VIRTUAL SUPPPORTS TO ANALYSE STATIC FLOATING STRUCTURES AND DYNAMIC SYSTEMS BY STATIC ANALYSIS SOFTWARE

Harsha Suranga Kumarasinghe

149257C

Degree of Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

July 2017

VIRTUAL SUPPPORTS TO ANALYSE STATIC FLOATING STRUCTURES AND DYNAMIC SYSTEMS BY STATIC ANALYSIS SOFTWARE

Harsha Suranga Kumarasinghe

149257C

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

July 2017

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	Date:
~	

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ Dissertation under my supervision.

Supervisor	Date
Mr. Kapila Peiris	
Supervisor	Date
Dr. M. Narayana	

Abstract

When an object with high rigidity is subjected to free forces, moments and constrained forces, moments, stresses and strain will be formed in it. A support may be identified as a constrained which supplies forces/moment without any displacement.

In some cases although the constrains could balance the free forces/moments by and keep the system under equilibrium, the constraints cannot be keep a unique displacement (field). Therefore in such a case in an elemental analysis the solution for displacements will have many solutions conditions and in a computer where numerical methods (iterative) are used such solution will not be possible.

In this study a method is introduced to overcome this problem by the concept of 'virtual constraints' without changing the original stress-strain condition of the system.

System without adequate constraints will be known as floating system and dynamic systems (with high rigidity) with the application of reversed inertia forces could also be considered as floating system. Therefore such system also could be analyzed for stress-strain by proper introduction of artificial supports with the same software meant to analyses static system.

Keywords – Virtual supports, Floating system

ACKNOWLEDGEMENT

At the very beginning of this research, I would like to express my gratitude to my immediate supervisor Mr. Kapila Peiris for giving his excellent support. His clear guidance paved me the way of finding correct direction to fulfill the project objectives. Moreover his pattern of logical thinking affected me to improve my thinking ability and it gave me a great support to complete the research activity. Further his theoretical knowledge motivated me to learn many theoretical aspects and it helped me to complete very successful chapter of theory in this research.

In addition to this I express my sincere thanks to Dr. Narayana, who gave me an excellent support to complete this research. Further I extended my sincere thanks to Dr. Narayana for his great service done as course coordinator in the course period.

Further I would like to extend my gratitude to management of the Loadstar private limited for giving their fully support to use Abaqus 6.14 software to my research work without any limitations.

Abstract	ii
ACKNOWLEDGEMENT	iii
List of abbreviations	ix
1. INTRODUCTION	1
1.1 Find stress field of a static body	1
1.2 solving stress-strain problems	3
1.2.1 Determining displacement field of no-constrain beam structure	4
1.2.2 Find displacement filed of no-constrain CST plate element	8
1.2.3.Analysis of a simple un-constraints body by computer base FEA pa	ackage 11
1.2 Objective	16
2. LITEREATURE REVIEW	17
2.1 Studies done on virtual supports	17
2.2 Finite Element Method	22
2.3 Brief History	22
2.4 Computers for FEA	23
2.5 Finite Element and computers	23
2.6 Abaqus as general purpose software	25
2.7 Main steps of Abaqus analysis	25
2.7.1 Discretize the model	25
2.7.2 Element section properties	26
2.7.3 Material data	26
2.7.4 Loads module in Abaqus	26
2.7.4.7 Define pipe pressure load	27
2.8 Define boundary condition in Abaqus	28
2.8.1 XSYMM Symmetry about a plane $X = constant$ (U1 = UR2 = U	$\mathbf{JR3}=0\mathbf{)}$
	28

	2.8.2 YSYMM Symmetry about a plane $Y = constant$ (U2 = UR1 = UR3 =	= 0)
		28
	2.8.3 ZSYMM Symmetry about a plane $Z = constant (U3 = UR1 = UR2 = 0)$)28
	2.8.4 XASYMM Anti-symmetry about a plane with $X = constant (U2 = U UR1 = 0)$	3 = 28
	2.8.5 YASYMM Anti-symmetry about a plane with $Y = constant (U1 = U UR2 = 0)$	3 = 29
	2.8.6 ZASYMM Anti-symmetry about a plane with $Z = constant (U1 = U UR3 = 0)$	2 = 29
	2.8.7 PINNED Pinned (U1 = U2 = U3 = 0)	29
	2.8.8 ENCASTRE Fully built-in (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0)	29
	2.8.9 Defining velocity/angular velocity boundary condition	29
	2.8.10 Defining acceleration/angular acceleration boundary condition	29
2	9 Depth in to Finite element analysis	29
	2.9.1. Discretization and element selection	31
	2.9.2 . Selection a displacement function	34
	2.9.3. Define the strain/displacement and stress/strain relationship	34
	2.9.4. Derive element stiffness matrix and equations	34
	2.9.5 Assembly the element equations to obtain the global or total equations	37
	2.9.6 solve for the unknown degree of freedom or generalized displacement	40
	2.9.7 solve for the element stress and strain	41
	2.9.8 Interpret the results	41
2	10 Derivation of the stiffness matrix for a bar element in a local coordinates	41
2. eo	11 Derivation of the constant-strain triangular element stiffness matrix quation	and 44
2	12 Cofactor method (Adjoining method) to determine the inverse of a matrix	49
2	13 Equation of elasticity	49

	2.13.1 differential equation for equilibrium	49
	2.13.2 Strain/Displacement and compatibility equations	51
	2.13.3 Stress/strain relationship	53
3. 1	INTRODUCTION OF VIRTUAL CONSTRAINTS	55
3	3.1 Floating structure	55
3	3.2 identification of floating, non-floating constraints by kinematics method	55
3	3.3 identification of floating, non-floating constraints by static method	56
	3.3.1 Use virtual support to analyses roof structure of Kulasinghe auditorium	n in
	nerd center	61
3	3.4 Analyzing of a dynamic system with virtual supports	69
	3.4.1 Analyzing of a rotating disc with virtual supports	70
	3.4.1.1 Calculation of centrifugal force and tangential force	71
3	3.4.2 Stress-strain analysis of a wind blade	80
	3.4.2.1 Determine <i>fi</i> from dynamics	81
	3.4.2.2 Apply reversed inertia forces at the nodes	84
	3.4.2.3 Apply virtual constraints	85
	3.4.2.4 Analysis the system	86
	3.4.2.5 Reaction Moment around Y axis of Virtual support	87
4.	CONCLUSION	88
Ref	Ferences	90
Ap	pendix	94

List of Figures

Figure 1: Stress tensor on an infinitesimal element	1
Figure 2: AB and BC beam structure	4
Figure 3: Nodal forces on the model	4
Figure 4: Nodal displacement on the model	5
Figure 5:Local forces and displacement of elements	5
Figure 6: Displacement vectors of CST elements	8
Figure 7:Schematic diagram of un-constrained beam	11
Figure 8: Error message in Abaqus output	11
Figure 9: Error message in ANSYS output	12
Figure 10: Error message of Nastran solver	12
Figure 11: Error message of FEmap solver	13
Figure 12:error message in Strand7 solver	13
Figure 13: Error message in SolidWorks simulation	14
Figure 14: Rigid foundation with no supports	17
Figure 15: Flow chart followed to get unique thermal stress without DBC s	19
Figure 16: Hydrostatic pressure on the object	20
Figure 17: FE simulation result	20
Figure 18: procedure to remove rigid body motion from deformation result	solved
without DBCs	21
Figure 19: Line element used in FEA	31
Figure 20: Plate element used in FEA	33
Figure 21: 3D elements used in FEA	33
Figure 22: Axisymmetric elements used in FEA	33
Figure 23:linear spring element	35
Figure 24:virtual displacement applied on the particle	37
Figure 25: Two spring assembly	37
Figure 26: Local displacement of beam	42
Figure 27: Nodal forces applied in local direction	42
Figure 28: displacement in a CST element	44
Figure 29: stress tensors on plane element	49

Figure 30: stress elements in three dimensional case	50
Figure 31: differential element before and after deformation	51
Figure 32: Deformation of 3D element for tensile stress in x direction	53
Figure 33: Virtual supports on a body	57
Figure 34: Roof of Kulasinghe auditorium	61
Figure 35:FEA model of structure	62
Figure 36: Mesh on the model	63
Figure 37: boundary condition on the model	64
Figure 38: Virtual supports on the roof	65
Figure 39: Loading on the structure	66
Figure 40: Von misses stress developed on the structure	67
Figure 41: Reaction force in X direction of virtual constraint	68
Figure 42: Reaction force in Z direction of virtual constraint	68
Figure 43: Reaction Moment around Y axis of virtual constraint	69
Figure 44: Reversed inertia forces on an object	69
Figure 45: Force on a rotating disc	70
Figure 46: Center of gravities of first segment	72
Figure 47: Reverse inertia forces on the disc	74
Figure 48: Boundary condition on the rotating disc	75
Figure 49: virtual supports to the disc	76
Figure 50: Von misses stress of rotating disc	77
Figure 51: Reaction force in X direction of virtual constraint	78
Figure 52:Reaction force in Z direction of virtual constraint	78
Figure 53:Moment around in Z axis of virtual constraint	79
Figure 54:kinematics of wind blade	80
Figure 55: Constraint on wind blade	81
Figure 56: Wind force on the FEA model	82
Figure 57: drag forces on the wind blade	83
Figure 58: reversed inertia forces on the model	84
Figure 59: Virtual support on the model	85
Figure 60: Stress analysis of wind blade at static mode	86
Figure 61: Reaction moment around Y axis of virtual constraint	87

Figure	62:Kine	matics	on	wind	blade	

List of Table

Table 1:Parameters of the rotating disc	71
Table 2: Calculation of inertia forces	73

94

List of abbreviations

FEA	Finite Element Analysis
FEM	Finite Element Method
CFD	Computational Fluid Dynamics
AMS	Automatic Multi-level Sub structuring eigen solver
CAE	Complete Abaqus Environment
MPE	Minimum potential Energy theorem
CST	Constant Strain Triangular
NERD	National Engineering Research and Development Center
DBC	Displacement Boundary Condition