

SOFTWARE FRAMEWORK FOR MULTI AGENT

SYSTEM DEVELOPMENT IN EMBEDDED SYSTEMS

Gusthigngna Wadu Sasitha Suvipul Keshan De Silva

(149152B)

Degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

February 2017

II

SOFTWARE FRAMEWORK FOR MULTI AGENT

SYSTEM DEVELOPMENT IN EMBEDDED SYSTEMS

Gusthigngna Wadu Sasitha Suvipul Keshan De Silva

(149152B)

Thesis submitted in partial fulfilment of the requirements for the

degree of Masters of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

February 2017

III

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material

previously submitted for a Degree or a Diploma in any University and to the best of my

knowledge and belief, it does not contain any material previously published or written by another

person or myself except where due reference is made in the text. I also hereby give consent for

my dissertation, if accepted, to be made available for photocopying and for interlibrary loans,

and for the title and summary to be made available to outside organization.

Name of the Student

G.W.S.S. Keshan De Silva Signature of Student

 Date:

Supervised by

Professor Asoka S Karunananda Signature of Supervisor(s)

 Date:

IV

Acknowledgements

I would like to express my gratitude to my supervisor Professor Asoka S Karunananda for the

useful comments, remarks and support given through the learning process of this thesis. Also, I

like to thank the panel of lectures who guided me throughout the master’s program. Furthermore

I would like to thank family and friends, who have supported me throughout the program to

archive the goals.

Finally I would like to thank Federico Musto - CEO of Arduino, for his valuable advices on

make the final product delivery to the global access and Benny Estes - Product Manager at

myDevices, for his valuable guidance and inspiration.

V

Abstract

Multi agent systems and embedded systems both are consider as major fields in the recent

research history. Both have shown the potential of developing intelligence solutions to the

modern world needs. Several standards including FIPA and ACL followed by the developers and

researchers when model the multi agent systems. JADE like frameworks play a major role in the

field where user can design and develop multi agent system using prebuild components in the

framework. Even though there are number of multi agent solutions which are run on top of the

embedded systems there is no common framework to facilitate the multi agent system

developments in the embedded environments. Intention is to introduce a common framework

which is designed and developed to facilitate major multi agent behaviors to the researches in

this field to make their work easy.

In order to archive this goal completely new software framework was design, developed and

evaluated for the major embedded hardware platforms available in the market. This frame work

can provide communication platform for the different type of communication channels and multi

agent behaviors to the host software system in embedded platforms. Since framework is fully

compatible with the FIPA standard and communication using standard communication language

ACL users can easily use the framework. Solution was design in such a way that users can

implement their own modules and plug in easily. In additional to that this modular design allows

users to port the framework to new hardware platforms with minimal changes.

Evaluation of the framework was conducted by using several approaches. Completely new

embedded solution was design and developed for the field of home garden watering in order to

evaluate the features of the framework. Where different agent with different communication

capabilities; demonstrate the usefulness of the framework. In addition to that several memory

matrixes and performance matrixes were generated in order to evaluate the performance of the

framework. Memory analysis shows that framework will consume 26.7% of the flash memory on

average and can operate on minimum of 1KB static random access memory.

VI

Contents

Chapter 1 Introduction... 1

1.1 Prolegomena ... 1

1.2 Background and Motivation ... 2

1.3 Problem in Brief ... 2

1.4 Aims and Objectives .. 3

1.5 Proposed Solution .. 3

1.6 Outline of the Thesis .. 4

1.7 Summary .. 5

Chapter 2 MAS in Embedded Systems ... 6

2.1 Introduction .. 6

2.2 Starting of a new era with the JADE .. 6

2.3 MAS in Embedded Systems ... 8

2.4 Discussion .. 10

2.5 Summary .. 11

Chapter 3 Theoretical foundation ... 12

3.1 Introduction .. 12

3.2 Embedded Systems / Platforms .. 12

3.3 Multi Agent Systems .. 18

3.3.1 Agent Communication .. 19

3.3.2 Agent Coordination .. 24

3.3.3 Agent Negotiation... 25

3.4 Summary .. 25

Chapter 4 Approach ... 26

4.1 Introduction .. 26

4.2 Hypothesis .. 26

4.3 Input and Output... 26

4.4 Process .. 27

4.5 Potential Users of the System... 27

4.6 Features .. 28

VII

4.7 Summary .. 28

Chapter 5 Design ... 29

5.1 Introduction .. 29

5.2 Top Level Design ... 29

5.2.1 Master-Slave Configuration ... 29

5.2.2 Peer-to-Peer Configuration ... 30

5.3 Framework Components .. 31

5.3.1 Platform Core ... 31

5.3.2 Framework Core ... 31

5.3.3 Agent Container .. 31

5.3.4 Message Dispatcher .. 32

5.3.5 Communication Mapper ... 32

5.3.6 Behavioral Engine .. 33

5.4 Summary .. 34

Chapter 6 Implementation ... 35

6.1 Introduction .. 35

6.2 Component Implementation ... 35

6.3 Platform Core ... 35

6.4 Framework Core ... 36

6.5 Agent Container ... 36

6.6 Message Dispatcher.. 38

6.7 Communication Mapper ... 39

6.8 Behavioral Engine .. 40

6.9 Summary .. 41

Chapter 7 Evaluation .. 42

7.1 Introduction .. 42

7.2 Multi-Agent based Home Garden Monitoring System .. 42

7.2.1 Hardware module design .. 43

7.2.2 Define process and behaviors ... 45

7.2.3 Evaluation results discussion and conclusion ... 46

7.3 Performance Matrices .. 47

VIII

7.4 Memory Analysis ... 49

7.5 Summary .. 50

Chapter 8 Conclusion and Further work ... 51

8.1 Introduction .. 51

8.2 Conclusion .. 51

8.3 Limitations and Further Works .. 52

8.4 Summary .. 52

References .. 53

Appendices ... 55

Appendices A : Arduino Hardware Platform ... 55

A.1 Introduction .. 55

A.2 Hardware Specifications .. 55

Appendices B : Hardware Modules .. 58

B.1 Introduction .. 58

B.2 RF Module.. 58

B.3 RTC Module ... 59

B.4 Wi-Fi Module ... 59

B.5 Bluetooth Module ... 60

B.6 DHT Module .. 60

B.7 OLED Display Module .. 61

B.8 Ethernet Shield ... 61

Appendices C : Multi-Agent based Home Garden Monitoring System................................. 62

C.1 Introduction .. 62

C.2 Hardware Module Specifications ... 62

C.3 Module Connection Details .. 63

Appendices D : Sample Codes .. 64

D.1 Introduction .. 64

D.2 Agent Initialization ... 64

D.3 ACL Message ... 64

D.4 CFP Process Implementation ... 65

IX

List of Figures

Figure 2.1 : Embedded Agent Communication with JADE ... 10

Figure 3.1 : Microcontroller Packages .. 13

Figure 3.2 : PWM - Duty Cycle .. 15

Figure 3.3 : MAX232 interfacing with microcontroller ... 16

Figure 3.4 : Radio Frequency Receiver and Transmitter modules ... 17

Figure 5.1 : Framework Components ... 30

Figure 6.1 : Indirect Agent Configuration .. 37

Figure 7.1 : Component Diagram of Home Garden Monitor System... 43

Figure 7.2 : Plant Agent Configuration... 44

Figure 7.3 : Plant Agent .. 44

Figure 7.4 : Water Tank Agent Configuration .. 44

Figure 7.5 : Water Tank Agent ... 44

Figure 7.6 : Resource Agent Configuration .. 45

file:///D:/MSc%20AI/Semester%20V/IT%206901%20Research%20Methodologies/Dissertation-MSc%20in%20AI/2016-10-31/DE%20SILAVA%20GWSSK%20-%20Dissertation-MSc%20in%20AI.docx%23_Toc465747632

X

List of Tables

Table 3.1 : ACL Performatives ... 20

Table 3.2 : ACL Parameter List .. 22

Table 7.1 : Task Description Table ... 47

Table 7.2 : Framework Memory Consumption ... 50

Table A.1 : Arduino Hardware Specifications .. 55

Table B.1 : RF Module Specifications .. 58

Table B.2 : Wi-Fi Module Connection Details ... 59

Table B.3 : DHT Module Specifications .. 60

Table B.4 : OLED Module Features ... 61

Table B.5 : Arduino Ethernet Shield... 61

1

Chapter 01

Introduction

1.1 Prolegomena

Multi agent systems (also known as MAS) is one of the major and historical filed in the artificial

intelligence. Where all the individual units are considered as agents and final goal will be

archived by the effective communications among those agents. Since the agent based solutions

are not algorithmic; there are very close to the human behaviors in some situations. Because of

these features researchers has put some extra effort in this filed, in order to provide more

intelligent solutions to the world. Since most of the system behaviors can map to the agent based

solutions industry also intent to provide their solutions based on the multi agent technology. As a

result of that there are number of major researches has be conducted in different application

domains.

These researches are tried to provide intelligent solutions to software systems which mimic the

real world problems/scenarios. JADE[1] like software frameworks has been developed to

facilitate the development of agent based software products. Since these frame works provide

most of the agent behaviors out of the box; developers can concentrate on the business logic

without worrying about the agent behavior implementation. In addition to that JADE is fully

compatible with the FIPA[2] standards. As a result of that there are number of multi agent based

systems (in both academics and industry) were developed using the JADE framework.

Embedded systems which describe the both hardware and software solutions are embedded in to

a single product, so that it can be used effectively. Modern world software solutions are more

likely to be implemented in the mobile platforms; solution developers are practice to think about

both software and hardware solutions. As a result of that most of the software solutions which

are designed now-a-days run on dedicated hardware platforms, in contrast to the personal

computers. There are some hardware platforms like Arduino[3] which makes the development to

2

the embedded systems easy. So that researchers as well as academics try to provide their

software solutions to the limited resources hardware platforms which make those solutions more

portable and connective.

1.2 Background and Motivation

Embedded solution development is one of the fields which emerge during the last five-six years.

Rapid increase in the hardware platforms and the availability of large number of programming

languages and interfaces to use with the hardware platforms enables researchers and developers

to developed more embedded solutions than ever before.

Developing multi agent systems in embedded platforms become one of the major interest areas

for the researchers and the hobbies alike. There are number of researches has been conducted in

this area recently; including Power Controlling [4][5], IoT[6], Smart Houses[7] and many more.

These vary from controlling a tiny autonomous robot, home security/control system to the

complete industrial autonomous systems. Where well establish concept like multi agent systems;

combined with the newly introduce and more powerful hardware platforms.

With this rapid development in hardware platforms (and IoT platforms) and the increase in

interest of developing multi agent based systems; leads to need of a common software

framework for multi-agent system development in embedded systems.

1.3 Problem in Brief

Even though there are number of researches has been done in this filed; there is no common

software framework available to develop multi agent solutions in the embedded platforms. As a

result of that; most of the researchers are try to build their system/solution from the scratch. This

is a time consuming and repetitive task. In addition to that this approach will not cover or

provide all the features that multi agent framework should cater. Since particular developer is

only interest about his own research goals; he will only develop the features that need to archive

his research goals.

3

1.4 Aims and Objectives

Main goal or the aim of this research will be developing a complete multi-agent software

framework which facilitates the end to end development of the multi agent systems in the

embedded environment. Major objectives of the research can be summarizing as follows;

- Identify the popular hardware platforms and develop a complete software framework for

those identified platforms to make the multi agent based development easy.

- Provide support for the major multi agent behaviors, protocols and communication

standards.

- Make the software framework available to the general public with the complete

documentation, under the license of free and open source.

1.5 Proposed Solution

In order to archive the objectives define in the previous section a completely new software

framework was proposed as a solution. This contains number of software modules to facilitate

different type of multi-agent features and functionalities. Each software module will be

responsible for specific task within the multi-agent system. For an example communication

between all the agents will be handling by a one framework module while the

coordination/negotiation related task will be handling by a separate framework module. This

modularized solution allows framework to work more effectively in different type of hardware

platforms as well as easy to evolve with the time.

In order to work with different type of hardware platforms with different type of memory levels,

low memory consumption framework is proposed. So that memory footprint of the proposed

solution will be minimal. As a result of that proposed solution - framework will able to perform

in hardware platforms with minimal flash memory and/or SRAM is available and keep more

memory available to the end users to perform their custom tasks.

4

In addition to that solution is design in a way that each module of the framework can be

customized. As a result of that framework user can modify the software modules in the

framework according to their target hardware platform.

Since the software framework will be available to the developers and researchers as a product of

free and open source then can further modify, customize or improve the software modules based

on the hardware platform they are working on.

1.6 Outline of the Thesis

Following sections of the document will discuss this solution with more comprehensive manner.

Other sections of the document are organized as follows.

Chapter 02 (MAS in embedded systems): Discuss about the related works which has been done

by the other people in are of interest. This includes both multi agent development and the

embedded system development.

Chapter 03 (Theoretical foundation): Provide an in-depth of theoretical information about both

multi agent systems and the embedded system platforms. Different communication methods and

hardware modules which facilitate those will also discuss under the theoretical foundation.

Chapter 04 (Approach): This chapter defines the hypothesis of the research and discusses how

the technology is used to solve the problem with references to the users, input, output and

process.

Chapter 05 (Design) Chapter 06 (Implementation): These two chapters will discuss the analysis,

design of the software framework and implementation of the framework in detail manner. Design

section includes all design diagrams with the functional description of the each software module.

Implementation chapter present the implementation of the software framework module by

module with the help of algorithms, flowcharts and other code segments as needed.

Chapter 07 (Evaluation): This chapter provides how the evaluation was done for the software

framework in order to verify that it meets the objectives. This includes the designing the

evaluation method, generating evaluation matrices and other statistical analysis conducted in

order to verify the outcome of the research.

5

Chapter 08 (Conclusion and Future Work): Through-out this chapter; predefine objectives and

the results from the evaluation will be compare and contrast make the concussion about the

outcomes of the research. In addition to that this chapter mentions several addition things that

can be considered as a future works.

1.7 Summary

This chapter provides an overall view of the entire research by mean of Background and

Motivation of the research, problem which is going to be address during the research, proposed

solution for the identified problem and the main objectives of the research. In addition to that

structure of the thesis also discuss in this chapter.

6

Chapter 02

MAS in Embedded Systems

2.1 Introduction

There are number of researches has been conducted in the field of MAS in Embedded Systems.

This chapter provides a comprehensive analysis of those researches. According to the literature

survey, most of these studies try to provide smart solutions to the real world problems by

implementing multi agent systems in the various hardware platforms available at the time of

study.

2.2 Starting of a new era with the JADE

Until the Fabio Bellifemine at all[1] publish their finding in 1999, there was no common

software platform to develop multi agent systems in computer systems. In this era several

researches were working towards to standardize the multi agent system development. Even

though there are existing solutions / build tools to develop MAS such as MOLE[8] there were

some drawbacks in these systems.

According to the authors MOLE is the first mobile agent system which is developed in Java.

This provides stable environments for the development and usage of mobile agents in the area of

distributed applications. At the time MOLE initially released (in 1995) it has state of the art

communication concepts and well organized secure architecture for the mobile agent system

development. It has some great features compare to the contesters of that time, such as reduction

of communication cost achieved by bringing two entities that (heavily) interact with each other

to the same location and providing support for the asynchronous communication mechanisms by

using asynchronous message queues, asynchronous processing of requests and event based

programming.

7

The goal of Fabio and the group is to simplify development while ensuring standard compliance

through a comprehensive set of system services and agents. Ultimately they manage to develop

the JADE; which can be considered as a multi agent development framework. According to the

authors JADE can be considered an agent middle-ware that implements an agent platform and a

development environment. This was capable to deals with all those aspects that are not peculiar

of the agent internals and that are independent of the applications, such as message transport,

encoding and parsing, or agent life-cycle.

This development was considered as one of the major development in the implementation of

multi agent systems in the computer systems. Most of the researches related to the multi agent

systems conducted in each year, uses the JADE framework to boost up their prototyping as well

as implementation process. JADE consists of software modules which hide the complexity of

different communication channels between agents and the containers, as well as different types

of agent behaviors which ranges from simple cyclic behaviors to more complex compound

behaviors. In addition to that JADE fully compatible with the FIPA[2] standard which is one of

the major standard still use to make the agent communication.

From that’s onwards most of the Multi agent related developments were done using the JADE

frame work. As a result of that all the multi agent based system developments were came in to a

common standard and researchers able to concentrate more on their own field of interest rather

can waste time on developing the MAS frameworks from scratch.

Qingquan Sun at all[7] propose a completely new smart house and house automation system

which is based on multi agent technology. According to the authors implementation of their

proposed solution was based on the JADE framework. During the process, belief, desire and

intention (BDI) agent behavior model and a regulation policy-based multi-agent collaboration

mechanism were implemented using the features/capabilities provided by the framework. In

addition to that a set of metrics for multi-agent systems performance evaluation was generated

using the JADE framework.

8

2.3 MAS in Embedded Systems

In recent history there is a special interest in research world to implement the MAS in embedded

systems. Following section highlight some of the researches done in the field of MAS in

embedded systems.

A.Carrasco at all[4] have done a research to improve the quality of Supervisory Control and Data

Acquisition (SCADA) systems for automated surveillance. This system contains surveillance

camera(s), multimedia stations, multimedia SCADA devices, SCADA bridge and supervision

station. They model the surveillance system as a multi agent system and implement the solution

in an embedded environment. When modelling the system both real work functionality of

surveillance and features of the existing systems was taken in to the consideration by authors.

SquidBee[9] was used as the hardware platform which is developed by Libelium. Apart from

coding in SquidBee is free and open source, they use this platform based on several features such

as compatibility with the Arduino, in-built Xbee wireless communication module to enable

communication through WiFi and availability of enough digital and analog pins. Based on this

hardware platform, multi agent system was success fully implemented by the group.

Since there is no common way to implement the MAS solution; they used a separate node which

is implemented using a SBC (Single Board Computer) and it will act as a heart of the all

communications done by the agents. This SBC module consist with 233 MHz AMD Geode CPU

with 64 MB of SDRAM. In addition to that there are number of general purpose IO (GPIO) pins

with support for the I2C bus interface which makes it easier to implement the supervisor agent in

that platform. In order to communicate between agents they use WiFi as a communication

channel. According to the authors both SquidBee and type of SBC they used support for the

WiFi communication and having in-built WiFi communication module which makes the

implementation process easier.

Pilot test for this solution was done in collaboration with the Technology of Materials research

group of the University of Cadiz (Spain) with different hardware platforms with limited

resources. This evaluation process demonstrates that their solution was capable to perform the

multi-agent task in different platforms with different resource levels.

9

 ‘Micro-grids’ which is known as eco-friendly power system; uses renewable power sources such

as solar and wind power. Hak-Man Kim at all[5] have conducted a research to autonomous the

control of micro-grids based using multi agent based solution. According to the authors, for

efficient and economical micro-grid operation, a human operator is required as in other power

systems. But it is difficult because there are some restrictions related to operation costs and

privacy issues. In order to overcome this issues and restrictions, autonomous operation for

micro-grids is proposed.

In this proposed solution four types of agents (including managing agents) will communicated

with each other’s and control the grid in the optimum way so that grid will operate in the

optimum manner. To build the multi-agent system, the functionality of agents, interactions

among agents, and an effective agent protocol have been designed. This protocol was designed

base on the Contract Net Protocol (CNP)[5] which is a high-level protocol for communication

and control in a distributed systems.

Even though each agent can be implemented in the embedded system; they use the Agent-based

Architecture of Distributed Information Processing Systems (ADIPS)[10] framework to

implement the system in distributed PC environment. Finally the intelligent multi-agent system

for micro-grid operation based on the proposed scheme was tested to show the functionality and

feasibility on a distributed environment.

Internet of Things which is an emerging trend in the research world, which connect embedded

systems via the internet. Where each IoT enabled device has its own processing power and

storage space (which will be comparable low) and communication module to establish the

connection to the Internet. Since each connected device is willing to communicate with other

connected devices, share data/command/information among other connected devices and plane-

execute some goals collectively; IoT can be considered as an extension of the classical multi-

agent systems in embedded platforms. Since there is no central device or unit to control the

individual devices, connected devices in the IoT will more or less work as agents in the multi-

agent system. Inherent nature of the IoT make it’s a proper playground for Multi agent systems.

So that there are number of researches [6] has been done in the field of IoT which are based on

the multi agent technology.

10

Madakam at all[6] done a comprehensive review on number of research proposed solutions

which uses IoT enabled solutions to build systems that provide replacement or extensions to the

real-world systems. Domains of this research vary from the simple home automation to

managing power grids which are distributed all around the word. But in common all of the

solutions were implemented as multi-agent systems so that each device will act as an agent and

execute and evaluate the actions by communicating with necessary agents.

2.4 Discussion

Even though there are number of research done in the field of multi agent systems in embedded

systems; there were no common framework for develop the MAS in ES. Some researches

implement software solutions only the features that they are interest according to the field of

study; were it is impossible to reuse by the others. Most of the researchers implement their

solutions using the JADE framework based on the PC hardware platforms and use the calculated

results in the embedded platforms.

Figure 2.1 : Embedded Agent Communication with JADE

11

According to the current state of the field, it is clear that the need of a complete software

framework for the multi agent development in the embedded systems is high priority and having

such a framework will energize the development in the field of multi-agent systems in embedded

environments.

2.5 Summary

This chapter analyses the others work done in the field of multi agent systems in the embedded

systems. Also highlight the JADE; which is the one major framework in the MAS development

in PC platforms. Next chapter is focus on the technological details related to both multi agent

systems and the embedded systems.

12

Chapter 03

Theoretical foundation

3.1 Introduction

This chapter consists of detail explanation about the theoretical foundation about the

technologies which are used for the proposed solution. Which basically categorize in to two

sections Embedded Systems and Multi agent Systems.

Embedded System section explains the different type of platforms available to implement the

systems and different type of communication methods / modules available. Next section

discusses the major theoretical information about multi agent systems and its behaviors.

3.2 Embedded Systems / Platforms

There are number of embedded systems - hardware platforms are available with various features.

Those systems have their own hardware implementation (hardware platform) and software

interface. Based on the requirement and the solution; embedded system designers will select the

most appropriate platform for their products/prototypes or evaluation models. This section will

discuss about some major platforms and there capabilities.

Even though most of the embedded system development platforms are providing almost same

functionalities there are some differences between those platforms, when we consider about their

capabilities. Those differences can be results from the hardware capabilities as well as software

capabilities of those platforms. Number of inputs/outputs that platform can handle, types of

inputs/output it can handle, programed memory, user memory, clock speed, interrupts, etc… are

some of the features which differentiate one hardware platform form another. Before analyze the

platform feature it is required to discuss the major terminologies and technologies which are bind

with the embedded system development domain.

13

3.3.1 Microcontroller

Microcontroller[11] can be considered as a SoC (System on Chip) containing a processor core,

memory and programmable input/output peripherals. Memory is in types of Flash, ROM and

even small amount of RAM. These are used for the embedded applications, in contrast to the

microprocessors which are used in personal computers. Some microcontrollers use 4-bit words

and operate at lower clock rate around 4kHz, for low power consumption. Power consumption

while sleeping may be lower as few Nano watts. On the other hand there are some

microcontrollers perform critical roles, where they may need to act like a signal processors, with

higher clock speeds and power consumptions. There are several dozen microcontrollers and

vendors available such as PIC by Microchip Technologies, ATmega by Atmel, TMS by Texas

Instruments, Parallax Propeller.

1

2

Figure 3.1 : Microcontroller Packages

3.3.2 Digital Input / Output

If a signal is either one (HIGH, 5v, 3.3v, etc.) or zero (LOW, 0v, -5v, etc.) then it is considered

as a digital signal. If a hardware platform can accept these types of input signals then it is

considered as digital input. In same manner if a system is capable of producing a HIGH or LOW

output then it is considered as a digital output. In hardware platforms there are separate PINs

which can only accepts digital input and separate set of pins which can output digital outputs. In

1
 PIC microcontroller : http://www.alpha-crucis.com/2049-2539-thickbox/picaxe-40x2-microcontroller-40-pin.jpg

2
 Atmega microcontroller : https://wolfpaulus.com/wp-content/uploads/2012/11/atmega8.jpeg

14

contrast some platforms have PINs which can operate as either digital input pin or as a digital

output pin based on the software configurations.

3.3.3 Analog Input / Output

In contrast to the digital input/output; analog input/output is capable to handle the signals were

signal value is between HIGH (5v, 3.3v, etc.) and LOW (0v, -5v, etc.) with predefine resolution.

Because of that analog input PINs can accept and voltage value between HIGH and LOW and

map the value in to 8bit or 16bit value. (Ex: analog input which can vary from 5v to 0v can be

map to an 8bit value 0 to 255) In same manner some platforms has analog output pins which can

produce analog voltage based on the software definition. This feature of the platform will be

inherited from the microcontroller capabilities it has or based on the other peripherals which

support the platform.

3.3.4 PWM Output

PWM (Plus-width modulation)[12] is a technique which is used to generate analog like output

from the digital output PINs. This technology is used; because some embedded platform does not

have analog output PINs but have number of digital output pins. So that those PINs can be used

generate analog outputs.

In this technique analog result is generated by digital means. A digital controller is used to

generate square wave (a signal which is on and off) and this on-off pattern can simulate the

voltages in between on and off by changing the portion of the time; signal spend in the ON status

versus the time signal spend in the OFF status. The duration of ON time is known as pulse width.

Different output level can be archived by changing the pulse width. If the pulse width time is

high then the output voltage value will be high and vice versa.

In following figure green line represent the time period which is inverse of the PWM frequency.

This frequency will be deferred from one hardware platform to another platform. Duty cycle

which represent the time portion that signal is ON within a given time period. Based on the value

which is used for the duty cycle output voltage of the PWM output will be varying.

15

Figure 3.2 : PWM - Duty Cycle

3.3.5 Interrupts

This is the one of main/powerful feature or a concept that microcontroller has. The interrupts can

be defined as a notification to the controller, by hardware or software[13]. Once this notification

is received, microcontroller will immediately stop its normal routing and responds to that

interrupt by executing an Interrupt Service Routing (ISR) or Interrupt Handler. After the

execution of ISR routing microcontroller return back to the instruction it has jumped from.

Interrupts are used in system design to eliminate the use of polling; which has higher power

consumption and block all other instructions. Since controller is only response when the interrupt

is occurred it is enabled the power saving for the controller and the device which uses the

controller.

3.3.6 Communication Methods

Microcontrollers and other peripheral devices which can connect to the microcontroller allow the

communication between microcontroller and other devices such as sensors, computers, or even

other microcontrollers. This communication can be either wired or wireless. Most of the

microcontrollers enabled that communication by providing separate PINs. (Rx and Tx PINs)

16

(a) Serial Communication

UART (Universal Asynchronous Receiver Transmitter) or simply serial communication is one of

the basic communication interface which available in the most of the embedded system

development platforms. This interface will provide a cost effective, simple and reliable

communication between controllers. RS-232 standard defines the voltage levels for the UART.

In this standard logic one is define as a negative (-3v to -25v) voltage while logic zero is a

positive voltage (+3v to +25v). Since this voltage levels are different from the standard

microcontroller operational voltage levels it is required to have a separate voltage level

converters such as MAX232. In some development platforms such as Arduino; this converters

are in-build. So that the can directly use by the developer without having separate components.

Figure 3.3 : MAX232 interfacing with microcontroller

3

3
 Image Source : http://www.8051projects.net/serial-communication/max232.png

17

(b) RF Communication

Radio Frequency (RF) is a rate of oscillation in range of 3 kHz to 300 GHz; which can be used to

establish a communication link between two end points. There are separate modules are available

which can connect to the microcontrollers and used as a communication devices. These modules

are known as RF modules. There are three types of modules are available

(i) Transmitter Module: This module can transmit the data as a radio frequency.

(modulating) The transmission frequency and the power will be determined by the

capabilities of this module.

(ii) Receiver Module: This module will receive radio signals and demodulate those

signals in to digital signal. Most of the receiver module can only be operate in

predefine frequency only. So that it will only receive the signals which are send by its

matching transmitting module.

(iii)Transceiver Module: This module is design to perform both transmitter module and

receiver functionalities.

Figure 3.4 : Radio Frequency Receiver and Transmitter modules

18

3.3 Multi Agent Systems

The term agent system can be express in different manner. One major way of defining agent is; a

computer system which is capable of taking independent actions on behalf of its user by

Wooldrige[21]. Russell and Norving [22] define; agent is anything that perceives its environment

through sensors and act upon the environment through actuators. One major consideration about

agent is; agent will interact with the environments. Because of that environment which agent get

interact with also take in to the consideration when design / developing the agents.

Environments can be categorized to following categories according to their characteristics. Fully

observable environment is an environment where sensors of the agent will detect all aspect of the

environment vs. partially observable environments. Environment is partially observable because

of the incorrect sensors or due to the noise in the environment. If the next state of the

environment is completely determine by the current state of the environment and the action

which is taken by the agent, then the environment is categorize as deterministic environment

otherwise stochastic.

There are environments where agent's experience is divided into independent atomic episode,

each consists of agent perceiving and performing a single action known as episodic

environments. In contrast sequential environments current decision could affect future decisions.

In addition to that environment can change while the agent deliberates, known as dynamic

environments. But in the same cases environments will not update the surrounding if agent

action is in-progress. Finally an environment can be either discrete or continues base on the

relationship between time and the states in the environment, and percept and action.

Multi agent systems are design and developed to mimic the real world systems. Most of the real

world systems are dynamic, complex and interconnected. A system is considered as complex if

the system contains number of components interact with each other’s; and each component has

its own preferences or objectives and global properties are emerged from the interaction between

those components.

In summary, multi agent system can be defined as a loosely coupled network of software agents

that interact to solve problems that are beyond the individual capacities or knowledge of each

19

problem solver. There are two major types of Multi agent systems based on how each agent

interacts with other agents.

1. Cooperative Multi-Agent Systems (CMAS) - Consist of set of agent where those agents

will work cooperatively to attain a common goal.

2. Self-Interested Multi-Agent Systems (SMAS) - In this environment agent are works in a

competitive manner to archive their individual goals.

There are three essential features that each and every multi agent system has; known as

communication, coordination and negotiation. Following section of this chapter will discuss

each feature in detail manner.

3.3.1 Agent Communication

Regardless of the environment or agent type (Whether they working in cooperative system or

competitive system) agent communication plays a major role. Since agents in a multi agent

system need to pass information, requests, confirmation, etc. to other agent they need a well

define communication model/standard. Agent Communication Language is used to archive this

goal.

3.3.1.1 Agent Communication Language - (ACL)

Agent Communication Language[15] or ACL is based on the famous theory in psychology know

as speech-act theory. This theory is an attempt to formalize the way humans uses the language to

archive the everyday tasks. For example make a request, giving orders, make a promise, etc.

ACL is also follows the same theory and establish some standards for the agent communications.

This can be use from some form of primitive communications to the elaborated standards.

Because of this standard it make easier to communicate between agents coming from various

environments and sources.

20

3.3.1.2 ACL Message Structure

A FIPA ACL message contains a set of one or more message parameters. The number of

parameters required to generate a ACL message is vary (and depend) on the situation. The only

parameter that is mandatory in the ACL message is the performative parameter; which is used to

define the communication type. There are set of predefine values for the performative; following

table summarizes the major types(in alphabetic order) of the performatives available in the

standard[16].

Performative Description

Accept Proposal The action of accepting a previously submitted (typically through a

propose act) proposal to perform an action. The agent sending the

acceptance informs the receiver that it intends that (at some point

in the future) the receiving agent will perform the action, once the

given precondition is, or becomes, true

Agree The action of agreeing to perform some action, possibly in the future.

The agent sending the agreement informs the receiver that it does intend

to perform the action, but not until the given precondition is true.

Cancel The action of one agent informing another agent that the first agent no

longer has the intention that the second agent performs some action.

Cancel is simply used to let an agent know that another agent no longer

has a particular intention.

Call for Proposal The action of calling for proposals to perform a given action. CFP is a

general-purpose action to initiate a negotiation process by making a call

for proposals to perform the given action. In normal usage, the agent

responding to a CFP should answer with a proposition giving the

value of the parameter in the original precondition expression

Confirm The sender informs the receiver that a given proposition is true, where

the receiver is known to be uncertain about the proposition.

Disconfirm The sender informs the receiver that a given proposition is false, where

the receiver is known to believe, or believe it likely that, the proposition

21

is true.

Failure The action of telling another agent that an action was attempted but the

attempt failed

Inform The sender informs the receiver that a given proposition is true.

Not Understood The sender of the not-understood communicative act received a

communicative act that it did not understand. There may be

several reasons for this: the agent may not have been designed to

process a certain act or class of acts, or it may have been

expecting a different message.

Propose Propose is a general-purpose act to make a proposal or respond to an

existing proposal during a negotiation process by proposing to perform a

given action subject to certain conditions being true.

Reject Proposal Reject-proposal is a general-purpose rejection to a previously

submitted proposal. The agent sending the rejection informs the

receiver that it has no intention that the recipient performs the given

action under the given preconditions.

Request The sender is requesting the receiver to perform some action. The

content of the message is a description of the action to be performed,

in some language the receiver understands. The action can be any

action the receiver is capable of performing.

Subscribe The subscribe act the agent receiving the subscribe will inform the

sender of the value of the reference and will continue to send

further informs if the object denoted by the description changes.

Table 3.1 : ACL Performatives

22

However it is expected that most ACL messages will also contains the sender, receiver and

content parameters. Apart from that there are set of optional parameters available in the ACL

message standards. Following list of parameters can be identifying in the ACL message structure

according to the abstract parameter message payload identified in the -FIPA00001[15].

Parameter Category Description

performative Type of

communicative acts

Denotes the type of the communicative act of the

ACL message

sender Participant in

communication

Denotes the identity of the sender of the message,

that is, the name of the agent of the communicative

act.

receiver Denotes the identity of the intended recipients of

the message.

reply-to This parameter indicates that subsequent messages

in this conversation thread are to be directed to the

agent named in the reply-to parameter, instead of

to the agent named in the sender parameter.

content Content of message Denotes the content of the message; equivalently

denotes the object of the action. The meaning of

the content of any ACL message is intended to be

interpreted by the receiver of the message. This is

particularly relevant for instance when referring to

referential expressions, whose interpretation might

be different for the sender and the receiver.

language Description of

Content

Denotes the language in which the content

parameter is expressed.

encoding Denotes the specific encoding of the content

language expression.

ontology Denotes the ontology(s) used to give a meaning to

the symbols in the content expression

23

protocol Control of

conversation

Denotes the interaction protocol that the sending

agent is employing with this ACL message.

conversation-id Introduces an expression (a conversation

identifier) which is used to identify the ongoing

sequence of communicative acts that together form

a conversation.

reply-with Introduces an expression that will be used by the

responding agent to identify this message.

in-reply-to Denotes an expression that references an earlier

action to which this message is a reply.

reply-by Denotes a time and/or date expression which

indicates the latest time by which the sending

agent would like to receive a reply.

Table 3.2 : ACL Parameter List

24

3.3.2 Agent Coordination

Agents in a multi agent system need to be coordinative (or collaborative) in order to prevent

chaos, satisfy global constraints, explore distinctive expertise and synchronize individual agent

behaviors. Agents will use both organizational coordination and contracting as techniques to

archive the coordination within the multi agent system.

3.3.2.1 Organizational coordination

In this approach agents are placed into certain organizational (hierarchical manner) structure

along with certain communication patterns (can be either master-slave or peer to peer

relationship). During the multi agent planning number of agents will attempt to construct a

global problem resolution plan while individual plans are to avoid scenarios that would conflict

with the plans of others. In this process agent need to follow the pre-defined organizational

hierarchy and communicate according to the define communication patter. As a result of that this

coordination does not scale well and may involve bottlenecks and central points of failure.

3.3.2.2 Contracting

In this approach agents will establish contract relationships with other agents using Contract-Net

Protocol (CNP). In this process a single agent can be act as a manager and contractor. This

process can explain as below.

An agent will advertise the job to other agents. (Job can be any operation task, information

request, etc.) Other agents will submit their bids. Bid value indicate that how well those agents

are suited for the given job. The manager (manager may be the agent who advertise the job) uses

certain criterion to select one agent out of the all bidders. The selected agent will be the

contractor after signing the contract. After words contractor (agent) may subcontract its tasks to

other agents as well.

Even this approach is sophisticated and highly scalable; the trust can be a major issue within the

contracting and bidding.

25

3.3.3 Agent Negotiation

Agent negotiation plays major role in the multi agent systems. This will facilitate the agents

bargain between other agents to archive their goals.

More specifically; contracting agents will leads to bargaining (negotiating) between the manager

and the bidders. Then that communication process will become a negotiation process. For

example, an agent can use a strategy of constraint relaxation to submit bids that become

increasingly more attractive to the manager.

Negotiation process can either be cooperative or competitive based on the situation. In either

case agent can be success or fail in the negotiation process.

3.4 Summary

This chapter provides an in-depth description of the technological background and theoretical

background of both multi agent systems and embedded systems. Next chapter explains the

Approach of the research with key components of the approach.

26

Chapter 04

Approach

4.1 Introduction

This chapter contains the approach of designing the common framework for the multi agent

systems in embedded platforms to solve the problem which is discuss during the previous

chapters. Input, output, process, users and the features are discussed in a detailed manner within

this chapter.

Following solution was proposed based on the available technologies and methodologies

discussed in the previous chapter.

4.2 Hypothesis

Availability of a common framework for multi agent systems in embedded platforms will

improve the development process of multi agent systems in embedded environments.

4.3 Input and Output

One or more multi agent software components which were developed using the common

framework will be the input to the framework and input to the system it-self. Since all the

communication channels were routed through the framework all the incoming messages from

those systems can also be considered as the input to the system.

Framework will manipulate the given input (messages) in order to produce appropriate multi

agent system features based on the inputs to the framework. These features will be transferred

back to the host software component (which is run on top of the framework), so that it can be

conceded as the output of the system.

Since the propose solution is a framework; user program which is develop based on the

framework can also be considered as both input and output of the system. Where user program

27

will use appropriate software components to interact with the framework and framework will

trigger back the user program code segments as output.

4.4 Process

Based on the different type of inputs from the different type of hardware platforms, produce the

required output for the host system (based on the hardware platform) can be consider as the

process of the proposed framework. Host software system (Multi-agent system) will be

considered as an external input for this process while multi-agent based behaviors and actions

will be produce by the process. Framework will contain several software modules to work with

different type of hardware platforms as well as different type of inputs generated by the host

systems.

In addition to that this process allows framework to be users to extend the functionality of the

framework for the different type of platforms as needed.

This process allows users to easily implement major functionalities of a multi-agent system such

as identify the available agents, initiate the communication between agents, request agent details

from the facilitator, coordination and negotiation among the agents, etc. The designing of the

framework is discussed in the design chapter in a detailed manner.

Potential Users - discuss in the next section can use the functionalities provided by the

framework to develop the multi-agent system based on their requirements.

4.5 Potential Users of the System

Mainly there are two types of users can be identified as potential users for the system.

- Firstly people who have special interest in developing multi agent systems for the embedded

platforms. They can use the framework to develop there solutions on top of the selected

platform. Since framework provides all the required software components to implement the

multi-agent features; developers can concentrate more on the actual system features; rather

than implementing the basic features from scratch.

28

- Secondly, people doing research in the field of multi agent technologies and embedded

systems can use this framework to speed-up there solution implementation as well as the

evaluation. In this approach those users can rapidly prototype there designs / solution and

evaluate them in order to archive their research goals, without spending time to implement

the multi-agent communication models, behaviors, etc.

4.6 Features

The common software framework for multi agent development in embedded systems has set of

valuable features which makes this framework more useful to the potential users discuss in the

previous section. Those features can be summaries as;

- Framework is compatible with most of the major embedded platforms.

- Easy to use when developing multi agent solutions

- Compatible with ACL messages and FIPA standards

- Inbuilt communication module for almost all communication modules

- Support for major agent behaviors out of the box

- Small program memory foot print

- Can be modified/customized and adapt to the entirely new hardware platform

4.7 Summary

This chapter discuss about the approach to design a common framework for multi agent system

development in embedded platforms; followed by the complete description of the input / output

of the system. Afterwards potential users of the system and the major features of the system

(Framework) are discussed in detail manner.

29

Chapter 05

Design

5.1 Introduction

Framework is compliance with FIPA specifications and support for the major communication

modules/channels that different hardware platform provides. It provides the capabilities to the

users to implement their own multi agent system on top of the framework without considering

much about the underline hardware platform.

The common software framework is designed as a collection of software components which can

be easily integrate together in order to provide the MAS features. User can select appropriate

components based on the hardware platform, communication mechanism and multi agent

features they prefer.

5.2 Top Level Design

Framework was designed in such a way that it can be used in two different configurations.

1. Master-Slave Configuration

2. Peer-to-Peer Configuration

5.2.1 Master-Slave Configuration

In this configuration one end point was considered as a master and all communication channels

will be routed through this master. But this node can also be considered as an agent. So that any

multi agent related behaviors can also be implemented in this node also. All the other nodes can

communicate with the master to fulfill their requirement. This node can also be considered as a

directory facilitator which is and major part in the JADE framework as well.

If one hardware platform/module has more capabilities (processing power, memory etc.) then

that can be nominated as master. One major advantage of this configuration is that other nodes

will have fewer loads compared to the master node.

30

5.2.2 Peer-to-Peer Configuration

This configuration considers each hardware node equally and route the communication

accordingly. One major advantage of this configuration is that, distributed/decentralized behavior

of the multi agents reflect properly.

Regardless of the configuration, framework consists of software components. Following sections

will discuss design details for each component individually.

 Platform Core

 Framework Core

 Agent Container

 Message Dispatcher / Generator

 Communication Mapper

 Behavioral Engine

Figure 5.1 : Framework Components

31

5.3 Framework Components

This section will discuss the in depth design detail of the each software component which is

defined in the previous section.

5.3.1 Platform Core

This software component is the lowest level of the component suit. It communicates with the

underline hardware and facilitates the required functionalities for the other components. Since

this module communicates with the hardware platform and used platform specific functions such

as interrupts, timers, etc.; implementation of the module is different from hardware platform to

platform.

This software component allows rest of the framework to generic and platform independent. In

addition to that the software framework can be ported for any new hardware platforms just by

implementing this component for that hardware platform. Rest of the components can be used

with minimum modifications.

5.3.2 Framework Core

Basic functionality of the multi agent systems are provided by this software component. This

follows the required specifications and provides the MAS functionalities. In addition to that this

facilitates the message communication routing for the other components.

Also this component act as a base component of the Behavioral Engine; which contains

necessary software segments for agent behaviors such as cooperative, negotiation, emerging, etc.

5.3.3 Agent Container

This software component is almost identical to the Agent Container implementation of the JADE

except minor areas. Main idea of the agent contain is to provide a place to store the agents

(including essential details about the agents) and make the communication mechanism unknown

to the agents.

Based on the memory availability of the underline hardware platform the container size is

determined by the framework itself. Eventually the number of agents that can be located within a

node will be determined by the size of this container. Addition to that Framework user can define

32

the memory size to be used for the agent container so that framework will not use whole memory

available in the hardware platform.

5.3.4 Message Dispatcher

Message dispatcher was design as a sub software component which is build inside the agent

container. This facilitates the communication features for the agents it-self. All inbound and

outbound messages for the agent were handled by the message dispatcher in the particular

container. Message dispatcher will use a local cache/agent table to identify the exact agent to be

communicated. Since the communication methods are different from one hardware platform to

another this module will used the functionality provided by the communication mapper

component.

This module is also responsible for generating ACL compatible messages in order to make the

agent communication standardized. Also this module will interpret receiving ACL messages

from other agent and trigger the appropriate software modules to perform the required tasks.

Framework will support for the following ACL performative types:

- REQUEST

- INFORM

- QUERY_IF

- CFP

- PROPOSE

- ACCEPT_PROPOSAL

- REJECT_PROPOSAL

In addition to that Message dispatcher module playing a major role in communication routing

phase; where it will reroute the messages to the receiver when the agent act as a link between

other two agents(indirect agents). This functionality will be discussed under the implementation

chapter.

5.3.5 Communication Mapper

Since each embedded hardware platform has its own communication mechanisms and additional

communication hardware modules, it is required to have a common mapper to communicate with

all these modules. This component has a common mapper to map the communication channels

33

and separate component for each communication method. So that framework can be configured

in any hardware platform with required communication mappers according to the available

communication modules. Following communication methods were supported by the framework:

- Wired Serial Communication

- Bluetooth Serial Communication

- Wi-Fi Communication

- RF (Radio Frequency) Communication

In addition to that if the user needs additional communication methods which doesn’t support by

the framework natively; they can implement a separate communication mapper for that

communicate method and add to the framework.

5.3.6 Behavioral Engine

Behavioral engine software module was design in order to provide major agent behaviors to the

framework. So that users can use those behaviors out of the box. Some behaviors are associated

with communication streams; So that this module is linked to the communication module as

well. In addition to the some agent behaviors are executed based on the timing information. (Ex:

Ticker Behaviors) As a result of that this module will directly communicate with the platform

core module to get the timing information.

Framework supports following major behaviors;

- SimpleBehaviour - Basic type of behaviour which execute once when the behaviour is added

to the agent.

- CyclicBehaviour - This behaviour stays active as long as its agent is alive and will be called

repeatedly after every event.

o TickerBehaviour - a cyclic behaviour which periodically executes some user-defined

piece of code

- OneShotBehaviour - This executes ONCE and dies.... Not really that useful since the one

shot may be triggered at the wrong time.

o WakerBehaviour - This executes some user code once at a specified time

o ReceiverBehaviour - This triggers when a given type of message is received

34

This module was design in such a way that framework user can add any number of behaviors to

an agent (from pre-define set of behaviors) with different parameters. For example single agent

can have two Ticker behaviors; one with 1 second cycle time and another with 10 seconds of

cycle time.

5.4 Summary

This chapter discusses about the complete design details about the software framework for multi

agent. Starting from the top level architecture and the configuration of the system; Followed by

the list of major components in the design and in depth design details of the each component.

Required materials of the designing these components and integration was covered in this

chapter.

35

Chapter 06

Implementation

6.1 Introduction

This section will discuss about the implementation of the Multi agent framework for the

embedded systems. Since the framework should support for major embedded system

development platforms / microcontrollers the implementation process was repeated for those

platforms. Each software component is designed once and implement for several platforms with

several languages.

Each framework component is implemented individually and integrated in to the framework.

Each individual component provides unique features/capabilities which are required by the multi

agent system operations. Next section of this chapter will provide the details of each component

implementation and integration with the existing components. Each component can work

individually there can test and evaluate individually. Testing evaluation will be discussed in the

separate section.

6.2 Component Implementation

6.3 Platform Core

Platform core is the module which actually interact with the given hardware platform and

execute the platform specific code segments. This module was built as the lowest level layer of

the framework. Framework users will not have access to any of the functionalities provided by

this module. Rather framework itself uses these functionalities from other top level modules.

Following functionalities were implemented in the platform core.

- Platform specific digital I/O pin access to control the status LED; which represent some

actions taken by the framework itself.

- Serial communication establishment; Framework core module will execute this routing when

it need to establish a serial connection between two agents. In this scenario framework core

module just act as a wrapper to the actual implementation.

36

- Single Wire communication establishment; this functionality will be use by the framework

core when the radio frequency connection need to be established between the agents.

- Timer / Time based functionality; Platform core module will access the platform specific

timers to maintain the internal timers which are used by other modules, including behavioral

engine. If the hardware platform contains a RTC (Real Time Clock) then this module will

communicate with the RTC to get the current time which is also used by the other framework

modules. (Please referee the Appendix B - Hardware Modules for the RTC configuration)

6.4 Framework Core

This module is the base module for the all other modules including agent container, message

dispatcher and behavioral engine. This module is responsible for establish the actual

communication channel when the agent container requested. Required information (such as serial

ID or Rx Tx pins) will be pass to this module by the agent container whenever it requires to

establish a new connection. In that case framework core module will collaborate with the

platform code module and establish the connected as needed. More information about the

connection types and parameters are discussed in the agent container module section in the same

chapter.

Interesting functionality provided by this module is the time based event triggering. Module will

use platform specific timers to identify the elapse times and maintain a timer; so that it can be

use by the behavioral engine to execute the cyclic behaviors.

In addition to these features framework core module has debugging system in build; in a way

that it will debug all required information for debugging the framework at the runtime. This

debugging feature can be enabling and disable by the framework user. Once its enables it will

log the information to any pre-define stream; can be either serial output or a display panel.

6.5 Agent Container

Agent container was implemented in such a way that; it can contain the agent with all other

required in formations such as communication types (how to communicate with other agents.)

Since single agent can communicate with more than one connected agent these connection

mediums are implemented separately for each agent.

37

Implementation of the agent container module stores the agent information (such as agent

identifier) and the connected agent information (such as connected agent identifier and

connection type) in program memory. So that framework user can define once and user

whenever needs those information. For the indirect agents only the virtual connections will be

created.

For example; In the following configuration (Figure 6.1) for agent M, agent S1 and agent S2 are

directe connected agents while agent S3 is a indirect connected agent.

Figure 6.1 : Indirect Agent Configuration

Agent registration process was implemented in following manner. User can define the connected

agents with appropriate details and register as direct connected agent or indirect connected agent.

These required information will be vary based on the communication type. For example if the

connected agent is connected through the Serial communication user need to define the Serial

line number only. But in contrast if the communication channel if radio frequency (RF) based

then it must be registered with the appropriate TX and RX pin values. More information about

the agent registration will be discuss in the evaluation chapter where the framework usage is

describes in step by step manner.

Communication channel initialization also implemented within the agent container module. So

that whenever user register an agent framework will initialize a new communication channel to

communicate with that agent. Following sequence diagram explains the complete program

execution sequence for the agent creation and registration.

38

6.6 Message Dispatcher

Message dispatcher was implemented on top of the agent container. So that agent can send and

receive messages using this component. Implementation of this module contains a mapping data

structure with the agent identifier and the connection type. Connection type is composite data

type which contains the primary connection type (Serial, RF, etc.) as well as the additional

attributes such as serial connection ID, receiver pin (RX), transmitter pin(TX) etc. Whenever

message dispatcher get a send request from the agent container; it will go through the map and

identify the target agent connection details. Afterwards it will send the given message to that

connection.

In addition to that primary functionality; message dispatcher is responsible for the convert raw

messages in to ACL messages and vice-versa. There are two common routings were

implemented to archive this task. One will generate raw message content when it received the

ACL message. String separators will be added to identify the each ACL component at the

receivers end. Sample raw message will be in the following format - String(ACL.performative) +

+ ACL.topic + # + ACL.content. In addition to that sender and receiver information will be

appended to the raw message just before it will send to the communication mapper. From the

receivers end message dispatcher will split this message and generate the appropriate ACL

message and pass it to the agent container module.

In order to send and receive the messages through communication line; this module will

seamlessly integrate with the communication mapper. So that message dispatcher can handle

sending and receiving process in a common way without considering the actual communication

medium. Following sequence diagram shows how the agent container module, message

dispatcher module and communication mapper module work together to send/receive ACL

messages in between agents.

Message dispatcher is also responsible for forwarding messages to the indirect agents. For

example agent A is connected to agent B and agent B is connected to C then agent A is indirectly

connected with the agent C. In such scenarios messages send by the agent A to the agent C will

be identified as indirect messages by the messages dispatcher in the agent A. In this case

message dispatcher will send the message to the agent B with the receiver attribute set to C. In

39

agent B message dispatcher was implemented in such a way that it will identify the message

which is not addressed to him and forward it to the agent C. In this implementation it is

guaranteed that intermediate agent will not modify any of the attributes in the ACL message.

This was implemented by introducing additional routing call forward which is same as send

routing except appending the sender, receiver information to the ACL message.

6.7 Communication Mapper

Communication mapper component was implemented to provide support for transmit and

receive messages from/to end points. This component will identify the source of transmission

media and send the message to the appropriate mappers. So that complexity will be hide from the

agents. Communication mapper module contains APIs for send/receive messages with

parameters to select appropriate communication media. Since all types of communications are

handle by single common API user does not have to write different code for different

communication methods such as serial communication, RF communication.

In addition to that communication network structure in define in this module as a separate tree

like data structure. As a result of that each node knows how to route the communication /

message to the desired destination. Since most of the hardware platforms supports only for peer

to peer communication this network implementation is required to communicate with nodes

which are not directly connected; but through a separate common node. In order to identify the

each node in the network this node module uses a unique id which is assigned by the framework

user to each hardware platform/end point. In addition to that framework user must have to define

other connected nodes to that node when the node is initializing. (Most probably in initialization

of the framework)

Serial Communication Mapper

This sub section of the communication module was implemented in order to wrap the serial

communication interface and provide common API for the communication mapper. This module

will initialize the serial communication and setup the TX and RX PINs in the microcontroller in

order to perform the communication. Since serial communication is highly depending on the rate

of operation; it was considered as a parameter. That allows frame work users to modify that

parameter accordingly. Framework user has to define the TX and RX PINs that they are willing

to use and the bit rate before start the communication.

40

RF Communication Mapper

Since radio frequency communication has some additional pre-requirements such as special

formatted data, sync patterns, equal balance 0 and 1 bits, etc. Because of that standard serial

communication will not be compatible with the RF modules/RF communication. So that separate

software component was implemented in-order to handle those addition requirements. Since this

software module hides the complexity of the communication from users framework users can

establish a RF connection with minimum code with minimum parameters (ex: TX and RX PINs

and bit rate)

6.8 Behavioral Engine

Behavioral engine was implemented in order to support for the major agent behaviors including

both cyclic behaviors and one-shot behaviors. Following section will discuss each behavior, its

implementation and the interaction with the other modules.

SimpleBehaviour

This is the simplest form of agent behavior; where the given call back will be execute at the same

time the behavior is registered and only once. This behavior was implemented by the framework

as a direct call back at the time of behavior registration.

TickerBehaviour

This is a cyclic behavior; means that this stays active as long as its agent is alive and will be

called repeatedly after every cycle time. Ticker behavior was implemented with two parameters.

Delay parameter; which will accept the time delay between each execution (cycle time) in

seconds and call back routing parameter which will call by the framework for each cycle. In

order to implement this behavior, behavioral engine will use the framework code module timer

functionalities. When the timer expired (compared to the given delay parameter) framework core

module will inform that to the behavioral engine; so that behavioral engine can execute the user

given routing according to the time delay.

WakerBehaviour

This behavior is somewhat similar to the cyclic behavior; but this will not execute periodically.

Rather this behavior will execute at once. Where framework user can define the exact time to

41

execute the behavior; then the framework will execute the call back routing given by the user.

This behavior was implemented using two parameters; time parameter and call back routing

parameter. Same as cyclic behavior implementation; behavioral engine depends on the

framework core module timer functionality to identify if the current time is match with the given

time (parameter). If so it will execute the behavioral routing.

ReceiverBehaviour

Whenever agent receives a message; agent’s receiver behavior will be executed. This behavior is

completely depends on the messaged receiving process rather than timing based as previous

behaviors. If agent register this behavior with call back routing; framework will execute that

routing each and every time that agent receives a message. In addition to that received ACL

message will be passing to the call back routing as well. In order to implement this behavior;

behavioral engine communicate with the message dispatcher module to identify the message

receive event. On a message receive; message dispatcher module will inform the event to the

behavioral engine with the received ACL message. After words behavioral engine identify the

registered receiver behaviors for the agent and execute their call back routings with the ACL

message.

6.9 Summary

This chapter discuss about the complete implementation process of the multi agent framework

for the embedded system, including each component implementation and interaction between

components in order to archive the design target. In addition to that several sequential diagrams

were discussed in order to understand the component workflows for different scenarios.

42

Chapter 07

Evaluation

7.1 Introduction

This chapter contains the evaluation process which is used to evaluate (and test) the multi agent

framework which is discuss during this documentation. Since the main outcome of the research

is a software framework for the multi agent systems in embedded platforms; unique approach

was used to evaluate the system. Evaluation process consists of two major sub-processes.

One will be an embedded system which is specially design to behave as multi-agents. It was

design in a way that it will contains different hardware types and communication methods

between each agent. Previously discussed framework was used to implement the multi-agent

features and evaluate the behavior of the system. Section 7.2 (Multi-Agent based Home Garden

Monitoring System) discuss this approach in detail manner.

Second process is to measure some performance matrices of the framework in order to prove that

it can be used with various hardware platforms. In addition to that several memory analyses were

done to identify the memory foot-print of the framework in different platforms. Section 7.3

(Performance Matrices) contains more information about this evaluation process.

7.2 Multi-Agent based Home Garden Monitoring System

In order to evaluate and perform end to end testing of the multi-agent framework, prototype of

sophisticated autonomous home garden monitoring system was developed. The concept of home

garden monitoring system was highly inspired by the work done by Isern David at all[17] and

Balbi Stefano at all[18]

System contains several hardware modules (represent different hardware platforms) capable of

communicating with other module using different communication methods. Each hardware

module is logically represent an agent and able to perform several agent behaviors when

archiving there goals.

43

7.2.1 Hardware module design

Experimental design consists of three types of agents (hardware modules) known as ‘Plant

Agents’, ‘Water Tank Agents’ and ‘Resource Agents’. Plant agents are directly getting the

sensory inputs from the plant(s) and have actuators to control the water supply for the plant(s).

Water tank agents are connected to the water tanks and get the sensory inputs from the water

tanks. While resource agents are connected to the cloud, capable to extract data from different

sources such as weather forecasting service, plant detail databases, etc. Following diagram shows

the overall design of the system with the agent communication links.

Figure 7.1 : Component Diagram of Home Garden Monitor System

Plant agent module is powered by the Arduino Nano (ATmega328) and contains set of sensors to

measure the atmospheric temperature, humidity, soil temperature, soil water level and light

condition. Main actuator of the agent is a motor which will eventually controller the water line to

the plant. In addition to sensors it contains real time clock to keep the date time information and

OLED screen to display basic information and status of the agent.

44

Figure 7.2 : Plant Agent Configuration

Figure 7.3 : Plant Agent

Water tank agent is powered by an Arduino Mega (ATmega1280) and contains LCD screen to

display the information about the system. In addition to that sensors for the water temperature

and water level are also integrated in to the water tank agent. In addition to that real time clock

module was integrated in to the module to make the date/time awareness. Also water tank agent

contains several communication modules (vary from wired to Wi-Fi) in order to make the

communication channels with multiple plant agents.

Figure 7.4 : Water Tank Agent Configuration

Figure 7.5 : Water Tank Agent

45

Resource agent module is powered by Arduino Mega (ATmega1280) with the capability of

cloud connectivity. As a result of that this agent is able to extract the required information from

the cloud whenever needed. Type of information includes weather forecast, historical watering

records, etc.

Figure 7.6 : Resource Agent Configuration

Please referee the Appendix C - Multi-Agent based Home Garden Monitoring System for the

complete design details for the modules and detail specifications of each agent module and

communication channels.

7.2.2 Define process and behaviors

Home garden monitoring system is cable of executing different process with the help of different

type of agent behaviors. All those agent behaviors are implemented using the previously discuss

software frame work.

Some of the plant agents have wireless communication channels to communicate with the tank

agent while other plant agents have just wires (serial) connections. So that each agent

connections were establish using the framework accordingly.

One of the major behavior of the system is, when water tang agent sense the water level in the

water tank is high it will send CFP (call for proposal) for the plant agents. Once plant agents

receive the CFP it will calculate the required water amounts based on their sensory inputs. Then

send the proposals to the tank agent. Tank agent will evaluate each proposal individually and

46

accept or reject the proposals accordingly. Finally that result will be transmit to the plant agents

with the accept/reject flag. Based on that response plant agents will activate the actuators to turn

the water lines on-off. This entire CFP process was implemented using the framework with the

help of ACL messages generation and few behaviors such as ‘ReceiverBehaviour’,

‘OneShotBehaviour’, etc.

During the CFP process which is discuss in the previous section, some plant agent proposals can

be rejected. In that case plant agent may be executing the negotiation process in order to get the

water access. Based on the sensory inputs and some previous water supply records plant agent

will decide to execute the negotiation process or not. If decided agent will adjust the water

request (since the original request was rejected) and send back to the tank agent, so that tank

agent can process the negotiation request and accept / reject accordingly.

Tank agent will communicate with the resource agent to get additional information such as

weather forecast, historical records, etc. before accept / reject the proposals from the plat agents.

In addition to that plant agents will communicate with each other’s in order to effectively

coordinate the watering system.

Appendix D - Sample Codes contains the implementation of the CFP process by using the

software framework.

7.2.3 Evaluation results discussion and conclusion

Home garden monitoring system, which was developed using the software framework able to

perform essential multi agent features such as communication, coordination and negotiation.

Since the framework contain software functions to establish communication links for both wires

and wireless (RF, Wi-Fi and Bluetooth) it was easy to connect different agent with different

communication links.

Behavior Engine which is a part of the software framework makes it easier to add required

behaviors to the agents. Since the framework supports for ACL message generation and

interpretation writing the agent program become really simple.

To conclude this section; it was clear that software framework for the multi agent system makes

this entire system development easy to develop, debug and execute.

47

7.3 Performance Matrices

In this evaluation process same multi agent functionality (ex: communication, negotiation, etc)

was develop using framework and from the scratch (base to compare with). And compare the

several parameters including;

- Time taken to implement the code

- Quality of the code

- Readability of the code

- Erroneous of the code

Following set of functionalities were used to bench mark the result

- Establish a wired connection between agents

- Establish a wireless connection between agents

- Send messages between agents

- Perform a Call for Proposal (CFP) process

- Perform cyclic behavior

- Agent negotiation process

Results from the each process were analyzed in order to evaluate the quality/ usability of the

framework. Following table contains the analysis results and descriptive information about each

parameter.

Task Description

E
st

ab
li

sh
 a

 w
ir

ed

co
n
n
ec

ti
o
n
 b

et
w

ee
n

ag
en

ts

F
ro

m

S
cr

at
ch

Need to establish a serial connection between modules and use that

connection to communicate with agent. But need to check the

communication type before each and every send operation.

F
ra

m
e-

w
o
rk

Define connected agent with serial connectivity

plantAgent.registerAgent(0, SERIAL_1, "P2");

48

E
st

ab
li

sh
 a

 w
ir

el
es

s
co

n
n

ec
ti

o
n

b
et

w
ee

n
 a

g
en

ts

F
ro

m

S
cr

at
ch

Need to initialize and configure several libraries based on the wireless

type (ex: RF, Wi-Fi, Bluetooth, etc.) Based on the library /

communication type messenger type and protocol will be different

F
ra

m
e-

w
o
rk

Define connected agent with Radio Frequency wireless connectivity

plantAgent.registerAgent(0,COMM_RF,"P2",TX_PIN,RX_PIN);

Define connected agent with Wi-Fi connectivity

plantAgent.registerAgent(0,COMM_WF,"P2",TX_PIN,RX_PIN);

Define connected agent with Bluetooth connectivity

plantAgent.registerAgent(0,COMM_BT,"P2",TX_PIN,RX_PIN);

S
en

d
 m

es
sa

g
es

 b
et

w
ee

n

ag
en

ts

F
ro

m
 S

cr
at

ch
 It is required to identify the communication channel type before

sending the messages, ex: sending a message over serial

communication channel is completely different from sending message

from wireless (Wi-Fi) connection.

F
ra

m
e-

w
o
rk

Message sending is NOT depending on the communication channel

defined.

ACLMessage aclMessage={“P1”,"TANK",P_INFORM,"T1","MSG"};

plantAgent.send(aclMessage);

P
er

fo
rm

 a
 C

F
P

 p
ro

ce
ss

F
ro

m
 S

cr
at

ch

Implementing this operation will take considerable time, user need to

implement the flow control for the CFP as well as define the constants

to identify the state of each request / agent. In addition to that sending /

receiving functions need to be writing according to the each agent’s

communication type.

F
ra

m
e-

w
o
rk

Can be archived by using the BEHAVIOUR_RECEIVER and Performative

P_CFP, P_PROPOSE, P_REJECT_PROPOSAL and P_ACCEPT_PROPOSAL

P
er

fo
rm

cy
cl

ic

b
eh

av
io

r

F
ro

m

S
cr

at
ch

User need to use a timer (internal timer or external interrupt based

timer) to make a cycle and execute the required functionality within

that cycle.

49

F
ra

m
e-

w
o
rk

Add Ticker behavior to the agent

plantAgent.addBehaviour(BEHAVIOUR_TICKER,1,on5SecTick,5);

Add code segment to execute periodically

void on5SecTick (){

 // code segment

}

A
g
en

t
n
eg

o
ti

at
io

n
 p

ro
ce

ss

F
ro

m
 S

cr
at

ch

Implementing this operation will take considerable time, user need to

implement the flow control for the negotiation as well as define the

constants to identify the state of each request / agent. In addition to

that sending / receiving functions need to be writing according to the

each agent’s communication type.

F
ra

m
e-

w
o
rk

Can be archived by using the BEHAVIOUR_SIMPLE and Performative

P_INFORM, P_REJECT_PROPOSAL and P_ACCEPT_PROPOSAL

Table 7.1 : Task Description Table

7.4 Memory Analysis

Since most of the hardware platforms are limited in memory resources; it is required to design

and implement the framework with minimum memory foot-print. In order to evaluate that

separate memory analysis process is used.

Basically these hardware platforms consists of three types of memories,

- Flash Memory : This is the place where executable code of the program stores, memory

required for a program will be increase when the LOC is increased.

- SRAM : This is the dynamic memory where all the global variables are created. If

program uses more variables dynamic memory required for the program will be high.

Basically this memory will be cleared once the power-off.

- EEPROM : This is an separate memory, which will remain even the power-off. Since the

framework did not store any information in EEPROM this was not taken in to the

consideration when analyze the memory.

50

Framework can be use in two modes, debug mode and normal mode. In debug mode framework

will produce logging information about each agent action which can be used to identify potential

issues with the multi agent system. But in normal mode these information will not be generated.

So that framework takes less memory in normal mode compared to the debug mode.

Following table summarize the memory foot-print (percentage of memory consume by the

framework) of the framework (in both normal mode and debug mode) for each hardware

platform. Please refer the Appendix A for more information about these hardware platforms.

Hardware Platform Flash Memory SRAM

Total Normal

Mode

Debug

Mode

Total Normal

Mode

Debug

Mode

Arduino ZERO - ATSAMD21G18 256 KB 3% 4% 32 KB 4% 4.5%

Arduino Mega - ATmega2560 256 KB 3% 4% 8 KB 14% 18%

Arduino Uno - ATmega328P 32 KB 27% 35% 2 KB 45% 58%

Arduino Nano - ATmega328 32 KB 29% 37% 2 KB 21% 58%

Arduino Pro Mini - ATmega328 32 KB 29% 37% 2 KB 45% 58%

Arduino Micro - ATmega32U4 32 KB 38% 49% 2.5 KB 35% 45%

Arduino Nano -ATmega168 16 KB 58% 74% 1 KB 42% -

Table 7.2 : Framework Memory Consumption

7.5 Summary

This chapter discuss about the evaluation process which is used to evaluate the framework as

well as analyze the performance and memory foot-print of the framework in different platforms.

Note: Multi-agent based home garden monitoring system which is design and implement only for

the demonstrating the framework functionality. So that it will not have any sophisticated

hardware modules which available in most of modern irrigation control system. Goal of

developing such a system is not for highlight the features of modern irrigation control but for

evaluate the framework functionalities.

51

Chapter 08

Conclusion and Further work

8.1 Introduction

This chapter summarize the multi agent system which was developed in order to make easier the

multi agent system development in embedded systems. Content of this chapter includes to what

extend the main objective(s) were archived by the designing and implementation phase and

verify using the evaluation process.

8.2 Conclusion

It was hypothesized that the ‘Availability of a common framework for multi agent systems in

embedded platforms will improve the development process of multi agent systems in embedded

environments.’ In order to prove that hypothesis completely new software framework was

developed from the ground up.

Development process starts with the design of the framework modules and interaction with each

module. Implementation was done for the most of the modules for the major types of hardware

platforms available in the market.

Finally, the evaluation process and results were presented in the chapter 7. According to the

evaluation results it is clear that framework improves the development process, thus the objective

was archived.

In addition to the main objective following objectives were also define at the initial stage of the

process.

- Identify the popular hardware platforms and develop a complete software framework for

those identified platforms to make the multi agent based development easy.

- Provide support for the major multi agent behaviors, protocols and communication

standards.

52

- Make the software framework available to the general public with the complete

documentation, under the license of free and open source.

Thus all the above objectives were met in the research as anticipated, as a concluding note it is

clear that overall system development and evaluation process was succeeded.

8.3 Limitations and Further Works

Regarding the limitations, one of the major limitations is that framework is not implemented for

every hardware platform available in the market at the time of development is done, but only for

the few selected major hardware platforms only. Since there are number of various platforms it is

difficult to implement code for the every platform is nearly impossible with the available time

frame. Since the modular design of the framework allows users to extend the implementation

very easily, users can implement the modules for other hardware platforms as well.

Few things were identify as potential further works, to make the framework more useful and

powerful.

One will be integrate the framework with the dashboard like UI to see the status of the each

agent separately. In addition it will make easier to display the intermediate state of all agents in

more readable manner. ‘Cayenne’ from ‘myDevice’[19] was identified as potential platform to

establish this connection.

Another identified further work will be integrate the framework with some cloud based data

collection / storage, so that each agent can store the data related to the status of the agent and use

that whenever needed. ‘Thingspeak’[20] which is an open data platform was identified as

potential candidate for this work.

8.4 Summary

This chapter summarize about the conclusion, limitations and future works of the developed

multi agent development framework for the embedded platforms. The limitations were identified

and potential solutions also discussed. Few addition works were identified as further works in

order to make the framework more useful and powerful.

53

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant agent framework,” in

Proceedings of PAAM, 1999, vol. 99, p. 33.

[2] “Welcome to the Foundation for Intelligent Physical Agents,” Foundation for Intelligent

Physical Agents (FIPA). [Online]. Available: http://www.fipa.org/. [Accessed: 21-Aug-2015].

[3] “Arduino - Home.” [Online]. Available: https://www.arduino.cc/. [Accessed: 21-Aug-2015].

[4] A. C. -, M. C. R. -, F. S. -, M. D. H. -, and J. I. E. -, “Multi-Agent and Embedded System

Technologies Applied to Improve the Management of Power Systems,” Int. J. Digit. Content

Technol. Its Appl., vol. 4, no. 1, pp. 79–85, Feb. 2010.

[5] H.-M. Kim, Y. Lim, and T. Kinoshita, “An Intelligent Multiagent System for Autonomous

Microgrid Operation,” Energies, vol. 5, no. 12, pp. 3347–3362, Sep. 2012.

[6] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A Literature

Review,” J. Comput. Commun., vol. 03, no. 05, pp. 164–173, 2015.

[7] Q. Sun, W. Yu, N. Kochurov, Q. Hao, and F. Hu, “A Multi-Agent-Based Intelligent Sensor

and Actuator Network Design for Smart House and Home Automation,” J. Sens. Actuator Netw.,

vol. 2, no. 3, pp. 557–588, Aug. 2013.

[8] J. Baumann, F. Hohl, Prof. Dr. K. Rothermel, and M. Straßer, “Mole - A Java based Mo bile

Agent System,” Spec. Issues Object Oriented Program., pp. 301–308, 1997.

[9] “SquidBee.” [Online]. Available: http://www.atmel.com/products/avr32/.

[10] T. Kinoshita and K. Sugawara, “ADIPS Framework for Flexible Distributed Systems,” in

Multiagent Platforms, T. Ishida, Ed. Springer Berlin Heidelberg, 1998, pp. 18–32.

[11] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant agent framework,”

in Proceedings of PAAM, 1999, vol. 99, p. 33.

[12] “Microcontroller,” Wikipedia, the free encyclopedia. 25-Feb-2016.

[13] “Pulse-width modulation,” Wikipedia, the free encyclopedia. 20-Jan-2016.

54

[14] “Microcontrollers - A Beginner’s Guide - Introduction to Interrupts using an LED and

330 ohm resistor.” [Online]. Available:

https://www.newbiehack.com/IntroductiontoInterrupts.aspx. [Accessed: 05-Mar-2016].

[15] C. Madrigal Mora, “A model-driven approach for organizations in multiagent systems,”

2013.

[16] T. FIPA, “Fipa communicative act library specification,” Found. Intell. Phys. Agents

Httpwww Fipa Orgspecsfipa00037SC00037J Html 306 2004, 2008.

[17] D. Isern, S. Abelló, and A. Moreno, “Development of a multi-agent system simulation

platform for irrigation scheduling with case studies for garden irrigation,” Comput. Electron.

Agric., vol. 87, pp. 1–13, Sep. 2012.

[18] S. Balbi, S. Bhandari, A. K. Gain, and C. Giupponi, “Multi-agent agro-economic

simulation of irrigation water demand with climate services for climate change adaptation,” Ital.

J. Agron., vol. 8, no. 3, p. 23, Sep. 2013.

[19] “Cayenne Docs.” [Online]. Available: http://www.cayenne-

mydevices.com/docs/?utm_campaign=website&utm_source=sendgrid.com&utm_medium=email

#introduction. [Accessed: Oct-2016].

[20] “Internet Of Things - ThingSpeak.” [Online]. Available: https://thingspeak.com/.

[Accessed: Oct-2016].

[21] M. Wooldridge, “An Introduction to MultiAgent Systems”. 2002.

[22] Russell, Stuart J., Peter Norvig, and John Canny. “Artificial Intelligence: A Modern

Approach”. 2003.

55

Appendices

Appendix A:

Arduino Hardware Platform

A.1 Introduction

Arduino hardware platform is one of the major embedded system platforms available in the

market. There are number of different types of boards are available with different hardware

specification. Based on the requirement (memory, number of I/O pints, interrupts, timers, PWM,

etc) user can select most appropriate board for the development. Following section summarize

hardware specifications of major Arduino platforms available in market.

A.2 Hardware Specifications

Arduino Platform Specifications

Arduino MICRO

Microcontroller ATmega32U4

Operating Voltage 5V

Input Voltage 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 20

PWM Channels 7

Analog Input Channels 12

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega32U4)

SRAM 2.5 KB (ATmega32U4)

EEPROM 1 KB (ATmega32U4)

Clock Speed 16 MHz

LED_BUILTIN 13

Length 48 mm

Width 18 mm

Weight 13 g

56

Arduino NANO

Microcontroller
Atmel ATmega168 or

ATmega328

Operating Voltage (logic

level)
5 V

Input Voltage 7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins
14 (of which 6 provide

PWM output)

Analog Input Pins 8

DC Current per I/O Pin 40 mA

Flash Memory
16 KB (ATmega168) or 32

KB (ATmega328)

SRAM
1 KB (ATmega168) or 2 KB

(ATmega328)

EEPROM
512 bytes (ATmega168) or 1

KB (ATmega328)

Clock Speed 16 MHz

Dimensions 0.73" x 1.70"

Length 45 mm

Width 18 mm

Weight 5 g

Arduino UNO

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins
14 (of which 6 provide

PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328P)

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED_BUILTIN 13

Length 68.6 mm

Width 53.4 mm

Weight 25 g

57

Arduino MEGA

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins
54 (of which 15 provide

PWM output)

Analog Input Pins 16

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

LED_BUILTIN 13

Length 101.52 mm

Width 53.3 mm

Weight 37 g

Table A.1 : Arduino Hardware Specifications

58

Appendix B:

Hardware Modules

B.1 Introduction

Number of hardware modules was used during the implementation and evaluation process of the

framework. Including sensor modules, communication modules, actuators, etc. Following sub

sections will provide detail about each and every hardware modules.

B.2 RF Module

Pair of RF (Radio Frequency) Modules were used in the evaluation process as Transmitter and

Receiver. Hardware specifications of these two modules are summarizing in the following table.

 Transmitter Module Receiver Module

Working voltage

Working current

Resonance mode

Modulation mode

Working frequency

Transmission power

Frequency error

Velocity

3V - 12V

9mA - 40mA

SAW

ASK

315MHz Or 433MHz

25mW

+150kHz (max)

less than 10Kbps

5.0VDC +0.5V

≤5.5mA max

OOK/ASK

-

315MHz-433.92MHz

-

-

<9.6Kbps

Connections VCC, GND and DATA

Table B.1 : RF Module Specifications

59

B.3 RTC Module

RTC (Real Time Clock) module used in the system was based on the DS1307. This module

contains the DS1307, Crystal and a Battery. Communication with the module can be established

by the I2C connection.

Connections

GND  +5v

VCC  Ground

SCL  Clock Signal

SDA  Data Signal

B.4 Wi-Fi Module

ESP-8266 module was used to establish the Wi-Fi communication channel between agents.

Since the module operational voltage is 3.3v and Arduino operate on 5v it is required to have a

regulator in between. FTDI FT232RL was used to archive the voltage regulation.

Connections

VCC shall be connected to the 3.3V power supply

GPIO0 controls the module mode (programming or

normal operation)

CH_PD Chip Enable High (3.3V) for normal operation

RST Reset, High (3.3V) for normal operation. 0V to

reset the chip.

TX Transmit Pin

RX Receive Pin

GND Ground

Table B.2 : Wi-Fi Module Connection Details

60

B.5 Bluetooth Module

Bluetooth module used in the development of the system is HC-05, which contains both master

and slave modes. Basic connection can be establish through the serial communication channel

and can configure using the AT commands.

Connections

GND  +5v

VCC  Ground

RX  Receiver Pin

TX  Transmitter

Pin

B.6 DHT Module

DHT11digital temperature and humidity sensor is a composite Sensor contains a calibrated

digital signal output of the temperature and humidity. Communication with the sensor can be

establish using the given 1-wire protocol.

Connections

GND  +5v

VCC  Ground

DATA  Data Line

Relative Humidity Temperature

Resolution : 16Bit

Repeatability : ±1% RH

Accuracy : At 25°C±5% RH

Interchangeability : fully interchangeable

Response time : 1 / e (63%) of 25°C 6s

Hysteresis : < ±0.3% RH

Long-term stability : < ±0.5% RH

Resolution : 16Bit

Repeatability : ±0.2°C

Range : At 25°C±2°C

Response time : 1 / e (63%) 10S

Table B.3 : DHT Module Specifications

61

B.7 OLED Display Module

OLED Display module used in system was an OLED monochrome display (yellow and blue)

module which contains 128X64 pixels; drive by the SSD1306 driver IC.

Features

Connections

Dimensions : 2.2 cm x 2.8 cm x 1.2 cm GND  +5v

Screen size : 0.96’’ (128px by 64px) VCC  Ground

Display Color : Monocrome SCL  Clock Line

Total Connection : Wires : 4

Power : 5V DC (PIN–VCC) SDA  Data Line

Communication : I2C

Table B.4 : OLED Module Features

B.8 Ethernet Shield

Arduino Ethernet shield was used to establish the connection to the internet. This shield can be

plug in to most of the Arduino platforms and connect to the internet using RJ45 standard

Ethernet connection.

Features

IEEE802.3af compliant

Low output ripple and noise (100mVpp)

Input voltage range 36V to 57V

Overload and short-circuit protection

9V Output

High efficiency DC/DC converter: 75% at 50% load

1500V isolation (input to output)

Table B.5 : Arduino Ethernet Shield

62

Appendix C:

Multi-Agent based Home Garden Monitoring System

C.1 Introduction

This section will discuss the design and implement process of the multi-agent based Home

Garden Monitoring System. This system was developed in order to evaluate the framework.

This system basically contains three types of modules (agents). Plant Module will place near the

plant to be monitored. Three plant modules were used during the evaluation process. All three

plant agent modules are identical to each one except from the capabilities of the communication.

First agent module contains single wireless communication line, Second agent contains one

wired communication link and third with both wired and wireless communication links.

C.2 Hardware Module Specifications

Plant agent module was implemented using Arduino NANO platform. OLED screen module was

used to display the status / information about the agent. DHT11 sensor was connected to the

plant agent to sense the temperature and humanity of the atmosphere. Real Time Clock (RTC)

module in the plant agent was used to keep the date and time information. Wired communication

link in the plant agent module is establish by using the serial interface, while wireless channel

was implemented using the two RF modules (Receiver module and Transmit module)

Water tank modules was build using the Arduino MEGA platform and consist of thermostat, a

RTC module and LCD screen was used to display the agent status and communication logs

between the agents. Wired communication was established using the inbuilt serial interface while

wireless communication was archived by the pair of RF modules connected to the module.

Resource agent module was build using the Arduino MEGA platform. It contains Ethernet shied

which is used to connect to the internet. In addition to that SD card reader / writer module is

connected to the resource agent to store the daily records locally.

63

C.3 Module Connection Details

Two plant agents are connected to the tank agent directly, while third plant agent is connected to

the second plat agent only. This type of agent configuration is used to demonstrate the indirect

agent communication behavior of the framework. (Third plant agent is indirectly connected to

the tank agent via the second plant agent.)

Water tank agent has three communication links, two wired links and one wireless link. It was

connected to the resource agent via one of this wired link. Resource agent has only one wired

link, and separate link to connect to the Internet.

64

Appendix D:

Sample Codes

D.1 Introduction

Following sub section will discuss how to use the software framework when implementing multi

agent system. Please note that this will not cover each and every functionality, methods and

features of the framework. Complete documentation on multi-agent framework will be available

on-line.

D.2 Agent Initialization

In order to initialize the agent it is only required to add the following line segment, First

parameter for the constructor is the name of the agent and the second parameter will be number

of possible communication channels.

Agent plantAgent(“P1”, 2);

Once you define the agent; communication channels can be registered as below. Following code

segment will register one wired communication channel to agent “P2” and one wireless - RF

communication channel to agent “TANK”

plantAgent.registerAgent(0, SERIAL_1, "P2");

plantAgent.registerAgent(1, SERIAL_RF, "TANK", RX_PIN, TX_PIN);

D.3 ACL Message

Once the communication channels were added to the agent, user can send and receive ACL

messages to/from other agents as shown below.

Send ACL message from agent P1 to P2,

ACLMessage aclMessage = { “P1”, "P2", P_INFORM, "Topic", "Content" };

plantAgent.send(aclMessage);

65

Receive ACL message from other agents,

plantAgent.addMessageReceivedEvent(onMessageReceive);

void onMessageReceive(ACLMessage aclMessage){

 Serial.println (aclMessage.sender + " " + aclMessage.content);

}

D.4 CFP Process Implementation

Following code segments demonstrate the implementation of simple CFP process between

agents.

String agentName = "M";

Agent motorAgent(agentName, 2);

void setup(){

 motorAgent.registerAgent(0, SERIAL_1, "S1");

 motorAgent.registerAgent(1, SERIAL_2, "S2");

 motorAgent.addMessageReceivedEvent(onMessageReceive);

 setupCFP();

}

void setupCFP(){

 String topic = "Distance";

 // Initiate the process by sending ACL message - CFP

 ACLMessage cfpMessage = { agentName, "-", P_CFP, topic, "CM" };

 motorAgent.sendToAll(cfpMessage);

 // register new behaviour for the CFP

 motorAgent.addBehaviour(BEHAVIOUR_RECEIVER,0,onReceiverBehaviour);

}

// status 0 - CFP is send, status 1 - accepted

int status = 0;

int lDistance = 1000;

String aAgent = "";

int pCount = 0;

void onReceiverBehaviour(ACLMessage aclMessage){

 if (aclMessage.topic == "Distance"){

 // continue the CFP process

 switch (status){

 case 0 :

 {

 // We are getting proposals from the other agents

66

 if (aclMessage.performative == P_PROPOSE) {

 int pDistance = aclMessage.content.toInt();

 if (pDistance < lDistance){

 lDistance = pDistance;

 aAgent = aclMessage.sender;

 logLine("Lowest Distance: " + aAgent + " - " + lDistance);

 }else{

 // We can't accept this distance

 //(It is larger than the current minimum)

 ACLMessage rejectMessage = { agentName, aclMessage.sender,

 P_REJECT_PROPOSAL, "Distance", "" };

 motorAgent.send(rejectMessage);

 logLine(aclMessage.sender + " REJECTED");

 }

 proposalCount++;

 if (proposalCount >= 2 && aAgent != NULL){

 // We have accepted distance - Send accepted ACL

 ACLMessage acceptMessage = { agentName, aAgent,

 P_ACCEPT_PROPOSAL, "Distance", "" };

 motorAgent.send(acceptMessage);

 status++;

 logLine(aclMessage.sender + " ACCEPTED");

 }

 }

 break;

 }

 }

 }

}

