
REMOTE METER READING OVER POWER DISTRIBUTION LINES.

THESIS PRESENTED

BY

K. GAMAGE

SUPERVISED BY

DR. J P KARUNADASA DR. DILEEKA DIAS DR A. RANAWEERA

This thesis was submitted to the department of Electrical Engineering of the

University of Moratuwa - Sri Lanka

in partial fulfillment of the requirements for the

Degree of Master of Philosophy

Electrical Engineering Department University of Moratuwa Sri Lanka

University of Moratuwa

September 2003

um Toesis (c).

79294

6:10 513

A STATE OF THE STA

DECLARATION

The work submitted in this thesis is the result of my own investigations, except where otherwise stated.

It has not already been accepted in substance for any degree, and also is not being concurrently submitted for any other degrees.

Signed

K. Gamage

3. C1-

(Candidate)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Signed

Dr. J P Karunadasa

(Supervisor)

Signed

Dr. Dileeka Dias

(Supervisor)

Delicated to my loving mother, elder brother and

teachers

who encouraged me

ABSTRACT

The thesis presents the development of a simple technique for remote reading of utility meters using the low voltage power distribution network.

Remotely reading electricity, gas and water meters have distinct advantages over traditional metering methods. Several communication technologies have been designed and implemented for this purpose using wireless techniques, telephone lines, power transmission and distribution lines. In this study, the last one has been selected as the basis for the development of a remote meter reading system applicable to Sri Lanka.

Power line communication over low voltage distribution lines is a cost effective method for data transmission. But it is complex due to large number of branches, tapings, transformers, different line configurations etc., that are present in the distribution network. The main task of this research is to develop suitable techniques for transfer of data over this network.

University of Moratuwa, Sri Lanka.

The basic concept of data transmission in this application is the change of voltage and current wave at the supply end and the load end respectively of the power system. A series of current pulses are generated representing the data to be transmitted from the consumer end. Similarly, a series of voltage pulses are generated at the supply end to represent the commands to be sent to the consumer. These current and voltage pulses are superimposed with the line current and the line voltage at the load end and the supply end respectively on the power line signal.

The prototype system presented in this thesis shows simulation as well as experimental results relating to the data transmitter, and the software design for the communication subsystem interfacing the meter to the distribution lines. A series of measurements are also carried out to find a suitable time of the day for the data transmission. Associated problems such as harmonics generated due to the insertion of data and the effects of load changes in the distribution network are also discussed.

ACKNOLEDGEMENT

The research for the Degree of Master of Philosophy was carried out at the Department of Electrical Engineering, University of Moratuwa, Sri lanka.

I would like to acknowledge the support received under the Science & Technology Personnel Development Project SRI (SF) 1535 by the Asian Development Bank for the work described in this thesis.

I would express firstly great thanks to the Department of Electrical Engineering, and the members of the Post Graduate committee specially, prof. J R Lucas and Prof. Mrs. N Ratnayake, for having accepted me to commence the research for two years time.

I am deeply indebted to my former supervisor Dr A Ranaweera, who gave me this project proposal and confirmed it. He also supervised my research work and encouraged me to go ahead with my works during the first half of the research period.

I must express my profound gratitude and sincere thanks to my supervisors Dr. Mrs. Dileeka Dias and Dr. J P Karunadasa whose guidance, encouragements and motivation in all the time of the research. They also provided constructive comments during my thesis time as well as the preliminary version of this thesis. I was great pleasure to conduct the work under their supervision.

I must specially mentioned Mr. J D Leelasiri, Technical Officer in Electrical Machine Laboratory, University of Moratuwa. He provided me an invaluable support without any hesitation to collect data from Ceylon Electricity Board during day and night, to prepare a laboratory model and model transformers, to order and buy required items in-time and other technical supports. Therefore I would like to express my grateful thanks for giving his hands to success my research.

The research has been supported by the Officers, in Ceylon Electricity Board for collection of on line data from Grid substation Ratmalana and Distribution substation, Katubedda. I am greateful to the staff members in CEB and LECO including Chief Engineers Mr D G Riency Fernando, Mr. S Bogahawatta, Electrical engineers Mrs. Amali , Mr Kusum Shanthi, Electrical Supirintendents Mr. JMDWR Jayawardana and Mr. Waruna Jayawardana.

The contributions of the Technical Officers and the laboratory staff members in Electrical, Electronics & Telecommunication engineering departments specially, Mr. MWD Wasantha, Mr. J C P Wickramaratne, Mr J H J Perera and Mr. K A D S Somasiri are gratefully acknowledged. Specially I am obliged to my friends Chandani Ambepitiya, Nandaka Jayasekara, Bathiya Jayasekara, L Y C Amarasingha, D S Wikramanayake, Wasantha for making me a good environment at the University.

TABLE OF CONTENTS

CHAPTER C	ONE IN	TRODUCTION	1
1.1		of increase of electricity demand and its s' in Sri Lanka	1
1.2	Importanc	e of remote metering	2
CHAPTER T	rwo su	RVEY OF POTENTIAL COMMUNICATION	
	TE	CHNIQUES FOR REMOTE METER READING	4
2.1	Telephone	e based communication.	5
2.2	Radio bas	ed communication.	6
2.3	Power line	e carrier communication.	7
2.4	Distribution	on line carrier communication.	9
	2.4.1	Low power radio frequency/power line carrier system (RF/PLC)	10
	2.4.2	Power frequency communication (TWAC)	10
	2.4.3	Ultra Narrow Bandwidth PLC communication	11
	2.4.4	Low frequency signal transmission	11
CHAPTER T	THREE PR	ROPOSED DATA TRANSMISSION	
	TE	ECHNIQUE FOR RMR	12
3.1	Data trans	efer concept.	12
	3.1.1	Outbound signal	12
	3.1.2	Inbound signal	14
3.2	Basic con	nmunication system design overview	14
	3.2.1	Remote transponder Unit	14
	3.2.2	Communication channel.	16
	3 2 3	Data collection Unit	16

3.3	Structure o	of data transmission system.	16
	3.3.1	From Remote Transponder Units to the Primary Data Collection Unit.	19
	3.3.2	From Primary Data Collection Units to Secondary Data Collection Units.	19
	3.3.3	From Secondary Data Collection Units to Central Reading Unit.	21
CHAPTER I	FOUR CO	OMMUNICATION PROTOCOL	22
CHAPTER I	F IVE. DI	ESIGN AND IMPLEMENTATION OF RMR	
	SY	YSTEM	27
5.1	Pulse Des	ign	27
	5.1.1	Modeling of an existing distribution system and construction of a prototype power distribution model. Blectronic Theses & Dissertations	28
	5.1.2	Observation of pulse transmission and detection using computer simulation software	37
	5.1.3	Power line disturbances and recommended standards and safety limits of voltage and current	41
	5.1.4	Observation of existing disturbances on selected power distribution system.	42
		5.1.4.1 Current Wave disturbances	42
		5.1.4.2 Voltage wave disturbance	42
	5.1.5	Theoretical studies on harmonic frequency of different pulse patterns.	47
		5.1.5.1 Spectrum analysis of a rectangular pulse signal.	48

		5.1.	6 Observation of line disturbance	pulse transmissic	•	51
	5.2	Suggeste	d implementation of	of Transceiver ha	rdware	57
	5.3	Software	Design			60
СНАР	TER	SIX.	OBSERVATION .	AND RESULT.		63
СНАР	PTER	SEVEN.	CONCLUSION.			65
Annex	es					
	App	endix A				
	Appe	endix B				
List of	Refe	rences				

LISTS OF FIGURES

Figure 3.1(a)	Superimposed pulses with sinusoidal wave of	
	Voltage/Current at the transmitter	13
Figure 3.1(b)	Detected pulses at the receiver	13
Figure 3.2	Components of the Basic Communication System	15
Figure 3.3	Functional Block Diagram of message exchanging	
	System in between DCU and RTU	17
Figure 3.4	Selected Distribution Line Diagram	18
Figure 3.5	Structure of the data transmission system	20
Figure 4.1	Exchanging messages between RTU and DCU	22
Figure 4.2	A message block	23
Figure 4.3	Communication Protocol at the Substation	24
Figure 4.4	Communication Protocol at the Consumer End	25
Figure 4.5	Structure of Outbound message	26
Figure 4.6	Structure of Inbound message	26
Figure 5.1a	Simplified Load Distribution System from Ratmalana	
	grid Substation to the Campus premises	33
Figure 5.1b	Line blocks of main distribution system in Figure 5.1a	34
Figure 5.2a	The front side of the Laboratory model Power	
	distribution System	35
Figure 5.2b	The back side of the Laboratory Model Power	
	Distribution System	36
Figure 5.3	Current and Voltage pulses fed at the 400V load end	
	And the 33 kV supply end respectively	38
Figure 5.4	Voltage waveforms and their filtered outputs on	
	distribution system after applying the voltage pulses	39
Figure 5.5	Current waveforms and their filtered outputs on	
	distribution system after applying the current pulses	40
Figure 5.6a	Feeder current at 33 kV side during daytime	43

Figure 5.6b	Feeder current at 33 kV side during nighttime	43
Figure 5.7a	Frequency spectrum diagrams of current wave at the	
	substation during daytime	44
Figure 5.7b	Frequency spectrum diagrams of current wave at the	
	substation during nighttime	44
Figure 5.8	Harmonics in R, Y and B Phases of Voltage wave in	
	33 kV line from 2 nd to 15 th harmonics	46
Figure 5.9	Square wave pulse	48
Figure 5.10	Power Spectrum Density for Square shape pulses	49
Figure 5.11	Power Spectrum Density for Sinusoidal shape pulses	50
Figure 5.12	Frequency spectrum and filtered output of current wave	
	At the 33 kV side of the substation during night time	52
Figure 5.13	Frequency spectrum and filtered output of pulse wave	53
Figure 5.14	Frequency spectrum and filtered output of resultant	
	Current wave at the 33 kV side of the substation during	
	Nighttime	54
Figure 5.15	Frequency spectrum and filtered output of current wave	
	at the 230V side of the distribution transformer	55
Figure 5.16	Connection of microcontroller & associated electronic	
	Components	58
Figure 5.17	Architecture of 8051 microcontroller	59
Figure 5.18	DC Power Supply	60
Figure 5 19	Way of operation of microcontroller	61

LISTS OF TABLES

Table 5.1	Line parameters for different conductors in the system	29
Table 5.2	Transformer details	29
Table 5.3	General line Inductance and Capacitance values of HV	
	conductors	30
Table 5.4	Resistance, Inductance and Capacitance values for the	
	distribution system	30
Table 5.5	Design parameters for the model	32
Table 5.6	Average values of harmonic components and THD of	
	R, Y and B phases in 33 kV line at the substation	45
Table 5.7	Pseudo Code	62
	University of Moratuwa, Sri Lanka.	