PRODUCTIVITY IMPROVEMENTS OF QUARRY PROCESS BY IDENTIFYING LEAN WASTES

MASTER OF SCIENCE

IN

CONSTRUCTION PROJECT MANAGEMENT

U.L.W.K.Gunasinghe

Department of Civil Engineering

University of Moratuwa

December 2015

PRODUCTIVITY IMPROVEMENTS OF QUARRY PROCESS BY IDENTIFYING LEAN WASTES

 $\mathbf{B}\mathbf{y}$

U.L.W.K.Gunasinghe

Supervised by

Dr. Lesley Ekanayake

This dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Master of Science in Construction Project Management.

Department of Civil Engineering

University of Moratuwa

December 2015

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter library loans, and for the title and summary to be available to outside organizations.

Signature of Candidate	Date
The above particulars are correct, to the best of my knowledge.	
Signature of Supervisor	Date

ABSTRACT

The Sri Lankan Central Bank Annual Report 2013 revealed that, the construction industry contribution to GDP has reached 8.7% in year 2012 with continual growth from 2003. It further says that, more public investments in the highway sector contributed to sustaining the growth momentum in the construction industry. Hence construction has automatically become one of the major energy consuming industries in the country. In that regard, the Asphalt concrete production process is at the top level of energy consumption due to the higher amount of energy used to raise the temperature of raw materials to a high mixing temperature of around 150 C.

Key findings of a research done on the Asphalt Coating Plant in Scotland, reveals that it is economical to have daily production throughout of at least 100 tones and 1% moisture increment of aggregate, increases the fuel consumption by 0.7 liter/tone (Gillespie, 2012). The above research doesn't cover the stone quarrying process which provides the aggregates for asphalt production. The research done by Rylander (2013) on the quarrying process has contributed to find lean wastes happening in the raw material supplying process from quarry to crusher.

Controlling aggregate production costs are a significant problem in the quarrying process due to high competition in the industry. The production cost of aggregates is severely affected by the selected crushing circuit. In this thesis, the study was carried out based on two different crushing circuits to find a more productive crushing circuit in the quarrying process. The lean principles were applied to identify the lean wastes over production, waiting, transportation, non-value-added processing, excess inventory, defects, excess motion and underutilized people in two crushing processes. The identified wastes of each circuit were analyzed compared to the other circuit. This study was limited to horizontal flow crushing.

The analyzed results show that cellular manufacturing with intermediate stockpile increases the availability of the system by minimizing the waiting. At two-stage crushing circuit uses less manpower, machinery and electricity power than a three-stage crushing circuit since two-stage crushing minimizes the waste over conveyance, over motion and over utilization of people. Finally, the study recommends that by selecting the circuit, two-stage crushing with cellular manufacturing can increase the productivity of the system.

ACKNOWLEDGEMENT

I would like to thank the many people who made this project possible and gave their supportive hands all along the research study and made the journey very stimulating and enjoyable. Firstly, I am very grateful to the Department of Civil Engineering of the University of Moratuwa, for giving me the opportunity to carry out this research study. I would like to express my sincere gratitude to my supervisor Dr. L.L. Ekanayake for his valuable guidance and immense support.

I deeply appreciate the valuable suggestions and comments given by Prof. Asoka Perera, Prof. Neranjan Gunawardane, Prof. Chintha Jayasinghe and Dr. R.U. Halwatura during the progress presentations. Further my appreciation goes to the Executive Director, Senior Management and all other staff members of NEM Construction (Pvt) Ltd, for encouraging me throughout the exercise and being a great support.

Finally, my thanks and appreciation are due to my family for their understanding, motivation and patience during exercise as well as my colleagues and friends who helped me in the preparation of this dissertation.

Wasantha Gunasinghe

December 2015

Table of Contents

DECLA	RA	ΓΙΟΝ	iii			
ABSTR	ACT		iv			
ACKNO	OWL	EDGEMENT	v			
List of F	igur	es	ix			
List of T	Γable	es	X			
ABBRE	VIA	TIONS	xi			
СНАРТ	ER	1	1			
1.0	Intr	oduction	1			
1.1	Background1					
1.2	Pro	blem Definition	2			
1.3	Res	search Objectives	3			
1.4	Sig	nificance of the study	3			
1.5	Me	thodology	4			
1.6	Lin	nitations of the research	4			
1.7	Main Findings5					
1.8	1.8 Component of the Report					
СНАРТ	ER 2	2	6			
2.0	The	e Literature Review	6			
2.1	General					
2.2	His	tory and Background of Lean Manufacturing	6			
2.3	Imp	portance of the Lean Manufacturing Process	7			
2.4	Gei	neral Principles of Lean Manufacturing	9			
2.5	Lea	nn Transformation Process	. 11			
2.5	.1	Planning the change	. 11			
2.5	.2	Success factors	. 11			
2.5	.3	Lean Tools and Techniques	. 13			
2.5	.4	Implementation	. 14			
2.5	.5	Measuring Progress	. 16			
2.6	Lea	n Construction	. 18			
2.7	Lea	nn Application to Quarry Process	. 19			
2.8	Summary					
СНАРТ	ER 3	3	. 21			

	3.0	Research Methodology					
	3.1 General						
	3.2 Quarry Operation						
	3.3 Crusher Operation						
	3.3	.1 Crushing Theory	22				
	3.3	.2 Crushing Equipment	22				
	3.3	.3 Crushing Circuits and Stages	27				
	3.4	Cellular Manufacturing	28				
	3.4	.1 Workcell	28				
	3.4	.2 Cellular Layout	28				
	3.4	.3 Machining Workcell	29				
	3.5	Framework of the research	29				
	3.5	.1 Research Approach	29				
	3.5	.2 Selected plant complexes	30				
	3.6	Method of Data collection	32				
	3.6	.1 Initial preparation for data collection	32				
	3.6	.2 The information system of the plant production	32				
	3.7	Processing of Data	35				
	3.7	.1 Plant production data	35				
	3.7	.2 Plant Production Cost	37				
	3.7	.3 Energy consumption	39				
	3.8	Method of Data analysis	40				
	3.9	Summary	40				
C	HAPT	ER 4	41				
	4.0	Analysis & Discussion	41				
	4.1	General	41				
	4.2	Availability of Crushing Circuits	41				
	4.2	.1 Analysis of Availability for Two Crushing Circuits	41				
	4.3	Discussion of Crushing Circuit Availability	44				
	4.4	Analysis of Machinery and Manpower Involvement	44				
	4.5	Discussion of Machinery and Manpower Involvement	47				
	4.6	Analysis of Energy Consumption in Two Circuits	48				
	4.7	Discussion of Energy Consumption in the Two Circuits	49				

4.8	Summary	49			
CHAPTER 5					
5.0	Conclusions and Recommendations	50			
5.1	Summary of Findings	50			
5.2	Conclusion	50			
5.3	Recommendation				
5.4	Implementation	51			
5.5	Recommendations for Future Study	54			
Refer	rences	55			
APPENDIX A58					
APPENDIX B62					
APPENDIX C67					
APPEN	APPENDIX D7				

List of Figures

Figure	1:	Framework	for	lean	manufacturing	implementation	(Duque	and
Cadavio	1,20	07)						15
Figure 2	2: T	he model for s	succes	ssful le	ean implementati	on (Vieazindiene	and Ciarn	iene,
2013)				•••••				18
Figure 3	3 : C	ross Section o	f a Ja	w Cru	sher			23
Figure 4	4: C 1	ross Section of	f a Co	ne Cr	usher			24
Figure :	5: In	npact Crusher		•••••				25
Figure	6: Fe	eder		•••••				25
Figure '	7: V	ibratory Scree	n	•••••				26
Figure 8	8: C	onveyor		•••••				26
Figure 9	9: U	Shape Layout		•••••				28
Figure	10: \$	Straight Layou	t	•••••				29
Figure	11: I	Layout of Plan	t No.	01 (Tv	vo-stage in Single	e Cell)		30
Figure	12: I	Layout of Plan	t No.	2 (Th	ree-stage in Multi	i Cells)		31
Figure	13: <i>A</i>	Availability of	Plant	No.0	1			42
Figure	14: <i>A</i>	Availability of	Plant	No.02	2			43
Figure	15: <i>A</i>	Availability of	Singl	le Cell	& Multi Cell			44
Figure	16:]	Machinery Co	st of	Plant	No.01 & Plant N	Io.02 (Production	Average :	5000
Cube/M	Iont	h)		•••••				45
Figure	17:]	Manpower Co	st of	Plant	No.01 & Plant N	Io.02 (Production	Average 3	5000
Cube/M	[ont]	n)		•••••				46
Figure	18: N	Machinery and	Man	power	Cost of Two-sta	ge & Three-stage		47
Figure	19 :	Power Consur	nptio	n of Pl	ant No.01 and Pl	ant No.02 (Kw/C	ube)	48
Figure 2	20: F	Energy Consur	nptio	n of T	wo-stage and Thi	ee-stage		49
Figure 2	21: F	Proposed Plant	Layo	out				51
Figure 2	22: I	Drawing Deve	loped	by a V	Vendor Based on	Proposed Layout		52
Figure 2	23: I	First Stage Cru	shing	in Pr	oposed Crusher P	lant		53
Figure 2	24: 5	Second Stage (Crush	ing in	Proposed Crushe	r Plant		53

List of Tables

Table 1: Indicators for lean implementation measurement	16
Table 2: Plant No.01 (Two-stage in Single Cell)	35
Table 3: Plant No 02 (Three-stage in Three Cells)	36
Table 4: The Percentage of Production Hour Loss with Reference to Plant	Production
Percentage	37
Table 5: Monthly Plant Production Cost of Plant No. 01	38
Table 6: Monthly Plant Production Cost of Plant No.02	38
Table 7: Power Consumption of Plant No.01	39
Table 8: Power Consumption of Plant No.02	39
Table 9: Availability of Plant No.01	42
Table 10: Availability of plant No.02	43
Table 11: Machinery Cost of Plant No.01 & Plant No.02 (Production Av	verage 5000
Cube/Month)	45
Table 12: Manpower Cost of Plant No.01 & Plant No.02 (Production Av	verage 5000
Cube/Month)	46
Table 13: Power Consumption of Plant No.01 and Plant No.02 (Kw/Cube)	48

ABBREVIATIONS

JIT - Just In Time

JIC - Just In Case

VSM - Value Stream Mapping

WIP - Work in Process

CSS - Closed Side Setting

PO - Purchase Order

MRF - Material Requisition Form

GRN - Goods Received Note