LB/DON/35/04

Thesis

TRANSMISSION NETWORK PLANNING USING GENETIC ALGORITHMS

LERNART AND NO MORATURA, SER NO

M.T.A.P. Wickramarathna

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIERMENT FOR THE DEGREE OF MASTER OF SCIENCE.

> COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA APRIL 2003

> > 79892

79892

Declaration

The work submitted in this thesis is the result of my own investigations, except where otherwise stated.

It has not already been accepted in substance for any degree, and also is not being concurrently submitted for any other degrees.

W. gharing.

Signed

MTAP Wickramarathna. (Candidate)

Signed UOM Verified Signature

Dr N Wickramarachchi. (Supervisor)

4

Abstract

論

1

This project presents an application of Genetic Algorithm (GA) to solve Transmission Network Panning (TNP). The non-convexity that has been observed in the Transmission Network Planning cannot be solved effectively by conventional mathematical methods. GA has the ability to find the global optimal point in such a nonconvex function.

It is recognized that the allocation of transmission costs in a competitive environment requires careful evaluation of alternative transmission network plans. As a result, the need for methods that are able to synthesize optimal transmission network plans has become more important than ever. Unfortunately, practice has shown that conventional optimization procedures are unable to produce optimal solutions for networks. The reason is that the transmission network planning problem is hard, large-scale combinatorial problem. The number of options to be analyzed increases exponentially with the size of the network.

The objective of TNP is to determine the installation plans of new facilities (lines & other network equipment) so that the resulting bulk power system may be able to meet the forecasted demand at the lowest cost, while satisfying prescribed technical, financial and reliability criteria. Although the conventional methods are somewhat successful in transmission network planning, some problems still exist:

1) Non-convexity (as described above): Therefore, the optimization process sometimes stops at non-optimal solutions.

2) Non-linearity: increases the iterations of the optimization algorithm and sometimes causes divergence.

As there are no fractional transmission lines, transmission network planning becomes a very complex mixed integer non-linear programming problem. GA can be used to select the optimal new transmission lines network with the least investment cost, while meeting the total load demands without any load curtailment.

The project done under the "Transmission Network Planning using Genetic Algorithm" has been successfully completed giving good results for the particular transmission network.

Acknowledgement

1

The research for the Degree of Master of Science was carried out at the Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka.

I would like to acknowledge the support received under the Science & Technology Personnel Development Project SRI (SF) 1535 by the Asian Development Bank for the work described in this thesis.

I would express firstly great thanks to the Department of Computer Science & Engineering, and the members of the Post Graduate committee specially, Prof. Mrs. N Ratnayake, for having accepted me to commence the research for 15 months time.

I must express my profound gratitude and sincere thanks to my supervisor Dr. N Wickramarachchi who guidance, encouragements and motivation in all the time of the research. He also provided constructive comments during my thesis time as well as the preliminary version of this thesis. I was great pleasure to conduct the work under his supervision.

I am deeply indebted to my former supervisor Dr. J Peris. He supervised my research work and encouraged me to go ahead with my works during the first 4 months of the research period.

I must specially mentioned Prof. Priyantha Wijeyatunga and Dr. G Dias, my project review committee members. They provided me an invaluable support without any hesitation to continue my research. Therefore I would like to express my grateful thanks for giving their hands to success my research.

The research has been supported by the officers, in Ceylon Electricity Board for collection of transmission line data. So I am grateful to the staff members in CEB.

I would like to thank all my friends at the Research Laboratory for providing encouragement and a very exciting work environment, especially to Kamala, Rohana and Nilani. I am very thankful to all my good friend that supported me throughout this work, especially Dilan.

TABLE OF CONTENTS

+

CHAPTER ONE		8	
1.1	Introduction		
CHAI	PTER TWO		
2.1	Introduction to GAs	11	
	2.1.1 Biological Background	11	
	2.1.2 How are Genetic Algorithms different from traditional methods	12	
2.2	A Simple Genetic Algorithm	13	
2.3	2.3 Representation		
2.4	Types of GAs	17	
	2.4.1 Generational GAs	17	
	2.4.2 Steady State GAs	17	
2.5	Fitness Function	18	
2.6	2.6 GAs Operators		
	2.6.1 Selection	19	
	2.6.1.1 Types of Selection methods	19	
	2.6.1.1.1 Roulette Wheel Selection	20	
	2.6.1.1.3 Ranking Selection	20	
	2.6.2 Crossover (Recombination.)	21	
	2.6.2.1 Types of Crossover methods.	21	
	2.6.2.2 Single-Point Crossover	21	
	2.6.2.3 Multi-Point Crossover	22	
	2.6.2.4 Uniform Crossover Sri Lanka	22	
	2.6.2.5 Bit Simulated Crossover	23	
	2.6.2.6 Problem-Centred Crossover	25	
	2.6.2./ Specialized Crossover	24	
	2.6.3 Mutation	24	
	2.0.3.1 Kole of Mutation	25	
	2.6.4 Crossover and Mutation Probability $2.6.4$ L Grassover metability	20	
	2.6.4.1 Crossover probability 2.6.4.2 Mutation probability	26	
27	Sourch Space	26	
2.7	Ontimization Continuous and Discrete Problems	27	
2.8	Applications of Genetic Algorithms	30	
2.7	Applications of Genetic Algorithms		
CHA	PTER THREE		
3.1	Modeling of GAs	31	
	3.1.1 Schemata and Other Terminology	31	
	3.1.2 Sets and Subsets	32	
	3.1.3 Processing	32	
	3.1.4 The Dynamics of a Schema	33	
	3.1.5 Compensating for Destructive Effects	34	
	3.1.6 Mathematical Models	35	
CHA	APTER FOUR	46	
4.1	Introduction to Transmission Network Planning		
	4.1.1 Main Objectives of Transmission Network Planning	48	
4.2	Load Flows	49	

	4.2.1	Bus Classification	50
	4.2.2	Development of Load Flow Equations	
CHAI	PTER FIVE		
5.1	Impleme	entation	61
5.2	Flow Ch	art	63
5.3	Initialize	e the Population	63
	5.3.1	Representation	63
	5.3.2	Population Size	63
5.4	Load Flo	ow Calculation	63
	5.4.1	Fitness Evaluation	64
	5.4.2	Minimize the cost	64
	5.4.3	Reduce the number of over loaded lines	65
	5.4.4	Increase the performance of the network	65
	5.4.5	Line Fitness	65
	5.4.6	Total Fitness of population	65
5.5	Selectio	n	66
5.6	Crossov	er	67
5.7	Mutation	n	67
CHA	PTER SIX		
6.1	Results		69
6.2	Conclus	sion	94

APPENDIX A APPENDIX B

.

	University of Moratuwa Sri Lanka	95
1	Electronic Theses & Dissertations	110
	www.lib.mrt.ac.lk	

·++

4

LIST OF ILLUSTRATION

Figure 2.1	16
Figure 2.3	18
Figure 2.4	20
Figure 3.1	31
Figure 4.1	50
Figure 5.1	62
Figure 3.2	43

LIST OF TABLES

Table 3.1		40
Table 3.2	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	40
Table 3.3	www.lib.mrt.ac.lk	41
Table 3.4		42
Table 3.5		43
Table 3.6		44
Table 3.7		44
Table 4.1		50