DESIGN OF POLYETHYLENE BASED MULTILAYER EXTRUSION BLOWN FILM FOR MANUFACTURE OF LEAK FREE PACKAGING

Nirasha Dilki Hettiarachchi

138257J

Degree of Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

March 2017

DESIGN OF POLYETHYLENE BASED MULTILAYER EXTRUSION BLOWN FILM FOR MANUFACTURE OF LEAK FREE PACKAGING

Nirasha Dilki Hettiarachchi

138257J

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

March 2017

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature :

Date :

The above candidate has carried out research for the Master's thesis under my supervision.

Signature :

Date :

ACKNOWLEDGEMENT

First and foremost I respectfully express deepest gratitude to my internal supervisor, Dr. Olga Gunapala, Senior Lecturer, Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa for the valuable advices, guidance and supervision extended throughout the period.

It's a great pleasure to thank, Dr. Shantha Egodage, course coordinator of the M.Sc in Polymer Technology degree for the dedication and effort she made.

I would like to thank Prof B.A.J.K. Premachandra and Staff Technical officers, Department of Chemical and Process Engineering for the persistent and generous help extended to me during learning period.

I would like to thank machine operators and Laboratory staff of Tuffline Ltd. for the finest support extended to me.

Finally I would like thank all those who, I was unable to mention for encouraging me and supporting me to make this research a success.

ABSTRACT

Key words : LLDPE sealant, leak free, seal through contamination

Flexible packaging is a growing market and the majority of flexible package applications are for the food industry. The demand for process optimization and reduced production costs has led to an increase in flexible packaging. And reducing wastage in production line, during storing and transportation is a critical aspect which food product manufacturers are highly concerning. These wastages are higher for liquid products packing flexible materials. That is due to contamination in the seal area. Most of the time liquid products are packing in Vertical-Form-Fill-Seal (VFFS) machines. Therefore seal through contamination is highly occurring while packing of liquid products. The study uses three types of liquid and semi liquid products such as tomato sauce, spicy oil and water based perfume. Since the aggressiveness of these products leak percentage is higher with current material structures. Hence target of this study was to develop a PE based blown film extrusion material which can be used for the laminate structures for these selected products. Newly developed Linear Low Density Polyethylene (LLDPE) was replaced the sealant material of existing structure of those products. Also all the tests were carried out for both existing material structure and new material structure with developed LLDPE. The existing sealant material was blown using 80% LLDPE and 20% Low Density Polyethylene (LDPE) in all 3 layers. But newly developed sealant material was blown incorporating Polyolefin Plastomer (POP) and metallocene LLDPE materials to the inner and middle layers. The study tests a combination of different sealing temperatures and dwell time to determine the optimal sealing condition. Then optimal sealing condition was applied to the production line in order to trial the material structures. Leakages tests were conducted to the packed sachets and final results were determined. Developed blown film extrusion LLDPE film was shown good results compared to the existing material. From new sealant material leak percentage of tomato sauce, spicy oil and water based perfume could be reduced by 20%.

TABLE OF CONTENT

DEC	LARAT	ΓΙΟΝ	i
DED	ICATIO	ON	ii
ACK	NOWL	EDGEMENT	iii
ABS	TRACT	[iv
TAB	LE OF	CONTENT	v
LIST	OF FIG	GURES	viii
LIST	OF TA	ABLES	х
LIST	OF CH	IARTS	xiii
LIST	OF AE	BBREVIATIONS	xiv
LIST	OF AF	PPENDICES	xvi
1.	Intro	duction	1
2.	Obje	ctive	3
3.	Literature Review		4
	3.1	Importance of Plastic Packaging	4
	3.2	Flexible Packaging	4
	3.3	Material Used in Flexible Packaging	6
	3.4	Properties of Packaging Materials	6
	3.5	Manufacture of Flexible Packaging	10
		3.5.1 Polyethylene blown film extrusion	10
		3.5.2 Printing	11

	3.5.3 Lamination	11
3.6	Fluid Filling and Sealing	12
	3.6.1 Sealing	13
3.7	Heat Sealing	14
3.8	Factors Affecting on Heat Sealing	15
3.9	Seal Strength	16
3.10	Liquid Contaminants in Seal Area	18
3.11	Sealant Layer and Characteristics	19
3.12	Lamination Factors Affecting on Heat Sealing	22
3.13	Testing Methods for Leaks with Seal Contamination	25
3.14	Literature Review Summary	25
Experi	imental	27
4.1	Materials	27
4.2	Equipments	31
4.3	Procedure	32
	4.3.1 Preparation of materials	32
	4.3.2 Tests	35
Result	s and Discussion	43
5.1	Samples	43
5.2	Differential Scanning Calorimeter Experiment	44
5.3	Hot-tack Strength	44

4.

5.

		5.3.1	Results of tomato sauce packing material structure	44
		5.3.2	Results of spicy oil packing material structure	47
		5.3.3	Results of water based perfume packing material structure	50
	5.4	Heat S	Seal Strength	53
		5.4.1	Results of tomato sauce packing material structure	53
		5.4.2	Results of spicy oil packing material structure	55
		5.4.3	Results of water based perfume packing material structure	56
	5.5	Trials	in Production Line	57
	5.6	Leaka	ge Test Results	59
		5.6.1	Test results for tomato sauce packing material	59
		5.6.2	Test results for spicy oil packing material	61
		5.6.3	Test results for water based perfume packing material	63
	5.7	Storag	e Test Results	65
6.	Conclu	usion		71
Refere	Reference List 7.			73
Appendices 70			76	

LIST OF FIGURES

Figure 3.1	(a) Flexible packaging pouch packs (b) Flexible packaging products	
	in reel form	5
Figure 3.2	Flexible packaging laminates structures layer separation	б
Figure 3.3	Horizontal-Form-Fill-Seal machine	12
Figure 3.4	Vertical-Form-Fill-Seal machine	12
Figure 3.5	Configuration of a VFFS machine	13
Figure 3.6	Most important points in sealing area	15
Figure 3.7	Relationship between seal bar temperature and apparent seal	
	strength for semicrystalline polymer films	16
Figure 3.8	Previous seal strength results found in study[7]	17
Figure 3.9	Liquid contact angle with solid surface	18
Figure 3.10	Fin seal	21
Figure 3.11	Hermetic seal vs. Leak path channels	22
Figure 3.12	Hot-tack strength and seal strength at molecular level[13]	22
Figure 3.13	Dry bond lamination web path	24
Figure 4.1	Equate 7087 resin pallets	28
Figure 4.2	Lotrene 274 resin pallets	29
Figure 4.3	Lotrene 5026 resin pallets	29
Figure 4.4	Affinity 1881G resin pallets	30
Figure 4.5	Elite 5401G resin pallets	31
Figure 4.6	Sample strip used for hot-tack strength test	39

Figure 5.1	Samples used in this study	43
Figure 5.2	Peeling failure of heat seal	53
Figure 5.3	Peeling and tearing failure of heat seal	54
Figure 5.4	Peeling and elongation failure of heat seal	55
Figure 5.5	(a) Packed tomato sauce sachet from Sample T-normal material	
	(b) Packed tomato sauce sachet from Sample T-special material	57
Figure 5.6	(a) Packed spicy oil sachet from Sample O-normal material	
	(b) Packed spicy oil sachet from Sample O-special material	58
Figure 5.7	(a) Packed water based perfume sachet from Sample	
	P-normal material	
	(b) Packed water based perfume sachet from Sample	
	P-special material	58

LIST OF TABLES

Table 3.1	Properties and functions of flexible packaging materials	9
Table 4.1	Details on laminated film structures used in this study	27
Table 4.2	Main properties of Equate 7087	28
Table 4.3	Main properties of Lotrene 274	29
Table 4.4	Main properties of Lotrene 5026	30
Table 4.5	Main properties of Affinity 1881	30
Table 4.6	Main properties of Elite 5401	31
Table 4.7	Resin blend of LLDPE used for Sample T-normal, O-normal	
	and P-normal	33
Table 4.8	Machine parameters while producing Sample T-normal,	
	O-normal and P-normal, sealant material	33
Table 4.9	Resin blend of LLDPE used for Sample T-special, O-special and	
	P-special	34
Table 4.10	Machine parameters while producing Sample T-special,	
	O-special and P-special, sealant material	34
Table 4.11	Tested sealing temperatures and dwell times for hot-tack strength	36
Table 4.12	Tested parameters for heat seal strength	40
Table 4.13	Parameters used in production line	41
Table 5.1	Results of DSC experiment	44
Table 5.2	Results of hot-tack strength for Sample T-normal material	44

Table 5.3	Results of hot-tack strength for Sample T-special material	45
Table 5.4	Results of hot-tack strength for Sample O-normal material	48
Table 5.5	Results of hot-tack strength for Sample O-special material	49
Table 5.6	Results of hot-tack strength for Sample P-normal material	50
Table 5.7	Results of hot-tack strength for Sample P-special material	51
Table 5.8	Results of heat seal strength for Sample T-normal material	53
Table 5.9	Results of heat seal strength for Sample T-special material	54
Table 5.10	Results of heat seal strength for Sample O-normal material	55
Table 5.11	Results of heat seal strength for Sample O-special material	55
Table 5.12	Results of heat seal strength for Sample P-normal material	56
Table 5.13	Results of heat seal strength for Sample P-special material	56
Table 5.14	Leak test results for tomato sauce sachets	60
Table 5.15	Summary results of leak test for Sample T-normal material	60
Table 5.16	Summary results of leak test for Sample T-special material	61
Table 5.17	Leak test results for spicy oil sachets	62
Table 5.18	Summary results of leak test for Sample O-normal material	62
Table 5.19	Summary results of leak test for Sample O-special material	63
Table 5.20	Leak test results for water based perfume sachets	64
Table 5.21	Summary results of leak test for Sample P-normal material	64
Table 5.22	Summary results of leak test for Sample P-special material	65
Table 5.23	Weight readings of tomato sauce sachets in Sample	

T-normal material

Table 5.24	Weight readings of tomato sauce sachets in Sample	
	T-special material	66
Table 5.25	Weight readings of spicy oil sachets in Sample O-normal material	67
Table 5.26	Weight readings of spicy oil sachets in Sample O-special material	68
Table 5.27	Weight readings of water based perfume sachets in Sample P-norm	nal
	material	69
Table 5.28	Weight readings of water based perfume sachets in Sample P-spec	ial
	material	70

66

LIST OF CHARTS

Chart 5.1	Hot-tack results of Sample T-normal material	45
Chart 5.2	Hot-tack results of Sample T-special material	46
Chart 5.3	Hot-tack results of Sample O-normal material	48
Chart 5.4	Hot-tack results of Sample O-special material	49
Chart 5.5	Hot-tack results of Sample P-normal material	51
Chart 5.6	Hot-tack results of Sample P-special material	52

LIST OF ABBREVIATIONS

LLDPE	Linear Low Density Polyethylene
PE	Polyethylene
POP	Polyolefin Plastomer
FFS	Form-Fill-Seal
CT PET	Chemically Treated Polyethylene terepthalate
ALU	Aluminium foil
BOPP	Bi-axially Oriented Polypropylene
LDPE	Low Density Polyethylene
EVA	Ethylene Vinyl Acetate
HDPE	High Density Polyethylene
PVC	Polyvinyl Chloride
PVDC	Polyvinylidene Chloride
BUR	Blow up ratio
MD	Machine Direction
TD	Transverse Direction
HFFS	Horizontal-Form-Fill-Seal
VFFS	Vertical-Form-Fill-Seal
PLA	Polylactic Acid
OPP	Oriented Polypropylene
COF	Coefficient of Friction

FDA	Food and Drug Administration
GSM	Grams per square meter
BAI	Backscattered amplitude integral
PPA	Polymer Processing Agent
DSC	Differential Scanning Calorimeter
RPM	Rounds per meter
ASTM	American Standard Test Method
TDS	Technical Data Sheet

LIST OF APPENDICES

Appendix – A	TDS of Chemically Treated PET	76
Appendix – B	TDS of Nylon	77
Appendix – C	TDS of Equate 7087	78
Appendix – D	TDS of Lotrene 274	79
Appendix – E	TDS of Lotrene 5026	80
Appendix – F	TDS of Affinity 1881G	82
Appendix – G	TDS of Elite 5401	83
Appendix – H	TDS of dry lamination adhesive	84
Appendix – I	TDS of solvent	86
Appendix – J	Material blends tried out to produce LLDPE	88
Appendix – K	DSC curves of sealant material LLDPE	89