IMPROVEMENT OF CORONARY ANGIOGRAPHY FOR QUANTITATIVE CORONARY ANALYSIS BY USING A COMPUTER VISION TECHNIQUE

Kodikara Arachchillaya Saneera Hemantha Kulathilake

(128011R)

Degree of Master of Philosophy

Department of Information Technology

University of Moratuwa

Sri Lanka

May 2017

IMPROVEMENT OF CORONARY ANGIOGRAPHY FOR QUANTITATIVE CORONARY ANALYSIS BY USING A COMPUTER VISION TECHNIQUE

Kodikara Arachchillaya Saneera Hemantha Kulathilake

(128011R)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Information Technology

University of Moratuwa

Sri Lanka

May 2017

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

Date[.]

Date:

The above candidate has carried out research for the MPhil thesis under my supervision.

Name of the supervisor I: Dr. Lochandaka Ranathunga

Signature of the supervisor I: Date:

Name of the supervisor II: Dr. Godvin Roger Constantine

Signature of the supervisor II:

Name of the supervisor III: Associate Professor Dr. Nor Aniza Abdullah

Signature of the supervisor III:

ACKNOWLEDGEMENT

First and foremost I consider it is my bounden duty to record here my sincerest gratitude and appreciation to my supervisor, Dr. Lochandaka Ranathunga for his kind cooperation, guidance, and supervision extended throughout this research project. If not for his encouragement and support this project would never have been a reality. I would like to unreservedly thank my co-supervisors Dr. G.R. Constantine from University of Colombo and Associate Professor Dr. N.A. Abdullah from University of Malaya- Malaysia for guiding me to achieve success in this endeavor.

I would like to express my heartfelt thanks to the Vice Chancellor of the University of Moratuwa, the Dean of the Faculty of Information Technology and the Head of the Department of Information Technology, University of Moratuwa for granting me the opportunity to commence my research work at the University of Moratuwa and facilitating me to carry out same successfully. Further, I would be failing in my duty if I do not extend my sincere gratefulness to the Vice Chancellor of the Rajarata University of Sri Lanka, the Dean of the Faculty of Applied Sciences and the Head of the Department of Physical Sciences, Rajarata University of Sri Lanka for granting me two years paid study leave and releasing me from all academic duties in the University, thus allowing me to concentrate fully on my research work during the said two years. Thanks are also due to the Director and staff of the National Science Foundation, Sri Lanka for granting a research scholarship under the grant number NSF/SCH/2013/06 to financially support this effort. Furthermore, I would like to express my indebtedness to the CEO of LK Domain Registry for granting me the Prof. V.K. Samaranayake Research Grant in order to continue my research studies in the University of Malaya, Malaysia.

A special word of thanks should also be extended to the Chairperson of the Ethics Review Committee of the Faculty of Medicine, University of Colombo for issuing the ethical clearance for extracting clinical data needed for validating the results of this study. It is an honor for me to express my sincere gratitude to Mr. V.G. Vimalasena who is the Principal of School of Radiography, National Hospital of Sri Lanka for facilitating the domain knowledge to make this effort a success. I would like to convey my heartfelt appreciation to Radiographer Mr. R.M. Janaka Thushara Rathnayaka who is attached to the Cath Lab of the Cardiology Unit, National Hospital of Sri Lanka for facilitating me to obtain the necessary resources, conveying domain knowledge and providing valuable clinical experience. His motivation, prompt support and positive response directed the research work towards its success. Moreover, I acknowledge all Radiographers and Cath Lab staff members in the Cardiology Unit of National Hospital of Sri Lanka for providing necessary resources, data and training on clinical procedures. It is also important to highly appreciate Mr. Riyas Mohomed, Radiographer in Durdans Hospital PLC and Cath Lab staff members of Asiri Surgical Hospital PLC for providing the necessary knowledge and data for the experiments. I declare my salutation and admiration for all the esteemed authors, researchers and philosophers for their great theories, researches, publications and ideas, which have helped to enrich this research work.

I would like to thank all the staff members of the University of Moratuwa for their cooperation and commitment extended in various ways in order to make this project a success. The support and motivation provided by my post graduate friends, Mr. A.M.R.R. Bandara, Mr. V. Senthooran and Mrs. N.M. Wagarachchi who are attached to the Faculty of Information Technology, University of Moratuwa too deserves mentioning with a debt of gratitude.

The members of the testing team Mr. K.A.S.N Wijerathna, Mr. D.D. Hewage, Mr. I.K. Sirirathna and Mr. H.A. Haputhanthri too should be acknowledged for the continuous assistance offered to me for data analysis, testing and component integration. I would like to express my appreciation to Mr. S.S. Ratnajeewa for his immense support and contribution to make this thesis a success.

Last but not least, I offer a debt of gratitude to my parents and my sister for all their encouragement and support extended right through this endeavor. Finally, I am grateful to all those who assisted me in numerous ways during the course of this research.

Abstract

Coronary cine-angiography is an invasive medical image modality, which is widely used in Interventional Cardiology for the detection of stenosis in Coronary arteries. Quantitative coronary analysis is one of the demanding areas in medical imaging and in this study a semi automated quantitative coronary analysis method has been proposed. Direct coronary cineangiogram frames are processed in order to obtain the features of lumen such as, vessel boundary, skeleton and luminal diameter along the vessels' skeleton as the results. The proposed method consists of four main implementation phases namely, pre-processing, segmentation, vessel path tracking and quantitative analysis. The visual quality of the input frames is enhanced within the pre-processing phase. The proposed segmentation phase is implemented based on a spatial filtering and region growing approach. A clinically important vessel region is processed to detect the vessel boundary and skeleton, which is required as prior knowledge for quantitative analysis. Moreover, the vessel diameter is computed while tracking the vessel skeleton path starting from a given seed. The proposed segmentation method possesses 93.73% mean segmentation accuracy and 0.053 mean fallout rate. Moreover, the proposed quantitative analysis method has been validated for assessing its' technical supportability using a clinically approved data set. As a result of that, this proposed method computes the vessel diameter along the vessel skeleton in single pixel gap and develops the ability to determine the diameter stenosis as the quantitative analysis results. Additionally, the clinical feasibility of the proposed method has been validated to emphasize the clinical usability. Moreover, this study can be further extended to make clinical decisions on stenosis through the functional significance of the vasculature by using proper medical image modality like biplane angiography.

Key words: motion stabilization, vessel segmentation, vessel tracking, quantitative coronary analysis

TABLE OF CONTENTS

i
ii
V
v
X
ii
V
/i
1
2
2
5
6
9
0
0
1
1
3
4
4
9
4
7
8
9
0
2

2.1	Principles and functions of catheterization hardware and equipment	32
	2.1.1 Catheterization laboratory and setup	33
	2.1.2 Fluoroscopy imaging system	36
	2.1.3 Contrast material	40
2.2	Angiography images	40
	2.2.1 Angiography views	41
	2.2.2 Views of LCA	43
	2.2.3 Views of RCA	50
2.3	Assessment of coronary stenosis	55
2.4	Problems in Coronary Angiography	58
	2.4.1 Subjective stenosis assessment	58
	2.4.2 Visual degradations in angiogram	61
2.5	Research background of the study	61
	2.5.1 Background studies for enhancement of angiography	62
	2.5.2 Background studies for vessel segmentation	64
	2.5.3 Background studies for quantitative coronary analysis	73
2.6	Summary	79
Chapter	3 Frame Enhancement and Alignment	80
3.1	Overview of the proposed method	80
3.2	Visual degradations in CCA frame	82
	3.2.1 Non-uniform illumination and poor opacification	83
	3.2.2 Noise	84
	3.2.3 Motion	85
3.3	Proposed method for pre-processing phase	87
3.4	Frame enhancement	89
3.5	Frame alignment	94
	3.5.1 Template selection	96
	3.5.2 Template matching	96
	3.5.3 False matching correction	99
	3.5.4 Calculating the GMV	106
	3.5.5 Frame re-construction.	106
3.6	Mask Creation	108

3.7 Summary	110
Chapter 4 Segmentation	112
4.1 Proposed method for vessel segmentation	
4.2 Foreground enhancement	
4.2.1 Background subtraction	
4.2.2 Obtaining the directional second order partial derivative images	
4.2.3 Application of Frangi's filter.	
4.3 Structure filling	118
4.4 Foreground extraction	123
4.5 Summary	123
Chapter 5 Vessel Tracking and Feature Extraction	125
5.1 Vessel path tracking	125
5.1.1 Vessel isolation	127
5.1.2 Skeleton path tracking	129
5.2 Quantitative analysis	
5.2.1 Vessel Diameter Calculation (VDC) algorithm	138
5.2.2 Processing other CCA frames	
5.3 Summary	
Chapter 6 Validation Methods and Results	
6.1 Data extraction	147
6.2 Validation in pre-processing phase	147
6.2.1 Finding the best similarity measure for Template Matching	
6.2.2 Finding a value for D _{HOGThreshold}	
6.2.3 Assessing the robustness of the proposed method	152
6.3 Validation in segmentation phase	
6.3.1 Evaluation method	153
6.3.2 Results of segmentation phase	157
6.4 Validation of vessel tracking and quantitative analysis phases	162
6.4.1 Assessment of technical supportability	
6.4.2 Assessment of clinical feasibility	
6.5 Summary	169
Chapter 7 Discussion	170

7.1 Discussion on the results of pre-processing phase	
7.1.1 Frame enhancement	170
7.1.2 Frame alignment	172
7.2 Discussion on segmentation results	
7.2.1 Application of Fangi's filter	177
7.2.2 Discussion on segmentation results	178
7.3 Discussion on results of vessel tracking and quantitative analysis	179
7.4 Way forward to determine the functional significance	
7.5 Summary	
Chapter 8 Conclusion and Recommendations	186
References	
Appendix A: Strength and Limitation Analysis of Cardiac Medical Image M	lodalities
Appendix B: Pseudo Code of Skeleton Path Tracker	
Appendix C: Visual Illustrations of Processing Steps	
Appendix D: Results of Clinical Feasibility Analysis of Proposed Method	
Appendix E: Publications based on This Research Study	

LIST OF FIGURES

Figure 1.1: Organs and vessels associated with heart.	2
Figure 1.2: Interior of the heart.	3
Figure 1.3: Blood flow through the heart.	4
Figure 1.4: Different types of blood vessels.	5
Figure 1.5: CA vasculature.	7
Figure 1.6: CA segments and branch nomenclature.	8
Figure 1.7: Anatomy of LCA.	9
Figure 1.8: Anatomy of RCA.	11
Figure 1.9: Stages in the development of atheromatous plaque.	12
Figure 1.10: The effect of atheromatous plaques.	13
Figure 1.11: Views of stress echo-cardiography.	15
Figure 1.12: SPECT imaging.	16
Figure 1.13: Cardiac MRI.	18
Figure 1.14: MSCT Imaging.	19
Figure 1.15: Angiogram procedure.	21
Figure 1.16: IVUS plaque characterization.	22
Figure 1.17: OCT imaging.	23
Figure 1.18: FFR results.	24
Figure 1.19: Steps of the balloon angioplasty.	26
Figure 1.20: Steps of the stent angioplasty.	26
Figure 2.1: Parts of the cath lab.	34
Figure 2.2: Patient placement between the c-arm.	35
Figure 2.3: Schematic of a fluoroscopic system.	36
Figure 2.4: Components of an X-ray image intensifier.	38
Figure 2.5: Nomenclature for angiography projections.	42
Figure 2.6: Clues to recognize the angiographic views.	43
Figure 2.7: LCA - LAO straight view (60 degrees).	44
Figure 2.8: RAO straight view (30 degrees).	45
Figure 2.9: LCA – AP caudal view (30 degrees).	46
Figure 2.10: LCA – LAO (45 degrees) cranial (30 degrees) view.	47

Figure 2.11: LCA – LAO (50 degrees) caudal (30 degrees) view.	48
Figure 2.12: LCA – RAO (30 degrees) cranial (30 degrees) view.	48
Figure 2.13: LCA – RAO (30 degrees) caudal (30 degrees) view.	49
Figure 2.14: LCA – LAO lateral view.	50
Figure 2.15: RCA – AP view.	51
Figure 2.16: RCA – LAO straight view (45 degrees).	52
Figure 2.17: RCA – RAO straight view (30 degrees).	52
Figure 2.18: RCA – AP cranial view (30 degrees).	53
Figure 2.19: RCA – LAO (20 degrees) cranial (25 degrees) view.	54
Figure 2.20: RCA – lateral view.	55
Figure 2.21: Different types of stenosis.	56
Figure 2.22: Mismatches between the visual assessment and function assessme	nt of
stenosis.	60
Figure 2.23: Steps of canny edge detection.	76
Figure 2.24: Zhang and Suen's thinning algorithm steps.	78
	01
Figure 3.1: Flow chart of the proposed method.	81
Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio	gram.
Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio	gram. 84
Figure 3.1: Flow chart of the proposed method.Figure 3.2: Effect of non-uniform illumination and poor opacification of angioFigure 3.3: Effect of radiation dose for angiography.	81 gram. 84 85
Figure 3.1: Flow chart of the proposed method.Figure 3.2: Effect of non-uniform illumination and poor opacification of angioFigure 3.3: Effect of radiation dose for angiography.Figure 3.4: Motion artifacts in CCAs.	81 gram. 84 85 86
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. 	81 gram. 84 85 86 88
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. 	81 gram. 84 85 86 88 90
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. 	81 gram. 84 85 86 88 90 94
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. 	81 gram. 84 85 86 88 90 94 97
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. 	81 gram. 84 85 86 88 90 94 97 98
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. Figure 3.10: Template matching step between two consecutive frames. 	81 gram. 84 85 86 88 90 94 97 98 99
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. Figure 3.10: Template matching step between two consecutive frames. Figure 3.11: False template matching occurrence. 	81 gram. 84 85 86 88 90 94 97 98 99 100
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. Figure 3.11: False template matching occurrence. Figure 3.12: Steps of shape matching of template images. 	81 gram. 84 85 86 88 90 94 97 98 99 100 101
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. Figure 3.10: Template matching step between two consecutive frames. Figure 3.11: False template matching occurrence. Figure 3.12: Steps of shape matching of template images. Figure 3.13: Implementation of HOG descriptor. 	81 gram. 84 85 86 88 90 94 97 98 99 100 101 102
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. Figure 3.10: Template matching step between two consecutive frames. Figure 3.11: False template matching occurrence. Figure 3.12: Steps of shape matching of template images. Figure 3.13: Implementation of HOG descriptor. Figure 3.14: Detection of true and false matching occurrence based on HOG 	81 gram. 84 85 86 88 90 94 97 98 99 100 101 102
 Figure 3.1: Flow chart of the proposed method. Figure 3.2: Effect of non-uniform illumination and poor opacification of angio Figure 3.3: Effect of radiation dose for angiography. Figure 3.4: Motion artifacts in CCAs. Figure 3.5: Visuals of selected frames of a CCA for processing. Figure 3.6: Implementation stages of pre-processing phase. Figure 3.7: Frame enhancement. Figure 3.8: Template selection. Figure 3.9: Template matching step between two consecutive frames. Figure 3.10: Template matching step between two consecutive frames. Figure 3.11: False template matching occurrence. Figure 3.12: Steps of shape matching of template images. Figure 3.14: Detection of true and false matching occurrence based on HOG descriptor. 	81 gram. 84 85 86 88 90 94 97 98 99 100 101 102 105

Figure 3.16: Frame difference in accumulated foreground image creation.	109
Figure 3.17: Mask image of a sample CCA.	110
Figure 4.1: Implementation stages of segmentation phase.	113
Figure 4.2: Background subtraction.	115
Figure 4.3: Second order derivatives of a Gaussian kernel.	117
Figure 4.4: Results of Frangi filter.	119
Figure 4.5: Structure filling of LAD.	120
Figure 4.6: Structure filling of CX.	120
Figure 4.7: Structure filling of RCA.	121
Figure 4.8: Foreground extraction.	124
Figure 5.1: Selected frames.	126
Figure 5.2: Vessel isolation.	128
Figure 5.3: Vessel skeleton and boundary extraction.	130
Figure 5.4: Setting tracking direction.	132
Figure 5.5: Skeleton path tracking in CCA.	138
Figure 5.6: Vessel diameter calculation model.	139
Figure 5.7: Vessel diameter calculation of LAD.	142
Figure 5.8: Vessel diameter calculation of CX.	143
Figure 5.9: Vessel diameter calculation of RCA.	144
Figure 5.10: Display diameter results.	145
Figure 6.1: Distribution of F1 score against the possible threshold value range for	or
RCA LAO cranial view.	150
Figure 6.2: Distribution of F1 score against the possible threshold value range for	or
LCA AP caudal view.	151
Figure 6.3: Distribution of F1 score against the possible threshold value range for	or
LCA AP cranial view.	151
Figure 6.4: Positive matching percentage.	154
Figure 6.5: Example for ground truth frames.	155
Figure 6.6: Validating LAD.	157
Figure 6.7: Validating CX.	158
Figure 6.8: Validating RCA.	159
Figure 6.9: Selected visual frames of a sample CCA (LAD).	161

Figure 6.10: Segmentation frames of selected CCA.	162
Figure 6.11: Visualizing the lumen features.	163
Figure 6.12: Quantitative analysis of RCA.	166
Figure 6.13: Quantitative analysis of CX.	167
Figure 6.14: Quantitative analysis of LAD.	168
Figure 6.15: Summary of stenosis analysis results.	169
Figure 7.1: Effect of enhancement methods.	172
Figure 7.2: SIFT feature matching.	175
Figure 7.3: Effect of optical flow.	176
Figure 7.4: Effect of Frangi's filter.	178
Figure 7.5: Constraints affected for segmentation phase.	180
Figure 7.6: Drawbacks in image processing systems of commercial angiography	
machines.	182
Figure 7.7: Flow resistance in stenosis region.	184

LIST OF TABLES

Table 2.1: Angiographic projections and optimal visualization.	56
Table 2.2: American College of Cardiology/American Heart Association Task Force	
(ACC/AHA) classification of the primary target stenosis.	58
Table 2.3: Results of the angiographic versus functional severity of CA stenosis	
obtained by Tonino et al.	61
Table 2.4: Possible structure orientations in 2D images depending on the eigenva	lues
λ_1 and λ_2 of Hessian matrix.	66
Table 5.1: Three cases of SPT algorithm.	136
Table 6.1: Positive matching percentage under various similarity measures.	148
Table 6.2: Positive matching percentage under CC similarity measures.	149
Table 6.3: Positive matching results of CCAs under the CC similarity measure an	nd
DHOGThreshold = 45.	153
Table 6.4: Validation results of LAD artery.	159
Table 6.5: Validation results of CX artery.	160
Table 6.6: Validation results of RCA artery.	160
Table 6.7: Validation results summary of segmentation phase.	161

LIST OF ABBREVIATIONS

Abbreviation	Description
AMB	Acute Marginal Branch
AP	Anterior-Posterior
CA	Coronary Artery
CC	Correlation Coefficient
CCA	Coronary Cine-angiogram
CLAHE	Contrast Limited Adaptive Histogram Equalization
CMRI	Cardiac Magnetic Resonance Imaging
СХ	Circumflex Artery
DFT	Discrete Fourier Transform
FFR	Fractional Flow Reserve
GMV	Global Motion Vector
HOG	Histogram based Oriented Gradient
IVUS	Intra-vascular Ultrasound
LAD	Left Anterior Descending Artery
LAO	Left Anterior Oblique
LCA	Left Coronary Artery
LMCA	Left Main Coronary Artery
MR	Median Ramus
MSCT	Multi Slice Computer Tomography

NIR	Near-Infrared
OCT	Optical Coherent Tomography
OMB	Obtuse Marginal Branch
PCI	Percutaneous Coronary Intervention
PDA	Posterior Descending Artery
PET	Positron Emission Tomography
PLV	Posterior Left Ventricular
RAO	Right Anterior Oblique
RCA	Right Coronary Artery
SIFT	Scale Invariant Feature Transform
SP	Septal Perforators
SPECT	Single Photon Emission Computed Tomography
SPT	Skeleton Path Tracker
VDC	Vessel Diameter Calculation

LIST OF APPENDICES

Appendix	Description	Page
Appendix - A	Strength and Limitation Analysis of Cardiac Medical Image	201
Appendix - B	Pseudo Code of Skeleton Path Tracker	204
Appendix - C	Visual Illustrations of Processing Steps	210
Appendix - D	Results of Clinical Feasibility Analysis of Proposed Method	215
Appendix - E	Publications based on This Research Study	218