PERFORMANCE ANALYSIS OF WIFI DIRECT FOR VEHICULAR COMMUNICATION

Balasundram Arunn

(158024L)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

February 2017

Declaration

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, electronic, or any other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The candidate, whose signature appears above, carried out research for the MSc dissertation under our supervision.

Signature:

Date:

Signature:

Date:

Abstract

Vehicular communication is the key enabler of intelligent transport services (ITS). Vehicular ad-hoc networks can be considered to be the integral component of such communication. The state of art dedicated short range communication (DSRC), which is a technology defined for vehicular communication, requires dedicated hardware. This hinders the penetration of ITS, especially in developing countries. In this thesis, we focus on analyzing the feasibility of using Wi-Fi Direct (WD), which is readily available on many smartphones, as an alternative communication technology for VANETs.

We simulate VANETs using DSRC and WD with the help of network simulator NS3 and traffic simulator SUMO. We validate our model first using existing results, and perform simulations to evaluate the performance of both single and multi-hop communications. Metrics such as throughput, end-to-end delay, packet receiving/loss ratios for both WD and DSRC are considered.

As expected, DSRC demonstrates a better performance with regards to most of the measured parameters. However, we observe that the performance of WD is not drastically inferior. Delays is the most crucial performance measure in a VANET. Experiments with different WD modifications show that the delays in WD based VANETs can be reduced by modifying the WD protocol. As a whole, our results indicate the potential of WD as an alternative communication technology for VANETs. Several performance gaps are identified and suggestions are provided in order to enhance WD and bridge those gaps.

Index terms— Wi-Fi Direct, Dedicated short range communication, Vehicular ad-hoc networks.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors Dr. Tharaka Samarasinghe and Prof.Dileeka Dias for making time in their busy schedule to support me, throughout my master study. I would like to thank Dr.Tharaka Samarasinghe for his continuous support in my study and research, sharing his expertise, for his patience and motivation. I would like to thank Prof. Dileeka Dias for her guidance from the completion of my undergraduate education and providing support in various ways throughout my post graduate studies.

Beside my supervisors, I would like to thank Dr. Asanga Udugama for being my progress committee chair and also help me in research by giving valuable suggestions and guidance. I would like to thank Dr. Chandika Wavegedra for being my progress committee member, and for also guiding me with insightful comments. I would also like to thank Dr. Chamitha De Alwis and Dr. Ruwan Udayanga Weerasuriya for being in the panel of examiners and help in improving the thesis.

I would like to thank my university, The University of Moratuwa, for providing financial support and other facilities to conduct my research. I would like to also thank Dialog mobile communication research laboratory at the University of Moratuwa for accommodating and supporting me throughout the study. My sincere thanks also goes to the staff of Dialog mobile communication research laboratory for their support during my stay in the lab.

Last but not least, I would like to express my deepest gratitude to my loving parents and siblings for their support and care through my life.

Contents

	Dec	laration	i
	Abstract		
	Ack	nowledgements	iii
1	Intr	roduction	1
	1.1	VANETS	1
	1.2	Problem statement	2
	1.3	Approach of the research and contribution	3
	1.4	Outline of the thesis	4
2	Bac	kground	6
	2.1	Dedicated short range communications	6
	2.2	Wi-Fi Direct Protocol	7
	2.3	Delays	9
		2.3.1 Types of delays	10
		2.3.2 Comparison of delays	11
		2.3.3 Transmission delay in single packet transfer	12

		2.3.4	Comparison of transmission delays in different type of packet transferring mechanisms	13
	2.4	Simula	ators	13
		2.4.1	NS3	14
		2.4.2	SUMO	15
	2.5	Relate	ed works	16
3	Syst	tem m	odel	19
	3.1	Chanr	nel model	19
		3.1.1	Path loss model	19
		3.1.2	Fading model	21
		3.1.3	Limitation of channel models	21
	3.2	Topol	ogical Model	22
		3.2.1	Small-scale model	22
		3.2.2	Large-scale model	23
	3.3	Netwo	ork	23
		3.3.1	Routing protocols	24
			3.3.1.1 Ad-hoc On-Demand Distance Vector (AODV)	25
			3.3.1.2 Optimized Link State Routing Protocol (OLSR)	25
4	\mathbf{Sim}	ulatio	n Setup	26
	4.1	Node	creation	27
	4.2	Chanr	nel modeling	27
	4.3	Device	e configuration	28

	4.4	Mobility	29
	4.5	Application configuration	31
	4.6	Data collection configuration	33
	4.7	Additional modules	34
	4.8	Other tools	35
5	Res	ults and Discussion	37
	5.1	Verification	37
	5.2	Small-scale simulations	39
	5.3	Large-scale simulations	42
		5.3.1 Conceptual Wi-Fi Direct model	42
		5.3.2 Models with original Wi-Fi Direct implementation	44
	5.4	Discussion	46
6	Con	clusions and Future Work	47
	6.1	Conclusions	47
	6.2	Future Work	48
		6.2.1 Reducing the delay	48
		6.2.2 Overcome the challenges in real implementation	48
Appendices 50			50
\mathbf{A}	San	ple codes	51
	A.1	Main Application	51
	A.2	Sender Application	58

List of Figures

1.1	VANET architecture.	2
2.1	WD architecture.	8
2.2	Architecture of NS3 simulation	14
2.3	Creation of a mobility model using SUMO	16
2.4	Generating NS3 supported trace files from SUMO traces	16
3.1	Parameters of channel model	21
3.2	Phase 1: Small-scale model	23
3.3	Phase 2 : large-scale model	24
4.1	Steps of the simulation	26
5.1	A comparison between the theoretical, experimental and simula- tion based throughput results	38
5.2	Comparison of the packet loss ratio between WD and DSRC	40
5.3	Change of received signal power with distance and threshold power for successful reception	40
5.4	Comparison of the throughput between WD and DSRC. $\ . \ . \ .$	41
5.5	The behavior of throughput with time at different velocities	41
5.6	Comparison of average end-to-end delay with AODV routing	43

5.7	Comparison of average end-to-end delay with OLSR routing	43
5.8	Comparison of the average packet receiving percentage	43
5.9	Comparison of average end-to-end delay between original WD im- plementation and DSRC	45
5.10	Comparison of average end-to-end delay with different WD im- plementations (Modified- implementation in 5.3.1, Broadcast and	
	Original-implementations in $5.3.2$)	45

List of Tables

2.1	Comparison of PHY layer parameters between IEEE802.11a and	
	IEEE802.11p	7
2.2	Wi-Fi Direct protocol delays	10
2.3	Availability of related NS3 modules	15
5.1	Average results of all flows	44

List of Abbreviations

Abbreviation Description

DSRC	Dedicated Short Range Communication
VANET	Vehicular ad-hoc networks
OBU	On Board Unit
RSU	Road Site Unit
WPS	Wi-Fi protected setup
DHCP	Dynamic Host Configuration Protocol
P2P	Peer To peer
CTS	Clear to send
RTS	Request to send
ACK	Acknowledgement
UDP	User Datagram Protocol
TCP	Transmission Control Protocol
IP	Internet protocol