SOCIAL COST FACTORS AND THEIR IMPACTS IN SEWERAGE PIPE LAYING PROJECTS

MASTER OF SCIENCE

IN

CONSTRUCTION PROJECT MANAGEMENT THE UNIVERSITY OF MORATUWA

G. D. N. Neville

Department of Civil Engineering

University of Moratuwa

January 2017

SOCIAL COST FACTORS AND THEIR IMPACTS IN SEWERAGE PIPE LAYING PROJECTS

By

G. D. N. Neville

Supervised By

Dr. Lesly Ekanayake

"This dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Master of Science in Construction Project Management"

Department of Civil Engineering
University of Moratuwa
January 2017

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter library loans, and for the title and summary to be available to outside organizations.

Signature of Candidate	Date
The above particulars are correct, to the best of my knowledge.	
Signature of Supervisor	Date

ABSTRACT

The construction projects have adverse and negative impacts on the residents who live at a neighborhood of a construction project. These negative impacts such as inconveniences, disturbances and economic losses which face by the community surrounding a construction project are referred to as "social costs". More often the contractor of the construction contracts has no obligation, during his execution of works, to bear these social costs hence consequently have to been dured by the local community in and around the project area.

The scenario is true for the sewerage pipe laying related construction projects too as the sewer conveyance pipe lines are laid on the public road's right of way in deep and wider trenches. In Sri Lankan point of view the sewerage pipe line trenching is mostly done by traditional open-cut method, with opening up wider trenches along the public roads attributing many social costs and impacts to the surrounding community and businesses. These social cost factors and impacts can take many forms, such as traffic delays and congestion, more fuel consumption, road and third party property damages, increased accidents, air and noise pollution, decreased revenue in businesses and annoyances.

To identify and itemize the social cost factors and their impacts to the local community, the literature was reviewed and the recently implemented sewerage pipe laying construction project in Ratmalana/Moratuwa was selected as a case study. By the use of researcher's project experience, questionnaire surveys and interviews conducted with the project stake holders the nature and gravity of those social cost factors and impacts on the neighboring community, were analyzed. According to the findings the major social cost factors which businesses incur include customer decline and financial loss, whereas residents find traffic delays and traffic congestion problems to be more of an intrusive inconveniences. The findings further give the gravity of those social cost factors and impacts, effect to the local community and businesses.

This thesis concludes, as many techniques are available in the literature for quantification of social costs those social costs should be assessed and accommodated in the project budgets. On the other hand, this would give clear picture of the social costs the

community endures but neglected by the project parties. Furthermore the findings give alternative trenchless methods instead of traditional open-cut trenching for sewerage pipe laying, by which the foregoing road and property damages and associated social costs could be minimized. This is because the current way of conducting the sewerage pipe laying projects in the public roads by harming the community will lose the credibility of the contractual parties, i.e., the project proponent and the contractor, as the social costs are bared by the community besides the fact that the prime objective of implementing a sewerage project is to protect the environment and the ground by conveying the household sewage in a safe manner..

Keywords: public, social costs, impacts, sewerage pipe laying, local community

ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Lesly Ekanayake, Professor Asoka Perera and Professor Mrs. Chintha Jayasinhe who are in academic staff of Department of Civil Engineering in University of Moratuwa and my academic advisors of Master of Science in Construction Project Management. Throughout my course of study they have been my encouraging Sirs and also, Dr. Lesly Ekanayake, served as my immediate Supervisor for this thesis. My special gratitude expresses to him for his guidance and directing me to create useful and meaningful thesis in this thesis and the help he gave me to catch up the target time for completion.

I am also grateful to non-academic staff members of the Construction Project Management Division and staff of the Library of University of Moratuwa and colleagues who provided help during this process. Further I would like to thankful to Engineering Assistants Mr. Roshan Perera, Sociologist Mr. Diluka Kumara in the Ratmalana/Moratuwa Sewerage Project Office for the assistant giving me to conduct the surveys and providing me project data and my subordinate staff and my other colleagues of Planning and Design (Sewerage) Division of National Water Supply and Drainage Board for their endearing assistance to get this task success.

Additionally, I would like to express my gratitude towards family and friends for their unwavering love, encouragement and motivation were invaluable. A special thank you to my wife and daughter as their devotion and immense support was especially helpful in my success.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iv
LIST OF FIGURES	X
LIST OF TABLES	xi
ABRIVIATIONS	xiii
Chapter Page	
1. INTRODUCTION	1
1.1 Background	1
1.2 Social Costs in Construction	4
1.2.1 Traffic Disruption	4
1.2.2 Economic Impacts	5
1.2.3 Environmental Damages and Social Impacts	6
1.3 The Research Problem	6
1.3.1 Social Costs and their Impacts in Current Sewerage Pipe Laying Work	7
1.3.2 Non-application of Trenchless Technology	. 8
1.3.3 Prolonged Negligence of Social Impacts will Lose Projects' Credibility	9
1.3.4 Effect to the Project Completion Time	10

1.3.5 Interest for the Problem	10
1.4 Objectives and Scope	11
1.5 Methodology	11
2. LITERATURE REVIEW	12
2.1 Social Cost in Transport Related Construction	12
2.2 Social Costs of Traditional Construction Methods and	
Trenchless Technology	14
2.2.1 Effects of Utility and Social Costs in Open-Cut Trenching	15
2.2.1.1 Road Damages	15
2.2.1.2 Damages to Adjacent Utilities	16
2.2.1.3 Damages to Adjacent Structures	16
2.2.1.4 Noise and Vibration	16
2.2.1.5 Air Pollution	17
2.2.1.6 Vehicular Traffic Disruption	17
2.2.1.7 Pedestrian Traffic Disruption	17
2.2.1.8 Business Loss.	18
2.2.1.9 Damages to Diversion Roads	18
2.2.1.10 Increased Road Accidents	18
2.2.1.11Increased Site Accidents	18
2.2.2 Choice for Trenchless Technology	19

2.3 Social Costs and Their Impacts to the Local Community	
- The Mega City Sewerage Management Project implemented	
in Sri Lanka	19
2.3.1 Social Impacts and Third Party Property Damages	20
2.3.2 The Effects of Open-cut Trenching	22
2.3.3 Effects to the Project Period	24
2.4 Importance of Public Participation in Project Implementation	
: The Example from Upper Kotmale Hydropower Project in	
Sri Lanka	26
2.5 Quantification of Social Costs Associated with Construction Projects	s 28
2.5.1 The Need for a New Paradigm.	28
2.5.2 Adverse Impacts of Construction Projects on Natural and	
Urban Environments	30
2.5.3 Techniques for the Valuation of Social Costs	32
3. METHODOLOGY OF STUDY	36
3.1 Methods Used	36
3.2 The Research	36
3.3 The Details of the Selected Project for Study	37
3.4 The Selected Study Location and Scope of Work	41
3.5Collection of Data	42
3.5.1 The Details of Business and Residential Surveys	42

	3.5.2 The Details of Interviews Conducted	44
	3.5.3 Use of the Project Experience	45
	3.6 Analysis of Data	45
4.	ANALYSIS AND DISCUSSION OF RESULTS	47
	4.1 The Business Survey for Collection of Data	47
	4.1.1 Personal Travel Time	47
	4.1.2 Individual's Business Productivity	51
	4.1.3 Communication with Third Party	52
	4.1.4 Property Damages	54
	4.1.4.1 Delay in Payment of Compensation for Damages	57
	4.1.4.2 Posing Treats to Lives	58
	4.1.4.3 The Adoption of Proper Methods/Techniques	59
	4.1.5Economic Impacts on Businesses	60
	4.1.5.1 Difficulties for Customers to	
	Access the Shop/Market	63
	4.1.6 Persons' Opinion of on Site Controls	66
	4.2 Residential Survey for Collection of Data	67
	4.2.1 The Residents' Travel Information	68
	4.2.2 The Residents' Travel Time	69
	4.2.3 The Residents' Opinion Survey	73
	4.2.4 Noise Nuisance	75

4.2.5 Dust Generation.	76
4.3 Mitigation of social impacts by Better Project Management and	
Coordination	78
5. CONCLUSION AND RECOMMENDATIONS	81
5.1 Conclusion	81
5.2 Limitations of the Study	84
5.3 Recommendations for Future Study and Research	85
LIST OF REFERENCES	87
APPENDIXES	
A. BUSINESS AND RESIDENTIAL SURVEQUESTIONNAIRES	89
B. LOG OF SURVEYED BUSINESS PLACES	95
C. LOG OF RESPONDANTS INTERVIEWED	96
D. SUMMARY OF RESPONSE OF BUSINESS SURVEY	97
E. SUMMARY OF RESPONSE OF RESIDENTIAL SURVEY	99

LIST OF FIGURES

Figure	Page
Figure 2.1: Pictures of Damaged houses	22
Figure 2.2: Pictures of Deep Trenching and Damaged Widths	23
Figure 2.3: Pictures of Settlement of the Ground due to Soil Migration	
at Deep Trench at Katukurunduwatta road	25
Figure 2.4: The new paradigm for sustainable construction	29
Figure 2.5: Social Assessment Process Cycle.	35
Figure 3.1: The Map of Ratmalana/Moratuwa Project Area	39
Figure 3.2: The Aerial Map of New Air Port Road	42
Figure 4.1: Picture of Traffic due to road closure in Attidiya road	
In Ratmalana	49
Figure 4.2: Existing Patterns of private properties	56
Figure 4.3: Access Difficulties for Businesses	64
Figure 4.4: Location of Resident Survey in New Air Port Road	68
Figure 4.5: Muddy and unleavened road surfaces of completed work	
of New Airport road	77

LIST OF TABLES

Table	Page
Table 2.1: Additional Fuel Cost for Extra Miles to Work	13
Table 2.2: Pipe laying lengths and property damages, nuisances occurred to local community in Ratmalana/Moratuwa project area	21
Table 2.3: Cost comparison of open-cut trenching verses	
Micro-tunneling technology	24
Table 2.4: The impacts and social cost indicators related to construction	
projects in urban environment	31
Table 3.1: The Scope of the Project	41
Table 4.1: Results on Travel Time.	48
Table 4.2: Results Travel Time Increase	48
Table 4.3: Results on Business Productivity	52
Table 4.4: Results on Pre-information on Site Work	53
Table 4.5: Results on Remedies for Inconvenience	53
Table 4.6: Results on Property Damages.	55
Table 4.7: Results of Amount in Property Damages	55
Table 4.8: Results in Business Reduction.	60
Table 4.9: Results in Percentage of Business Reduction	60
Table 4.10: Results on Compensation Payment.	61
Table 4.11: Results on Customer Reduction.	61
Table 4.12: Results in Percentage of Customer Reduction	62
Table 4.13: Results Losing of Employees	64

Table 4.14: Results in Decrease of Productivity	65
Table 4.15: Results in Business Increase after the Project	66
Table 4.16: Results on Persons' Opinion in Site Controls	67
Table 4.17: Results onResident's Travelling Distance	68
Table 4.18: Results on Resident's Travelling Times	69
Table 4.19: Results on Mode of Transport.	69
Table 4.20Results on Resident's Normal Travel Time.	70
Table 4.21 Results on Travel Time After the Works Began	70
Table 4.22: Results in Using Alternative Routes.	71
Table 4.23: Results on Percentage of De-routing.	71
Table 4.24: Results on Residents' Property Damages.	72
Table 4.25: Results on Amount of Property Damages	73
Table 4.26: Results Percentage of Stay at Home due to incontinence	73
Table 4.27: Results on Residents' Opinion in Site Controls	74
Table 4.28: Summary of Results on Business and Residents' Opinion in Site Co	ontrols 79

ABRIVIATIONS

NWSDB - National Water Supply and Drainage Board

CEA – Central Environmental Authority

CGC – China Geo-Engineering Corporation

CMC – Colombo Municipal Council

BOQ – Bill of Quantities