DEVELOPMENT OF A RATING SYSTEM TO RANK HAZARDOUS LOCATIONS ON NATIONAL HIGHWAYS

Tharmini Kulasegarampillai

128302K

Thesis submitted in partial fulfilment of the requirements for the Master of Engineering in Highway and Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2016

Declaration of the Candidate and Supervisor

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:

Date:

ACKNOWLEDGEMENT

Initially I have great pleasure in thanking the University of Moratuwa for giving me an opportunity to follow Master Degree in Highway & Traffic Engineering. I am grateful to all the lecturers guided me in developing myself for Master degree; especially, Prof.W.K. Mampearachchi, Supervisor of my Research, who was of continuous guidance with worthwhile instructions throughout my research in making it a success.

I wish to extend my gratitude to Prof.J.M.S.J. Bandara for valuable instructions; given to me throughout my M.Eng course and research period.

Furthermore, I would like to thank Mr. H.M.K.G.G. Bandara Former Director – Planning, RDA, Mr. R.A. Sudath Deputy Director – Planning III, RDA for their fullest support in helping me follow lectures throughout my course in the post graduate programme and research without any inconvenience. In addition I must thank Mr. Kasun Muthukumarana who is working as a Transport System Analyst; for Planning Division, RDA. He guided me to obtain road geometry data from Multi Function Network Survey vehicle [MFNSV] amidst his busy schedule. He too was an encouragement in my successful completion of my research. Moreover, I am grateful to the higher management of my organization Road Development Authority for providing this valuable opportunity with financial aid to complete M.Eng. in Highway & Traffic Engineering.

I also thank the Department of Police, for providing accident data in time without any inconvenience.

Tharmini Kulasegarampillai 128302K University of Moratuwa

ABSTRACT

In highway safety plan, identification of hazardous locations on highways is one of the most important factors. In this study, the geometry of road is considered to identify the hazardous locations with the concern of design standards used in Sri Lanka.

Availability of accident data is a significant requirement in identifying hazardous location of roads. However, for roads with poor accident data sets or no accident records, a method is needed to find and rank road segments with respect to road geometry, independent of the accident records. In this study, Geometric Design Standards of Roads published by Road Development Authority on 1998 was considered as the design standards of National Highway in Sri Lanka. According to the design standards; hazardous locations or road stretches were initially identified. Then major parameters of road geometry such as horizontal alignment, vertical profile and road side activities and combination of these were considered as main influence elements. Thereafter essential factors of the each element were identified. After that the relative contribution of the elements to the safety of critical location or road sections was determined by using the Analytical Hierarchy Process (AHP) with a system of scores which were suggested by an expert panel subject to a consistency test of the expert responses. AHP determines the weight of the elements on which the horizontal radius was identified as the most critical parameter of the geometry element, which creates accident prone hazardous location followed by long straight section or series of curves with small straight section with added effect of site condition.

TABLE OF	CONTENTS
-----------------	----------

Declaration of	of the Candidate and Supervisor	i
Acknowledg	ement	ii
Abstract		iii
Table of Cor	ntents	iv
List of Figur	es	vi
List of Table	28	vii
List of Abbro	eviations	viii
List of Appe	ndix	ix
1 Introduc	tion	1
1.1 Ger	neral	1
1.2 Pro	blems and Research Objective	2
1.2.1	Problems Identified	2
1.2.2	Objective of the Study	2
1.2.3	Scope	
2 Literatur	re Review	4
2.1 Res	search Gap	5
2.2 Des	sign Guidance	5
2.2.1	Design Speed	5
2.2.2	Crossfall	6
2.2.3	Super-Elevation	7
2.2.4	Minimum Curve Radius	7
2.2.5	Maximum Super-Elevation	
2.2.6	Maximum Side Friction Factor	
2.2.7	Gradient	

	2.2.	8	General Maximum Gradient1	0
	2.2.	9	Minimum Gradient1	1
2	2.3	Metł	hod of Analysis1	1
3	Met	thodo	logy1	4
3	8.1	Over	rview1	5
3	8.2	Data	Collection 1	6
	3.2.	1	Accident Data1	6
	3.2.	2	Geometry Data1	6
4	Data	a Ana	lysis and Discussion1	9
4	.1	Stan	dards Adopted1	9
	4.1.	1	Design Speed1	9
	4.1.	2	Crossfall1	9
	4.1.	3	Minimum Radius and Super-Elevation1	9
	4.1.	4	General Maximum Gradient2	0
	4.1.	5	Minimum Gradient2	0
4	1.2	Grap	phical Illustration2	0
	4.2.	1	Calculation2	6
5	Con	nclusi	on and Recommendation	5
Ref	ferenc	ce Lis	st	7
Ap	pendi	ices		9

LIST OF FIGURES

Figure 3.1	: Flow Chart	15
Figure 3.2	: Multi Function Network Survey vehicle	17
Figure 4.1	: Comparison along the road section of 41+400 to 42+100 km	21
Figure 4.2	: Accidents along road section of 41+400 to 42+100 km	22
Figure 4.3	: Site Condition at Chainage 41+600 km	23
Figure 4.4	: Site Condition at Chainage 41+800 km	23
Figure 4.5	: Comparison along the road section of $47+700 - 48+200$ km	24
Figure 4.6	: Accidents along road section of 47+700 - 48+200 km	24
Figure 4.7	: Site Condition at Chainage 47+800 km	25
Figure 4.8	: Site Condition at Chainage 48+100 km	25
Figure 4.9	: Hierarchy Structure	26
Figure 4.10) : Global Priority	32

LIST OF TABLES

Table 2.1 : Relationship of the design speed	6
Table 2.2 : Recommended cross falls on straights for different surface types	7
Table 2.3 : Maximum Super-Elevation Values	8
Table 2.4 : Maximum Values of Coefficient of Side Friction	9
Table 2.5 : Minimum Radii for Different Super-Elevation	10
Table 2.6 : Maximum Gradient Based on Type of Terrain and Road Class	11
Table 2.7 : Preference Index - Relative Importance of criteria	13
Table 2.8 : Random Index (RI) for different dimensions of RWM	13
Table 3.1 : Sample Sheet of Geometry Data Collected from MFNSV	18
Table 4.1: Minimum Radii for Different Super-Elevation for 60 km/h - 80 km/h	20
Table 4.2: Values of variables at 41+600 km and 41+800 km	22
Table 4.3: Values of variables at 47+700 and 48+200 km	24
Table 4.4 : The Relative Weight Matrix- Expert 1	27
Table 4.5: The Relative Weight Matrix - Expert 2	27
Table 4.6 : The Relative Weight Matrix - Expert 3	28
Table 4.7 : Relative Weight Matrix - Expert 4	28
Table 4.8: The Relative Weight Matrix - Expert 5	28
Table 4.9 : Weight of each element - Expert 1	29
Table 4.10 : Weight of each element - Expert 2	29
Table 4.11 : Weight of each element - Expert 3	30
Table 4.12 : Weight of each element - Expert 4	30
Table 4.13 : Weight of Each Element - Expert 5	31
Table 4.14 : Average Expert's Weights for Each Element	31
Table 4.15 : Average Expert's Weights for Each Factor	32
Table 4.16 : List of Hazardous Location from Nittambuwa to Nelundeniya	33

LIST OF ABBREVIATIONS

AHP	- Analytic Hierarchy Process
DEA	- Data Envelopment Analysis
PCU	- Passenger Car Unit
F	- Flat
R	- Rolling
М	- Mountainous
R_{min}	- Minimum Radius
e _{max}	- Maximum Super – elevation
f_{max}	- Maximum values of Coefficient of Side Friction
RDA	- Road Development Authority
λ max	- Maximum Eigenvalue
CR	- Consistence Ratio
RI	- Random consistency Index
CI	- Consistency Index
MFNSV	- Multi Function Network Survey Vehicle
accels	- Accelerometers
gyros	- Gyroscopes
ADT	- Average Daily Traffic
APSs	- Accident-Prone Sections
LHS	- Left Hand Side
RHS	- Right Hand Side

List of Appendix

Appendix A : Survey Sheet among Expertise Panel	39
Appendix B : Sample Accident Data on Colombo – Kandy Road	42
Appendix C : Video Clip of the Road Stretch and Accident Data on Road [A001]	51