
 56

9 References

[1] “Statistical Pocket Book 2016,” Department of Census and Statistics - Sri Lanka, Survey.
[2] C. Xiao-Feng, S. Zhong-ke, and Z. Kai, “Research on an intelligent traffic signal

controller,” in Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, 2003,
vol. 1, pp. 884–887.

[3] C. Li and S. Shimamoto, “A real time traffic light control scheme for reducing vehicles
CO 2 emissions,” in 2011 IEEE Consumer Communications and Networking Conference
(CCNC), 2011, pp. 855–859.

[4] N. J. Garber and L. A. Hoel, Traffic and highway engineering. Cengage Learning, 2014.
[5] C. Chen, Z. Jia, and P. Varaiya, “Causes and cures of highway congestion,” IEEE

Control Syst. Mag., vol. 21, no. 6, pp. 26–32, 2001.
[6] M. Litzenberger et al., “Vehicle counting with an embedded traffic data system using an

optical transient sensor,” in 2007 IEEE Intelligent Transportation Systems Conference,
2007, pp. 36–40.

[7] Bo Chen and H. H. Cheng, “A Review of the Applications of Agent Technology in
Traffic and Transportation Systems,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp.
485–497, Jun. 2010.

[8] K. Singh and B. Li, “Estimation of Traffic Densities for Multilane Roadways Using a
Markov Model Approach,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4369–4376,
Nov. 2012.

[9]Z. Tehao and C. Feng, “Acquisition of traffic flow density using multi-source data fusion,”
in Measurement, Information and Control (MIC), 2012 International Conference on,
2012, vol. 2, pp. 595–599.

[10] J. Barrachina et al., “A V2I-Based Real-Time Traffic Density Estimation System in
Urban Scenarios,” Wirel. Pers. Commun., vol. 83, no. 1, pp. 259–280, Jul. 2015.

[11] R. Mao and G. Mao, “Road traffic density estimation in vehicular networks,” in
Wireless Communications and Networking Conference (WCNC), 2013 IEEE, 2013, pp.
4653–4658.

[12] L. Garelli, C. Casetti, C.-F. Chiasserini, and M. Fiore, “Mobsampling: V2V
communications for traffic density estimation,” in Vehicular Technology Conference
(VTC Spring), 2011 IEEE 73rd, 2011, pp. 1–5.

[13] T. Darwish and K. Abu Bakar, “Traffic density estimation in vehicular ad hoc
networks: A review,” Ad Hoc Netw., vol. 24, pp. 337–351, Jan. 2015.

[14] A. Tabibiazar and O. Basir, “Kernel-based modeling and optimization for density
estimation in transportation systems using floating car data,” in Intelligent Transportation
Systems (ITSC), 2011 14th International IEEE Conference on, 2011, pp. 576–581.

[15] V. Tyagi, S. Kalyanaraman, and R. Krishnapuram, “Vehicular Traffic Density State
Estimation Based on Cumulative Road Acoustics,” IEEE Trans. Intell. Transp. Syst., vol.
13, no. 3, pp. 1156–1166, Sep. 2012.

[16] M. M. nal Bhandarkar and M. T. Waykole, “Traffic Density Estimation and
Mechanical Condition Determination of Vehicles using Acoustic Signals.”

[17] P. Borkar and L. G. Malik, “Acoustic signal based traffic density state estimation
using adaptive Neuro-Fuzzy classifier,” in Fuzzy Systems (FUZZ), 2013 IEEE
International Conference on, 2013, pp. 1–8.

[18] J. Kato, Y. Hiramatsu, and T. Watanabe, “Estimating traffic density using sounds of
moving vehicles,” in Proceedings of the Seventh Eurographics conference on Multimedia,
2004, pp. 21–29.

 57

[19] J. Kato, “An attempt to acquire traffic density by using road traffic sound,” in Active
Media Technology, 2005.(AMT 2005). Proceedings of the 2005 International Conference
on, 2005, pp. 353–358.

[20] E. Tan and J. Chen, “Vehicular traffic density estimation via statistical methods with
automated state learning,” in Advanced Video and Signal Based Surveillance, 2007.
AVSS 2007. IEEE Conference on, 2007, pp. 164–169.

[21] T. Wassantachat, Z. Li, J. Chen, Y. Wang, and E. Tan, “Traffic Density Estimation
with On-line SVM Classifier,” 2009, pp. 13–18.

[22] S. B. Purusothaman and K. Parasuraman, “Vehicular traffic density state estimation
using Support Vector Machine,” in Emerging Trends in Computing, Communication and
Nanotechnology (ICE-CCN), 2013 International Conference on, 2013, pp. 782–785.

[23] Z. Li, E. Tan, J. Chen, and T. Wassantachat, “On Traffic Density Estimation with a
Boosted SVM Classifier,” 2008, pp. 117–123.

[24] P. Janney and G. Geers, “Advanced framework for illumination invariant traffic
density estimation,” in Intelligent Transportation Systems, 2009. ITSC’09. 12th
International IEEE Conference on, 2009, pp. 1–6.

[25] O. Asmaa, K. Mokhtar, and O. Abdelaziz, “Road traffic density estimation using
microscopic and macroscopic parameters,” Image Vis. Comput., vol. 31, no. 11, pp. 887–
894, Nov. 2013.

[26] Y. Yuan, L. Mou, and X. Lu, “Scene Recognition by Manifold Regularized Deep
Learning Architecture,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–1, 2015.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, May 2015.

[28] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features
for scene recognition using places database,” in Advances in Neural Information
Processing Systems, 2014, pp. 487–495.

[29] S. Mehan and V. Sharma, “Development of traffic light control system based on
fuzzy logic,” in Proceedings of the International Conference on Advances in Computing
and Artificial Intelligence, 2011, pp. 162–165.

[30] K. T. K. Teo, K. B. Yeo, S. E. Tan, Z. W. Siew, and K. G. Lim, “Design and
development of portable Fuzzy Logic based traffic optimizer,” in ICCE-China Workshop
(ICCE-China), 2013 IEEE, 2013, pp. 7–12.

[31] K. T. K. Teo, W. Y. Kow, and Y. K. Chin, “Optimization of Traffic Flow within an
Urban Traffic Light Intersection with Genetic Algorithm,” 2010, pp. 172–177.

[32] F. Teklu, A. Sumalee, and D. Watling, “A genetic algorithm approach for optimizing
traffic control signals considering routing,” Comput.-Aided Civ. Infrastruct. Eng., vol. 22,
no. 1, pp. 31–43, 2007.

[33] Y. K. Chin, W. Y. Kow, W. L. Khong, M. K. Tan, and K. T. K. Teo, “Q-Learning
Traffic Signal Optimization within Multiple Intersections Traffic Network,” 2012, pp.
343–348.

[34] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, “Synthesis,
structure, and spectroscopic properties of copper (II) compounds containing nitrogen–
sulphur donor ligands; the crystal and molecular structure of aqua [1, 7-bis (N-
methylbenzimidazol-2′-yl)-2, 6-dithiaheptane] copper (II) perchlorate,” J. Chem. Soc.
Dalton Trans., no. 7, pp. 1349–1356, 1984.

[35] W. Narzt, U. Wilflingseder, G. Pomberger, D. Kolb, and H. Hörtner, “Self-organising
congestion evasion strategies using ant-based pheromones,” IET Intell. Transp. Syst., vol.
4, no. 1, p. 93, 2010.

 58

[36] D. Renfrew and X.-H. Yu, “Traffic Signal Control with Swarm Intelligence,” in
Proceedings of the 2009 Fifth International Conference on Natural Computation -
Volume 03, Washington, DC, USA, 2009, pp. 79–83.

[37] D. Renfrew and X.-H. Yu, “Traffic Signal Control with Swarm Intelligence,” 2009,
pp. 79–83.

[38] J. García-Nieto, E. Alba, and A. C. Olivera, “Enhancing the urban road traffic with
Swarm Intelligence: A case study of Córdoba city downtown,” in Intelligent Systems
Design and Applications (ISDA), 2011 11th International Conference on, 2011, pp. 368–
373.

[39] J. Zhao and D. Tang, “Coordination traffic control under the framework of multi-
agent technology,” in Computer Science and Engineering, 2009. WCSE’09. Second
International Workshop on, 2009, vol. 1, pp. 219–222.

[40] J. Zhang, L. Yan, Y. Han, G. Song, and X.-L. Fang, “Research on the Method and
Simulation of Intersection Signal Control Based on Multi-Agent,” in Management and
Service Science, 2009. MASS’09. International Conference on, 2009, pp. 1–4.

[41] W. Wu, G. Haifei, and J. An, “A Multi-agent Traffic Signal Control System Using
Reinforcement Learning,” in 2009 Fifth International Conference on Natural
Computation, 2009, vol. 4, pp. 553–557.

[42] A. Krogh, “What are artificial neural networks?,” Nat. Biotechnol., vol. 26, no. 2, pp.
195–197, 2008.

[43] T. Dean, “A computational model of the cerebral cortex,” in Proceedings of the
National Conference on Artificial Intelligence, 2005, vol. 20, p. 938.

[44] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust object
recognition with cortex-like mechanisms,” Pattern Anal. Mach. Intell. IEEE Trans. On,
vol. 29, no. 3, pp. 411–426, 2007.

[45] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep Machine Learning - A New Frontier
in Artificial Intelligence Research [Research Frontier],” IEEE Comput. Intell. Mag., vol.
5, no. 4, pp. 13–18, Nov. 2010.

[46] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks.,” in
Aistats, 2011, vol. 15, p. 275.

[47] “http://caffe.berkeleyvision.org/.” .
[48] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Englewood

Cliffs, N.J: Prentice Hall, 1995.
[49] G. Weiss, Ed., Multiagent systems: a modern approach to distributed artificial

intelligence. Cambridge, Mass: MIT Press, 1999.
[50] V. I. Gorodetskii, “Self-organization and multiagent systems: I. Models of multiagent

self-organization,” J. Comput. Syst. Sci. Int., vol. 51, no. 2, pp. 256–281, Apr. 2012.
[51] M.-P. Huget, Communication in Multiagent Systems: Agent communication

languages and conversation policies, vol. 2650. Springer Science & Business Media,
2003.

[52] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 675–
678.

[53] “https://ffmpeg.org/ffmpeg.html.” .
[54] “http://scikit-image.org/.” .
[55] I. J. Timóteo, M. R. Araújo, R. J. Rossetti, and E. C. Oliveira, “TraSMAPI: An API

oriented towards Multi-Agent Systems real-time interaction with multiple Traffic
Simulators,” in Intelligent Transportation Systems (ITSC), 2010 13th International IEEE
Conference on, 2010, pp. 1183–1188.

 59

Appendix A

Road traffic scenes of different intersections

 Figure A.1: Narahenpita Junction

 60

Figure A.2: Ayurveda Junction

 61

Figure A.3: Kanaththa Junction

 62

Appendix B

10 Appendix B - Class diagram for traffic control optimization

Figure B.1: Class diagram for traffic control optimization

 63

Appendix C

11 Appendix C – Configuration details in Caffe Solver

Traffic_solver.prototxt

The train/test net protocol buffer definition

net: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/traffic_train_test.prototxt"

test_iter specifies how many forward passes the test should carry out.

In the case of MNIST, we have test batch size 100 and 100 test iterations,

covering the full 10,000 testing images.

test_iter: 100

Carry out testing every 500 training iterations.

#test_interval: 500

test_interval: 500

The base learning rate, momentum and the weight decay of the network.

#base_lr: 0.01

base_lr: 0.00009

momentum: 0.9

weight_decay: 0.0005

The learning rate policy

lr_policy: "inv"

gamma: 0.0001

power: 0.75

Display every 100 iterations

display: 100

The maximum number of iterations

max_iter: 10000

snapshot intermediate results

snapshot: 5000

snapshot_prefix: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/model"

solver mode: CPU or GPU

solver_mode: CPU

 64

Appendix DD

12 Appendix D - Configuration details for Caffe deep neural network

Train_test.prototxt

name: "LeNet"

layer {

 name: "mnist"

 type: "Data"

 top: "data"

 top: "label"

 include {

 phase: TRAIN

 }

 transform_param {

 scale: 0.00390625

 }

 data_param {

 source: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/training/train_lmdb"

 batch_size: 16

 backend: LMDB

 }

}

layer {

 name: "mnist"

 type: "Data"

 top: "data"

 top: "label"

 include {

 phase: TEST

 }

 transform_param {

 scale: 0.00390625

 65

 }

 data_param {

 source: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/testing/test_lmdb"

 batch_size: 16

 backend: LMDB

 }

}

layer {

 name: "conv1"

 type: "Convolution"

 bottom: "data"

 top: "conv1"

 param {

 lr_mult: 1

 }

 param {

 lr_mult: 2

 }

 convolution_param {

 num_output: 20

 kernel_size: 5

 stride: 1

 weight_filler {

 type: "xavier"

 }

 bias_filler {

 type: "constant"

 }

 }

}

layer {

 name: "pool1"

 type: "Pooling"

 bottom: "conv1"

 66

 top: "pool1"

 pooling_param {

 pool: MAX

 kernel_size: 2

 stride: 2

 }

}

layer {

 name: "conv2"

 type: "Convolution"

 bottom: "pool1"

 top: "conv2"

 param {

 lr_mult: 1

 }

 param {

 lr_mult: 2

 }

 convolution_param {

 num_output: 50

 kernel_size: 5

 stride: 1

 weight_filler {

 type: "xavier"

 }

 bias_filler {

 type: "constant"

 }

 }

}

layer {

 name: "pool2"

 type: "Pooling"

 bottom: "conv2"

 67

 top: "pool2"

 pooling_param {

 pool: MAX

 kernel_size: 2

 stride: 2

 }

}

layer {

 name: "ip1"

 type: "InnerProduct"

 bottom: "pool2"

 top: "ip1"

 param {

 lr_mult: 1

 }

 param {

 lr_mult: 2

 }

 inner_product_param {

 num_output: 500

 weight_filler {

 type: "xavier"

 }

 bias_filler {

 type: "constant"

 }

 }

}

layer {

 name: "relu1"

 type: "ReLU"

 bottom: "ip1"

 top: "ip1"

}

 68

layer {

 name: "ip2"

 type: "InnerProduct"

 bottom: "ip1"

 top: "ip2"

 param {

 lr_mult: 1

 }

 param {

 lr_mult: 2

 }

 inner_product_param {

 num_output: 2

 weight_filler {

 type: "xavier"

 }

 bias_filler {

 type: "constant"

 }

 }

}

layer {

 name: "accuracy"

 type: "Accuracy"

 bottom: "ip2"

 bottom: "label"

 top: "accuracy"

 include {

 phase: TEST

 }

}

layer {

 name: "loss"

 type: "SoftmaxWithLoss"

 69

 bottom: "ip2"

 bottom: "label"

 top: "loss" }

 70

Appendix E

13 Appendix E - Image Classification using PyCaffe

import numpy as np

import matplotlib.pyplot as plt

import caffe

DEPLOY_LOCATION =

'/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/traffic_deploy.prototxt'

MODEL_LOCATION =

'/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/model_iter_10000.caffemodel'

IMAGE_LOCATION = '/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/

/images/traffic_img_00001.jpeg'

caffe.set_mode_cpu()

net = caffe.Classifier(DEPLOY_LOCATION, MODEL_LOCATION)

input_image = caffe.io.load_image(IMAGE_LOCATION)

plt.imshow(input_image)

prediction = net.predict([input_image])

plt.plot(prediction[0])

print 'Traffic density state:', prediction[0].argmax()

plt.show()

 71

Appendix F

14 Appendix F - Road traffic simulation using SUMO

Node definition

Edges definition

 72

Connections definition

Routes definition for vehicles

 73

Traffic signal phase and cycle definition

 74

Appendix G

15 Appendix G – Retrieve controlled links for a given traffic light

In order to control traffic signal sequences, all the information related to controlled link such

as incoming lane and outgoing lane is required. The relevant code segments and explanation

on how to retrieve controlled link information for a given traffic light from SUMO via

TRACI and TRASMAPI is given here.

TRASMAPI acts as a Java API to communicate with TRACI API in SUMO to get the traffic

information of the traffic control simulation dynamically.

Once we connect to the SUMO simulation environment via a TCP connection using given

port as client, we can communicate with SUMO using TCP messages. TRACI API provides a

protocol, either to control the environment or to retrieve information using commands that

are issued as TCP messages. TRACI command to retrieve traffic light information is 0xa2.

For a given command, there will be set of variables that represents different details related to

that particular command. Variable to get links controlled by a traffic light is 0x27. When,

SUMO receives 0x27 command, it will return the incoming lane, outgoing lane and via lane

for a given traffic light that are embedded as a CompoundObject as TCP message called 0xb2

response variable. The structure of the CompoundObject is given below.

 Source:

http://www.sumo.dlr.de/wiki/TraCI/Traffic_Lights_Value_Retrieval#Co
mmand_0xa2:_Get_Traffic_Lights_Variable

 75

Relevant code segments for the above custom implementation in TRASMAPI is given below.

 // Receive controlled links information from SUMO
 public ArrayList<ControlledLink> getControlledLinks(){

Command command = new
Command(Constants.CMD_GET_TL_VARIABLE);

 Content content = new Content(Constants.TL_CONTROLLED_LINKS,id);

 command.setContent(content);

 RequestMessage request = new RequestMessage();
 request.addCommand(command);

 ResponseMessage response = SumoCom.query(request);

Content rspContent = response.validate((byte)
Constants.CMD_GET_TL_VARIABLE, (byte)
Constants.RESPONSE_GET_TL_VARIABLE,
(byte) Constants.TL_CONTROLLED_LINKS, (byte)
Constants.TYPE_COMPOUND);

 controlledLinks = rspContent.getControlledLinksFromCompoundObject();

 return controlledLinks;
 }

// Retrieve controlled links information from CompoundObject in TRACI
public ArrayList<ControlledLink> getControlledLinksFromCompoundObject(){

ArrayList<ControlledLink> controlledLinks = new
ArrayList<ControlledLink>();

 int currentPointer = 5;
 int skipCount = 6;
 int integerCount = 4;

 int numberOfSignals = readInt(currentPointer);
 currentPointer += integerCount;

 for (int signal=0; signal < numberOfSignals; signal++)
 {
 ControlledLink link = new ControlledLink();

 currentPointer = currentPointer + skipCount + integerCount;
 String incoming = new String();
 int linkCharLength_incoming = readInt(currentPointer);
 currentPointer += integerCount;

 76

for (int character=0; character < linkCharLength_incoming;
character++){

 byte charact = varValue.get(currentPointer);
 incoming += (char) charact;
 currentPointer++;
 }
 link.incoming = incoming;
 String outgoing = new String();
 int linkCharLength_outgoing = readInt(currentPointer);
 currentPointer += integerCount;

for (int character=0; character < linkCharLength_outgoing;
character++){

byte charact = varValue.get(currentPointer);

 outgoing += (char) charact;
 currentPointer++;
 }
 link.outgoing = outgoing;

 String tls_index = new String();
 int linkCharLength_tls = readInt(currentPointer);
 currentPointer += integerCount;

for (int character=0; character < linkCharLength_tls;
character++){

 byte charact = varValue.get(currentPointer);
 tls_index += (char) charact;
 currentPointer++;
 }
 link.tls_index = tls_index;
 controlledLinks.add(link);
 }
 return controlledLinks;
 }

