voltage values & Applicable Bus bar ratings
Table 4.1: Commonly available MV values against Bus Bar Ratings
Table 4.2: Required number of GSS against MV value and bus bar rating
Table 4.3: Variation of MV Panel Cost Vs Voltage 41
Table 4.4: Variation of MV cable Cost Vs Voltage43
Table 4.5: Transformer Cost Vs Capacity and MV value
Table 4.6: Summary of the Engineering Estimates of few GSS arrangements
Table 5.1: Format to collect details
Table 5.2: Format for allocation of spot loads to GSS A&B
Table 5.3: Format for allocation of spot loads to GSS A&B
Table 5.4: Format to summarize the total cost of all GSS combinations
Table 6.1: Extent of Landfills in each stage 60
Table 6.2: Details of the Energy Demand of Commercial & Educational Buildings62
Table 6.3: Details of the Energy Demand of Hotel, Public Facilities
Table 6.4: Details of the Energy Demand of Commercial, Educationals
Table 6.5: Details of the Energy Demand of Residential & MU Residentials63
Table 6.6: Details of the Energy Demand of Commercial, Educationals
Table 6.7: Details of the Energy Demand of MU Residential & University64
Table 6.8: Summary of the Demands of the development
Table 6.9: Calculated current and required number of GSS for stage (I)65
Table 6.10: Selected GSS arrangements to further consideration
Table 6.11: GSS Arrangements to cater the total demand of stage 01
Table 6.12: Total cost involvement for the selected GSS arrangements 67
Table 6.13: The tentative prices of the available land slots of stage -01 68
Table 6.14: Supply and installation cost of underground cables 70
Table 6.15: Spot load, Demand & Distances to spot loads from GSS72
Table 6.16: Details of demand, distances, full load current & full load copper loss of
MV feeders to spot loads from available lands73

Table 6.17: Details of demand, distances, full load current, full load copper loss	of
MV feeders & order of power loss of feeders to spot loads from available lands	74
Table 6.18: Allocated spot loads to Land – B	75
Table 6.19: Allocated spot loads to Land - A	76
Table 6.20: Summary of GSS in Land A and B	77
Table 6.21: Complete cost calculation for the GSS combination AB	77
Table 6.22: Complete cost calculation for the land combination BC	77
Table 6.23: Complete cost calculation for the land combination CD	78
Table 6.24: Complete cost calculation for the land combination DA	78
Table 6.25: Complete cost calculation for the land combination BD	78
Table 6.26: Complete cost calculation for the land combination AC	78
Table 6.27: Summary of the total cost of GSS combinations	79
Table 7.1: Summary of the Demands of the development	83
Table 7.2: Calculated currents & required number of GSS for stage (I)	84
Table 7.3: GSS Arrangements to cater the total demand of stage (I)	84
Table 7.4: Total cost involvement for the selected GSS arrangements	85
Table 7.5: Summary of the total cost of GSS combinations	85

LIST OF ABBREVIATIONS

ACSR	-	Aluminium –Conductor Steel- Reinforced
CBD	-	Central Business District of Colombo City
CEB	-	Ceylon Electricity Board
EMF	-	Electric and Magnetic Fields
GCTDLRP	-	Greater Colombo Transmission & Distribution Loss Reduction
		Project
GIS	-	Gas Insulated Switch Gear
GSS	-	Grid Substations
HDB	-	Housing Development Board
HDD	-	Horizontal direct drilling
HV	-	High Voltage
kV	-	Kilo Volt
kVA	-	Kilovolt - Ampere
LV	-	Low Voltage
MV	-	Medium Voltage
MVA	-	Megavolt – Ampere
NGO	-	Non-Government Organization
PPC	-	Preliminary Permission Clearance
PUCSL	-	Public Utilities Commission of Sri Lanka
R&D	-	Research & Development
SL	-	Sri Lanka
UG	-	Under Ground
XLPE	-	Cross Linked Polyethylene