References

[1] S. Timoshenko, and J., Goodier. "Plane stress and plane strain" in Theory of Elasticity, $2^{\text {nd }}$ ed., New York: McGraw-Hill, 1951, pp. 22-24.
[2] R. Janco, and B., Hucko. "Stress and strain-axial loading" in Introduction to Mechanics of Material, part 1, ${ }^{\text {st }}$ ed., 2013,pp. 40-45.
[3] K. Sung. "Stress and strain" in Mechanics of Solid and Fracture, $2^{\text {nd }}$ ed.,2016,pp. 18-27.
[4] B. Evgeny. "Solution of finite element equilibrium equations" in Introduction to the Finite Element Method, Riga, 2001, pp.30-60.
[5] I. Moharas, I., Oldal, and A., Szekrenyes. "Energy theorem of elasticity, calculus of variation, finite element method, determination of stiffness equation in case of co-planer, tensed element" in Finite Element method,2012, pp.13-63.
[6] J. Dean, Class lecture, Topic "The direct stiffness method and stiffness matrix", Faculty of Engineering, University of Cambridge.
[7] D. F. M. Perera. "Theory of virtual supports" in Virtual supports for rigid foundation, Sarasavi publication, Sri Lanka,2010, pp.16-27.
[8] S. Lee, C. Lim and S. Kwak. "An efficient method for thermal stress analysis considering influence of displacement boundary conditions", International journal of CAD/CAM, 2011.
[9] P. Serdobintsev and K. Ivanyuk. "Analyzing the stress-strain state of object bodies subject to hydrostatic pressure using modern CAD system", 2nd International Conference on Industrial Engineering, Application and Manufacturing (ICIEAM), Rusia, 2016.
[10] Y. Kwak, H. Lim and H. Nam. " Effect of displacement boundary conditions on thermal deformation in thermal stress problem", China foundry, 2013.
[11] R. Tirupathi and D. Ashok. "Fundamental concept" in Introduction to Finite Elements in Engineering, $3^{\text {rd }}$ ed. New Jersey, 2002, pp.1-5.
[12] https://en.wikipedia.org/wiki/Vacuum_tube [Oct.10,2016]
[13] https://en.wikipedia.org/wiki/Integrated_circuit [Oct.10, 2016]
[14] J. Akin. "Capabilities of FEA" in Finite Element Analysis with Error Estimators, $1^{\text {st }}$ ed., Burlington, 2005, pp.1-5.
[15] P.V. Marcal. "On general programs for Finite Element Analysis, with special reference to geometric and material nonlinearities," presented at the symposium on Numerical Solution of Partial differential equations, University of Maryland, 1970
[16] T., Raphael, G. Zafer and P. Manohr. "Aspects of the optimization process in practice" in Element of Structural Optimization, $2^{\text {nd }}$ ed., SpringerScience+Business Media, B.V,1990, pp.198-202.
[17] Abaqus documentation 6.14, Getting started with Abaqus, interactive edition http://130.149.89.49:2080/v6.14/ [Feb.17,2017]
[18] Abaqus documentation 6.14, Abaqus Analysis user's guide. http://130.149.89.49:2080/v6.14/ [Feb.17,2017]
[19] Abaqus documentation 6.14, Abaqus CAE user's guide. http://130.149.89.49:2080/v6.14/ [Feb.17,2017]
[20] G. Liu and S. Quek. "Computational modelling" in The Finite Element Method, $1^{\text {st }}$ ed. Butterworth, Heinwann, 2003, pp.1-10.
[21] L. Darly. The First Course in the Finite Element Method, $4^{\text {th }}$ ed., Nelson, a division of Thomson, Canada, 2007, pp.1-306.
[22] http://fea-cae-engineering.com/fea-engineering/element_types.htm[Oct.13,2016]
[23] Pavlou, and G., Dimitrious. "The principle of minimum potential energy for onedimensional element" in Essentials of the finite element method for mechanical and structural engineers, London, 2015, pp 279-288.
[24] C. Caprani. "The principle of virtual work" in Virtual work 3 ${ }^{\text {rd }}$ year structural Engineering, 2010/11, pp14-20.
[25] D. Roylance. Finite Element Analysis, Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139, 2001, pp1-16.
[26] P. Boeraeve. "The finite element method" in Introduction to the Finite Element Method (FEM), 2010, pp19-23.
[27] S. Wynand. "Matrices in geometry" in Matrix Method and Differential Equations, 2012, pp50-55.
[28] Pavlou and G. Dimitrious. "The Principle of Minimum potential energy for two dimensional and three-dimensional elements" in in Essentials of the finite element method for mechanical and structural engineers, London, 2015, pp 311371.
[29] B. James. "An introduction to the theory of determinants" in Fundamental of Linear Algebra, 2005, pp 247-251.
[30] K. Kuttler. "determinants" in Elementary Linear Algebra, 2012, pp 99-127.
[31] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation [Feb.17,2017]
[32] W.K.R., Peiris, K.Y.H.D., Shantha, S.A.P.S., Silva, and H.S., Kumarasinghe, "Analysing floating structures and dynamic systems by using the concept of virtual supports and by software in static mode". Technical sessions IESL Sri Lanka, 2015, pp 23-28.
[33] Abaqus documentation 6.14, Abaqus example problem manual http://130.149.89.49:2080/v6.14/ [Feb.17,2017]
[34] G. Ingram. "Blade element theory" in Wind Turbine blade Analysis using the Blade Element Momentum method, Version 1.1., Durham University, pp 8-20.
[35] M. Kany and M. El Gendy, Effect of Superstructure Rigidity on the Foundation system, January 2000, Conference: 2. Kolloquium, Bauen in Boden und Fels, Technische Akademie Esslingen, Ostfildern, Germany, 18-19 January 2000., Ostfildern, Germany
[36] Abaqus documentation 6.14, Abaqus Theory Guide, http://130.149.89.49:2080/v6.14/books/stm/default.htm?startat=ch01s05ath12.ht $\underline{\mathrm{ml}}$ [Feb.17,2017]
[37] E. Oñate, Structural Analysis with the Finite Element Method, Linear Statics. Volume 1. Basis and Solids, Springer, 2009
[38] Liu, X., Zhang, L. "Structural Theory." Bridge Engineering Handbook. Ed. WaiFah Chen and Lian Duan Boca Raton: CRC Press, 2000

