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Abstract

A reliable and continuous supply of electric energy is essential for the functioning of
today's complex societies. Due to a combination of increasing energy consumption
and impediments of various kinds concerning the extension of electric transmission
networks, utilities are forced to operate the systems closer and closer to system
stability limits. This in turn requires use of special control aids to improve damping

of low frequency electromechanical oscillations.

The small signal stability problem is associated with modes of oscillations affecting a
single machine or a small group of relatively closely connected machines. This
problem has got a very high attention during the last three decades and many power
system stabilizers based on classical and modern control theories have been

developed to improve system damping.

In the recent years, fuzzy logic has emerged as a powerful tool and is starting to be
used in various power system applications. The application of fuzzy logic control
technique appears to be the most suitable one whenever a well- , defined control
objective cannot be specified, the system to be controlled is a complex one, or its
exact mathematical model is not available. The control strategy depends upon a set

of rules which describes the behaviour of the controller.

In this thesis, a fuzzy-logic-based power system stabilizer to maintain stability and
enhance closed-loop performance of a power system is developed. Simulation studies
on a single machine infinite bus power system show that the proposed controller
proves its effectiveness and improves the system damping compared to a
conventional lead-lag power system stabilizer and an optimal power system

stabilizer.
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