MITIGATION OF IMPACTS OF LIGHTNING SURGES ON LOW VOLTAGE SIDE OF POWER DISTRIBUTION SUBSTATIONS

K.H.G.S. Jayaneth 128869D

Degree of Master of Science in Electrical Engineering

Department of Electrical Engineering University of Moratuwa Sri Lanka

December 2016

MITIGATION OF IMPACTS OF LIGHTNING SURGES ON LOW VOLTAGE SIDE OF POWER DISTRIBUTION SUBSTATIONS

K.H.G.S. Jayaneth 128869D

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

> Department of Electrical Engineering University of Moratuwa Sri Lanka

> > December 2016

DECLARATION OF THE CANDIDATE AND SUPERVISORS

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature (K.H.G.S. Jayaneth)

Date

The above candidate has carried out research for the Masters Dissertation under my supervision.

.....

Signature of the supervisor (Prof. J.R. Lucas)

Date

i

ACKNOWLEDGEMENTS

First of all, my gratitude is towards my supervisor, Professor J. R. Lucas, who guided me throughout my research work, in spite of his busy schedules.

Also, I would like to extend my gratitude to all the lecturers of Electrical Engineering Department, University of Moratuwa for the guidance provided by them to improve my research, with their valuable comments.

My gratitude also given towards former Deputy General Manager Eng. K.M.K. Perera, Deputy General Manager Eng. R.A.A.S. Seneviratne, Deputy General Manager Eng. N.W. Kumarasingha, and Chief Engineer R.K.P.S. Gunathilake of Ceylon Electricity Board for all the support given to me to complete my research successfully.

I would also like to appreciate my colleagues E.A.E.H. Hemachandra, D.M.D.K. Dissanayake, J.G.S Nalani for the motivation given to me to complete my research work. Also, I would like to thank the members of Energy Management Team of DD3, CEB for their tireless efforts in the field to implement this project.

Finally, I owe my gratitude to my parents, my wife and my little daughter for their endless support and encouragement and without them I would not have come this far.

ABSTRACT

Lightning surges are the major source that causes failure of power electronic equipment in low voltage (LV) power distribution systems, specially for the equipment with low immunity parameters and high sensitivity to surges. The 400/230V low voltage systems are usually affected by lightning mainly by the surges coming through the distribution transformers. In addition to that induced surges or direct strikes on load side could cause damage to distribution substations.

Power utilities are concerned about the possibility of damage to distribution transformers caused by lightning strikes leading power supply failures and other losses including transformer damage, meter equipment damage and damage to the surroundings. Assessment of such occurrences is important in the design of suitable protection schemes and mitigation strategies. The number of incoming surges, their energy content as well as the number and the amplitude of power frequency follow currents determine the level of protection required for each substation. Hence, the assessment of impacts becomes more and more important for the design of lightning protection system.

The methods used in Sri Lanka to assess the impacts of lightning are based on experience of the utility employees or the frequency of protection failures and power supply failures. Specially, when it comes to the low voltage (LV) side, the impacts are not assessed or examined, and in most of the cases, the low voltage side of a substation is not effectively protected from lightning.

In this research the impact of lightning surges particularly on low voltage side of the power distribution substation was analyzed, and the possibilities of using protection mechanism in low voltage side of the power distribution substations were investigated in order to reduce or avoid human and installation damage caused by lightning. Study was limited to power distribution substations in the service area of Distribution Licensee No. 3 (Distribution Division 3 of Ceylon Electricity Board) where the total number of installed distribution substations were around 5000.

Then by simulating the impact of lightning surges on a low voltage side of power distribution substation using PSCAD software, the behavior of the electrical parameters under occurrence of lightning was studied, and based on the observations and results, design parameters for the protection system were derived.

Then the available protection methods for low voltage systems in the world were studied. In the next stage, to protect the low voltage side of the distribution substation economically and safely, application of several protection systems was investigated. Those protection systems included surge protective devices (SPD) and proper grounding mechanisms tried out on LV side of the selected distribution substations of DD3.

Finally, based on the findings of investigation, simulation and pilot installation, a standard protection system was deployed, and results were analyzed to check whether the implemented protection system was effective in electrical terms and monetary terms. Continuous monitoring of protected distribution substations has been carried out and the results were produced in the report.

By the results of the assessment of the impacts of lightning on LV side of power distribution substations, it was obvious that huge amount of visible and invisible losses is incurred to Ceylon Electricity Board. The results of the PSCAD simulation clearly shows that the LV side of the power distribution side is affected in the event of lightning strikes. Hence, it was concluded that the LV side of the power distribution side should be protected to eliminate the impacts of lightning strikes. Finally, this research proposes a standard protection mechanism to protect distribution substations from lightning and the effectiveness of the protection system was proved by the results obtained.

LIST OF TABLESvii			
LIST OF FIGURES viii			
ABBREV	IATIONSxi		
1 INT	RODUCTION1		
1.1	Background1		
1.2	ightning Phenomenon2		
1.3	mpacts of Lightning on Power Distribution Substations4		
1.3.	Impacts on Medium Voltage side4		
1.3.2	Impacts on Low Voltage side5		
2 PRC	BLEM IDENTIFICATION6		
2.1	Research Approach6		
2.1.	Distribution Division 3 of CEB6		
2.1.2	Impacts of Lightning in Distribution Division 3 of CEB7		
2.2	Problem Statement7		
2.3	Objectives9		
2.4	Aethodology9		
2.5	iterature Survey11		
2.5 2.5.			
	Lightning Waveforms		
2.5.	Lightning Waveforms		
2.5.7 2.5.2	Lightning Waveforms		
2.5.2 2.5.2 2.5.3	Lightning Waveforms 11 Lightning Protection Standards 13 Lightning Protection Devices 14 Lightning and the Power Distribution Systems 16		
2.5.1 2.5.1 2.5.1 2.5.4	Lightning Waveforms 11 Lightning Protection Standards 13 Lightning Protection Devices 14 Lightning and the Power Distribution Systems 16 Lightning Impact on Distribution Transformers 16		
2.5.1 2.5.1 2.5.1 2.5.4 2.5.4 2.5.4	Lightning Waveforms 11 Lightning Protection Standards 13 Lightning Protection Devices 14 Lightning and the Power Distribution Systems 16 Lightning Impact on Distribution Transformers 16		
2.5.2 2.5.2 2.5.2 2.5.4 2.5.4 2.5.4 2.5.4 3 ASS	Lightning Waveforms 11 Lightning Protection Standards 13 Lightning Protection Devices 14 Lightning and the Power Distribution Systems 16 Lightning Impact on Distribution Transformers 16 Lightning Protection of Distribution Substations 17		

TABLE OF CONTENTS

	3.	3	Ass	sessment of Damage on PPMs	23
4		SI	MUI	LATION OF LIGHTNING ON PDS	25
	4.	1	PS	CAD Simulation model	25
		4.1	.1	DT without MV Surge Arrester. Lightning Generated from MV Side	e .27
		4.1	.2	DT with MV Surge Arrester. Lightning from MV Side	29
		4.1	.3	DT with MV Surge Arrester. Lightning Generated from LV Side	31
		4.1	.4	DT with MV and LV Surge Arresters. Lightning Generated from LV 35	Side
	4.	2	Ob	servations of PSCAD Simulation	39
5		D	ESIC	IN OF LV SURGE PROTECTION SYSTEM	40
	5.	1	Pov	wer Distribution Substation Model	40
		5.1	.1	Behavior of the LV side Parameters During a Lightning Strike	41
		5.1	.2	Lightning Protection Zones (LPZ) of PDS	43
		5.1	.3	LV Protection Design Algorithm	44
	5.	2	De	sign of LV Surge Protection System for PDS	45
		5.2	2.1	Design Principles – LV Surge Protection System	45
		5.2	2.2	Design Principles –Protection System Parameters	46
		5.2	2.3	Selection of Protection System	47
6		IM	IPLE	MENTATION OF LV SURGE ARRESTER INSTALLATION	50
	6.	1	Sar	nple Selection of Distribution Substations	50
	6.	2	Ins	tallation of LV Surge Arresters	52
	6.	3	Res	sults of Field Implementation	56
7		CC	DNC	LUSION AND RECOMMENDATION	59
	7.	1	Co	nclusion	59
	7.	2	Red	commendation	60
	7.	3	Lin	nitations identified	60
8		RE	EFER	ENCES	61

LIST OF TABLES

Table 3-1: Distribution Network infrastructure of the DD3 as at year 2014	19
Table 3-2: Cost of Burnt Transformers during 2012-2014 in DD3	22
Table 3-3: Cost of replacing burnt PPMs in 2012-2014 in DD3	23
Table 5-1: Comparison of LV side SPDs	48
Table 5-2: Characteristics of ABB LOVOS 10 Surge Arrester	49
Table 6-1: Sample Selection for Surge Arrester Installation	50
Table 6-2: Selection of Control Sample	50
Table 6-3: PPM burnings after LV Surge Protection	56
Table 6-4: PPM burnings after LV Surge Protection	56

LIST OF FIGURES

Figure 1.1: Distribution Divisions of Ceylon Electricity Board2
Figure 1.2: Global Distribution of Lightning 1995-2003 by NASA
Figure 1.3: Seasonal Distribution of Lightning in Sr Lanka 1974 - 2008
(www.desinventar.lk)
Figure 2.1: Area Structure of the Distribution division 3
Figure 2.2: Burnt Transformer and damaged wiring and structure at Ukuwelakanda
PDS, Horana
Figure 2.3: Burnt energy meters and damaged MCB and structure at Super Pack
Substation, Sri Jayawardanapura
Figure 2.4: Typical Lightning Waveform11
Figure 2.5: Standard Lightning Current Waveforms
Figure 2.6: Standard Lightning Voltage Waveform
Figure 3.1: Capacity wise Transformer Population
Figure 3.2: Area wise Population of Bulk Supply Consumers21
Figure 3.3: Burnt Transformers During 2012-2014 in DD321
Figure 3.4: Burnt PPMs during 2012-2014 in DD323
Figure 4.1: PSCAD Model of Distribution Transformer with Surge Generator26
Figure 4.2: 5 kA Lightning Surge of 10/350 µs Waveform27
Figure 4.3: Secondary Voltage Waveform at 5 kA Lightning on Primary Side27
Figure 4.4: Secondary Voltage Waveform at 10 kA Lightning on Primary Side28
Figure 4.5: Secondary Voltage Waveform at 40 kA Lightning on Primary Side28
Figure 4.6: V-I Characteristics of Hubbell 36 kV Surge Arrester
Figure 4.7: Primary Voltage Waveform at 10 kA Lightning on Primary Side29
Figure 4.8: Secondary Voltage Waveform at 10 kA Lightning on Primary Side with
MV Surge Arrester
Figure 4.9: Secondary Voltage Waveform at 40 kA Lightning on Primary Side with
MV Surge Arrester
Figure 4.10: PSCAD Model of Distribution Transformer with Surge Generator
Connected to LV side with MV Surge Arrester
Figure 4.11: Primary Voltage Waveform at 5 kA Lightning on Secondary Side with
MV Surge Arrester

Figure 4.12: Secondary Voltage Waveform at 5 kA Lightning on Secondary Side with
MV Surge Arrester
Figure 4.13: Primary Voltage Waveform at 10 kA Lightning on Secondary Side with
MV Surge Arrester
Figure 4.14: Secondary Voltage Waveform at 10 kA Lightning on Secondary Side with
MV Surge Arrester
Figure 4.15: Primary Voltage Waveform at 40 kA Lightning on Secondary Side with
MV Surge Arrester
Figure 4.16: Secondary Voltage Waveform at 40 kA Lightning on Secondary Side with
MV Surge Arrester
Figure 4.17:PSCAD Model of Distribution Transformer with Surge Generator
Connected to LV side with MV and LV Surge Arresters
Figure 4.18: Primary Voltage Waveform at 5 kA Lightning on Secondary Side with
MV and LV SPDs
Figure 4.19: Secondary Voltage Waveform at 5 kA Lightning on Secondary Side with
MV and LV SPDs
Figure 4.20: Primary Voltage Waveform at 10 kA Lightning on Secondary Side with
MV and LV SPDs
Figure 4.21: Secondary Voltage Waveform at 10 kA Lightning on Secondary Side with
MV and LV SPDs
Figure 4.22: Primary Voltage Waveform at 40 kA Lightning on Secondary Side with
MV and LV SPDs
Figure 4.23: Secondary Voltage Waveform at 40 kA Lightning on Secondary Side with
MV and LV SPDs
Figure 5.1: Typical Power Distribution Substation
Figure 5.2: Single Line Diagram of PDS during Lightning on MV Side41
Figure 5.3: Single Line Diagram of PDS during Lightning on LV Side42
Figure 5.4: Lightning Protection Zones in PDS43
Figure 5.5: LV Protection Design Algorithm
Figure 6.1: Transformers in Selected Sample Against Total in DD351
Figure 6.2: LV Surge arrester connection at PDS
Figure 6.3: LV Arrester Installation at Furgurson Garment, Rathnapura53
Figure 6.4: LV Arrester Installation at Tea Small Holdings, Horana53

Figure 6.5: Installation at Labugama Water Treatment Plant, Awissawella	54
Figure 6.6: Installation on PPM at Sripali, Horana	54
Figure 6.7: Disconnected Arrester at Sripali, Horana	55
Figure 6.8: Comparison of burnt PPMs in DD3 during 2013 – 2016	57
Figure 6.9: Burnt DT during 2013 – 2016 Against the Sample Selected	58
Figure 6.10: Burnt DTs in DD3 during 2012 – 2015	58

ABBREVIATIONS

CEB	Ceylon Electricity Board
DD3	Distribution Division 3
kVA	kilovolt Ampere
kW	kilo Watt
kWh	kilo Watt hour
LV	Low Voltage
MV	Medium Voltage
HV	High Voltage
HT	High Tension
LT	Low Tension
PDS	Power Distribution Substation
DT	Distribution Transformer
SPD	Surge Protection Device
In	Nominal Discharge Current
I _{imp}	Impulse current
Uc	Continuous Operating Voltage
Up	Protection Voltage
BIL	Basic Insulation Level
ac	Alternating Current
PPM	Programmable Polyphase Meter
TDT	Time of Day Tariff
СТ	Current Transformer
MOV	Metal oxide varistor