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Appendix A 

 
Road traffic scenes of different intersections 
 

 
 
 Figure A.1: Narahenpita Junction  
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Figure A.2: Ayurveda Junction  
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Figure A.3: Kanaththa Junction 
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Appendix B 

10 Appendix B - Class diagram for traffic control optimization  
 

 
 

 

 

 

 

 

 

 

 

 

 

  

Figure B.1: Class diagram for traffic control optimization 
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Appendix C 
 

11 Appendix C – Configuration details in Caffe Solver   
 

Traffic_solver.prototxt  

 

# The train/test net protocol buffer definition 

net: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/traffic_train_test.prototxt" 

# test_iter specifies how many forward passes the test should carry out. 

# In the case of MNIST, we have test batch size 100 and 100 test iterations, 

# covering the full 10,000 testing images. 

test_iter: 100 

# Carry out testing every 500 training iterations. 

#test_interval: 500 

test_interval: 500 

# The base learning rate, momentum and the weight decay of the network. 

#base_lr: 0.01 

base_lr: 0.00009 

momentum: 0.9 

weight_decay: 0.0005 

# The learning rate policy 

lr_policy: "inv" 

gamma: 0.0001 

power: 0.75 

# Display every 100 iterations 

display: 100 

# The maximum number of iterations 

max_iter: 10000 

# snapshot intermediate results 

snapshot: 5000 

snapshot_prefix: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/model" 

# solver mode: CPU or GPU 

solver_mode: CPU  
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Appendix DD 

12 Appendix D - Configuration details for Caffe deep neural network  
 

Train_test.prototxt  

name: "LeNet" 

layer { 

  name: "mnist" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TRAIN 

  } 

  transform_param { 

    scale: 0.00390625 

  } 

  data_param { 

    source: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/training/train_lmdb" 

    batch_size: 16 

    backend: LMDB 

  } 

} 

layer { 

  name: "mnist" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TEST 

  } 

  transform_param { 

    scale: 0.00390625 
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  } 

  data_param { 

    source: "/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/testing/test_lmdb" 

    batch_size: 16 

    backend: LMDB 

  } 

} 

layer { 

  name: "conv1" 

  type: "Convolution" 

  bottom: "data" 

  top: "conv1" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  convolution_param { 

    num_output: 20 

    kernel_size: 5 

    stride: 1 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "pool1" 

  type: "Pooling" 

  bottom: "conv1" 
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  top: "pool1" 

  pooling_param { 

    pool: MAX 

    kernel_size: 2 

    stride: 2 

  } 

} 

layer { 

  name: "conv2" 

  type: "Convolution" 

  bottom: "pool1" 

  top: "conv2" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  convolution_param { 

    num_output: 50 

    kernel_size: 5 

    stride: 1 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "pool2" 

  type: "Pooling" 

  bottom: "conv2" 
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  top: "pool2" 

  pooling_param { 

    pool: MAX 

    kernel_size: 2 

    stride: 2 

  } 

} 

layer { 

  name: "ip1" 

  type: "InnerProduct" 

  bottom: "pool2" 

  top: "ip1" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  inner_product_param { 

    num_output: 500 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "relu1" 

  type: "ReLU" 

  bottom: "ip1" 

  top: "ip1" 

} 
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layer { 

  name: "ip2" 

  type: "InnerProduct" 

  bottom: "ip1" 

  top: "ip2" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  inner_product_param { 

    num_output: 2 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "accuracy" 

  type: "Accuracy" 

  bottom: "ip2" 

  bottom: "label" 

  top: "accuracy" 

  include { 

    phase: TEST 

  } 

} 

layer { 

  name: "loss" 

  type: "SoftmaxWithLoss" 
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  bottom: "ip2" 

  bottom: "label" 

  top: "loss" } 
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Appendix E 

13 Appendix E - Image Classification using PyCaffe 
 

import numpy as np 

import matplotlib.pyplot as plt 

import caffe 

 

DEPLOY_LOCATION = 

'/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/traffic_deploy.prototxt' 

MODEL_LOCATION = 

'/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/model_iter_10000.caffemodel' 

IMAGE_LOCATION = '/Users/jwithanawasam/MachineLearning/Caffe/caffe/Traffic/ 

/images/traffic_img_00001.jpeg' 

 

caffe.set_mode_cpu() 

net = caffe.Classifier(DEPLOY_LOCATION, MODEL_LOCATION) 

input_image = caffe.io.load_image(IMAGE_LOCATION) 

plt.imshow(input_image) 

prediction = net.predict([input_image])   

plt.plot(prediction[0]) 

print 'Traffic density state:', prediction[0].argmax() 

plt.show() 
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Appendix F 

14 Appendix F - Road traffic simulation using SUMO 
 

Node definition  

 
 

 

Edges definition 
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Connections definition 

 

 
 

 

Routes definition for vehicles   
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Traffic signal phase and cycle definition 
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Appendix G 

15 Appendix G – Retrieve controlled links for a given traffic light  

 
In order to control traffic signal sequences, all the information related to controlled link such 

as incoming lane and outgoing lane is required. The relevant code segments and explanation 

on how to retrieve controlled link information for a given traffic light from SUMO via 

TRACI and TRASMAPI is given here.  

 

TRASMAPI acts as a Java API to communicate with TRACI API in SUMO to get the traffic 

information of the traffic control simulation dynamically.  

 

Once we connect to the SUMO simulation environment via a TCP connection using given 

port as client, we can communicate with SUMO using TCP messages. TRACI API provides a 

protocol, either to control the environment or to retrieve information using commands that 

are issued as TCP messages. TRACI command to retrieve traffic light information is 0xa2. 

For a given command, there will be set of variables that represents different details related to 

that particular command. Variable to get links controlled by a traffic light is 0x27. When, 

SUMO receives 0x27 command, it will return the incoming lane, outgoing lane and via lane 

for a given traffic light that are embedded as a CompoundObject as TCP message called 0xb2 

response variable. The structure of the CompoundObject is given below.  

 
 Source: 

http://www.sumo.dlr.de/wiki/TraCI/Traffic_Lights_Value_Retrieval#Co
mmand_0xa2:_Get_Traffic_Lights_Variable  
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Relevant code segments for the above custom implementation in TRASMAPI is given below.   
 
 // Receive controlled links information from SUMO 
 public ArrayList<ControlledLink> getControlledLinks(){  
   

Command command = new 
Command(Constants.CMD_GET_TL_VARIABLE); 

  Content content = new Content(Constants.TL_CONTROLLED_LINKS,id);
   
  command.setContent(content); 
  
  RequestMessage request = new RequestMessage(); 
  request.addCommand(command); 
  
  ResponseMessage response = SumoCom.query(request); 

Content rspContent = response.validate( (byte)      
Constants.CMD_GET_TL_VARIABLE, (byte)  
Constants.RESPONSE_GET_TL_VARIABLE, 
(byte)  Constants.TL_CONTROLLED_LINKS, (byte)  
Constants.TYPE_COMPOUND); 

    
  controlledLinks = rspContent.getControlledLinksFromCompoundObject(); 
 
  return controlledLinks; 
 } 
 
// Retrieve controlled links information from CompoundObject in TRACI  
public ArrayList<ControlledLink> getControlledLinksFromCompoundObject(){ 
   

ArrayList<ControlledLink> controlledLinks = new 
ArrayList<ControlledLink>(); 

   
  int currentPointer = 5; 
  int skipCount = 6; 
  int integerCount = 4; 
  
  int numberOfSignals = readInt(currentPointer);  
  currentPointer += integerCount; 
 
  for (int signal=0; signal < numberOfSignals; signal++) 
  { 
   ControlledLink link = new ControlledLink(); 
  
   currentPointer = currentPointer + skipCount + integerCount; 
   String incoming = new String(); 
   int linkCharLength_incoming = readInt(currentPointer); 
   currentPointer += integerCount; 
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for (int character=0; character < linkCharLength_incoming; 
character++){ 

     byte charact = varValue.get(currentPointer); 
     incoming += (char) charact; 
     currentPointer++; 
    } 
    link.incoming = incoming; 
    String outgoing = new String(); 
    int linkCharLength_outgoing = readInt(currentPointer); 
    currentPointer += integerCount; 
     

for (int character=0; character < linkCharLength_outgoing; 
character++){ 

      
byte charact = varValue.get(currentPointer); 

     outgoing += (char) charact; 
     currentPointer++; 
    } 
    link.outgoing = outgoing; 
     
    String tls_index = new String(); 
    int linkCharLength_tls = readInt(currentPointer); 
    currentPointer += integerCount; 
     

for (int character=0; character < linkCharLength_tls; 
character++){ 

     byte charact = varValue.get(currentPointer); 
     tls_index += (char) charact; 
     currentPointer++; 
    } 
    link.tls_index = tls_index;    
    controlledLinks.add(link); 
  } 
  return controlledLinks; 
 } 
 
 


