ATTENTION MONITORING WITH ELECTROENCEPHALOGRAPHY AND ARTIFICIAL NEURAL NETWORK

Uduwila Arachchi Charitha Senarathne

Degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

December 2015

ATTENTION MONITORING WITH ELECTROENCEPHALOGRAPHY AND ARTIFICIAL NEURAL NETWORK

Uduwila Arachchi Charitha Senarathne

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

December 2015

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

Name of Student Charitha Senarathne Signature of Student Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by Prof. Asoka S. Karunananda Signature of Supervisor Date:

Abstract

It's a well-known fact that people lose attention without notice in many instances. Learning is one of them. If we remain attentive in whole leaning process, it will certainly improve our learning efficacy. If there is any possibility to identify whether we remain attentive during learning process and remind us when we lose the attention, then we can certainly improve our learning effect. In this research, monitoring EEG signals with ANN technology is used to identify whether student remain attentive during learning process.

In normal classroom environment, observation is the main way to identify whether student is attentive to the lecture. However, this needs huge effort from teacher to monitor the students. Distance learning is popular among current society, in that case it is rather difficult to use standard methods like observation to monitor the attention. Neurons in our brain are always active and emit electric pulses all the time, hence we can use those to measure the level of University of Moratuwa, Sri Lanka, attention in above semarios lectronic Theses & Dissertations www.lib.mrt.ac.lk

A research has been conducted to monitor attention in a particular task by a person and to signal the person immediately so that he/she can get the mind back to the task. The solution will collect the EEG data from subjects and transformed them in to frequency domain using Fast Fourier Analysis (FFT). These data are used to train an Artificial Neural Network (ANN) regarding known EEG wave patterns of attention and monitor the current EEG wave forms in a prescribed time interval. Upon receiving the current wave pattern, it will be fed in to the trained neural network and detect whether the person has lost the attention. Then it will generate a vibration alert to the mobile phone if the attention has been lost.

The solution has been tested with in a classroom scenario with 20 students and results shows that 75% of students were able to get back to the class in few seconds.

Contents

	Page
Chapter 1 Introduction	1
1.1 Prolegomena	1
1.2 Aim and Objectives	1
1.3 Background and Motivation	2
1.4 Problem in Brief	3
1.5 Novel Approach to monitoring the attention	3
1.6 Structure of the thesis	3
1.7 Summary	4
Chapter 2 Emergence of Brain Machine Interfacing	5
2.1 Introduction University of Moratuwa, Sri Lanka.	5
2.2 Related Research Electronic Theses & Dissertations	5
2.2 EEG Appliances www.lib.mrt.ac.lk	6
2.3 Summary	8
Chapter 3 Electroencephalography (EEG) and Artificial Neural Network (ANN)	9
3.1 Introduction	9
3.2 Electroencephalography(EEG)	9
3.3 Artificial Neural Network (ANN)	13
3.4 Fourier Transformation (FFT)	16
3.5 Mobile Applications	17
3.6 Summary	17
Chapter 4 ANN Approach to Recognize the Degree of Human Attention	18
4.1 Introduction	18

4.2 Hypothesis	18
4.3 Inputs to System	18
4.4 Output from the System	18
4.5 Process	18
4.6 Features	19
4.7 Summary	19
Chapter 5 Design of FocusGain Application	20
5.1 Introduction	20
5.2 Data Acquisition with NeuroSky Mindwave Headset	21
5.3 Artifact Removal	22
5.4 Feature Extraction and Selection	22
5.5 Classification with Attractal Neufal Networkwa, Sri Lanka.	23
5.6 Mobile Application Development with Android WWW.110.mrt.ac.1k	24
5.7 Summary	25
Chapter 6 Implementation of FocusGain Application	26
6.1 Introduction	26
6.2 Data Acquisition	26
6.3 Data Pre Processing	27
6.4 Feature Extraction and Selection	28
6.5 Designing and Training Artificial Neural Network	29
6.6 Android Application Development	31
6.7 Summary	31
Chapter 7 Evaluation	32
7.1 Introduction	32

7.2 Experimental Design	32
7.3 Experimental Results	33
7.4 Conclusions from the Experiment	34
7.5 Summary	34
Chapter 8 Conclusion	35
8.1 Introduction	35
8.2 Conclusions	35
8.3 Limitations and Further Work	36
8.4 Summary	37
References	38
Appendix A Data Acquisition using NeuroSkyrHeadset, Sri Lanka.	40
Appendix B FocusCain Application mrt.ac.lk	46
Appendix C Code - FocusGain Application	49

List of Figures

	Page
Figure 2.1: Emotive EPOC Headset	6
Figure 2.2: NeuroSky Mindwave Mobile Headset	7
Figure 2.3: Comparison of EEG Appliances (Source: Reference)	7
Figure 3.1: Brain functionality Map	10
Figure 3.2: Placement for a 64-electrode system using the International 10-20 standard	10
Figure 3.3: EEG wave (Voltage value against time)	11
Figure 4.1: Structure of a Simple Neuron	13
Figure 4.2: Artificial Neural Network with 3 layers	15
Figure 5.1: Top level architecture of Focus Gain application	20
Figure 5.2: Design of the Focus Gain application	21
Figure 5.3: EEG Frequency Ranges	23
Figure 5.4: Design of the Artificial Neural Network	24
Figure 6.1: EEG Data Collector Application	27
Figure 6.2: EEG Sample Data filelib.mrt.ac.lk	27
Figure 6.3: Application to train the ANN	30

List of Tables

Table 7.1: Results from the Experiment

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Page

34