
51

Chapter 08

Conclusion and Further work

8.1 Introduction

This chapter summarize the multi agent system which was developed in order to make easier the

multi agent system development in embedded systems. Content of this chapter includes to what

extend the main objective(s) were archived by the designing and implementation phase and

verify using the evaluation process.

8.2 Conclusion

It was hypothesized that the ‘Availability of a common framework for multi agent systems in

embedded platforms will improve the development process of multi agent systems in embedded

environments.’ In order to prove that hypothesis completely new software framework was

developed from the ground up.

Development process starts with the design of the framework modules and interaction with each

module. Implementation was done for the most of the modules for the major types of hardware

platforms available in the market.

Finally, the evaluation process and results were presented in the chapter 7. According to the

evaluation results it is clear that framework improves the development process, thus the objective

was archived.

In addition to the main objective following objectives were also define at the initial stage of the

process.

- Identify the popular hardware platforms and develop a complete software framework for

those identified platforms to make the multi agent based development easy.

- Provide support for the major multi agent behaviors, protocols and communication

standards.

52

- Make the software framework available to the general public with the complete

documentation, under the license of free and open source.

Thus all the above objectives were met in the research as anticipated, as a concluding note it is

clear that overall system development and evaluation process was succeeded.

8.3 Limitations and Further Works

Regarding the limitations, one of the major limitations is that framework is not implemented for

every hardware platform available in the market at the time of development is done, but only for

the few selected major hardware platforms only. Since there are number of various platforms it is

difficult to implement code for the every platform is nearly impossible with the available time

frame. Since the modular design of the framework allows users to extend the implementation

very easily, users can implement the modules for other hardware platforms as well.

Few things were identify as potential further works, to make the framework more useful and

powerful.

One will be integrate the framework with the dashboard like UI to see the status of the each

agent separately. In addition it will make easier to display the intermediate state of all agents in

more readable manner. ‘Cayenne’ from ‘myDevice’[19] was identified as potential platform to

establish this connection.

Another identified further work will be integrate the framework with some cloud based data

collection / storage, so that each agent can store the data related to the status of the agent and use

that whenever needed. ‘Thingspeak’[20] which is an open data platform was identified as

potential candidate for this work.

8.4 Summary

This chapter summarize about the conclusion, limitations and future works of the developed

multi agent development framework for the embedded platforms. The limitations were identified

and potential solutions also discussed. Few addition works were identified as further works in

order to make the framework more useful and powerful.

53

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant agent framework,” in

Proceedings of PAAM, 1999, vol. 99, p. 33.

[2] “Welcome to the Foundation for Intelligent Physical Agents,” Foundation for Intelligent

Physical Agents (FIPA). [Online]. Available: http://www.fipa.org/. [Accessed: 21-Aug-2015].

[3] “Arduino - Home.” [Online]. Available: https://www.arduino.cc/. [Accessed: 21-Aug-2015].

[4] A. C. -, M. C. R. -, F. S. -, M. D. H. -, and J. I. E. -, “Multi-Agent and Embedded System

Technologies Applied to Improve the Management of Power Systems,” Int. J. Digit. Content

Technol. Its Appl., vol. 4, no. 1, pp. 79–85, Feb. 2010.

[5] H.-M. Kim, Y. Lim, and T. Kinoshita, “An Intelligent Multiagent System for Autonomous

Microgrid Operation,” Energies, vol. 5, no. 12, pp. 3347–3362, Sep. 2012.

[6] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A Literature

Review,” J. Comput. Commun., vol. 03, no. 05, pp. 164–173, 2015.

[7] Q. Sun, W. Yu, N. Kochurov, Q. Hao, and F. Hu, “A Multi-Agent-Based Intelligent Sensor

and Actuator Network Design for Smart House and Home Automation,” J. Sens. Actuator Netw.,

vol. 2, no. 3, pp. 557–588, Aug. 2013.

[8] J. Baumann, F. Hohl, Prof. Dr. K. Rothermel, and M. Straßer, “Mole - A Java based Mo bile

Agent System,” Spec. Issues Object Oriented Program., pp. 301–308, 1997.

[9] “SquidBee.” [Online]. Available: http://www.atmel.com/products/avr32/.

[10] T. Kinoshita and K. Sugawara, “ADIPS Framework for Flexible Distributed Systems,” in

Multiagent Platforms, T. Ishida, Ed. Springer Berlin Heidelberg, 1998, pp. 18–32.

[11] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant agent framework,”

in Proceedings of PAAM, 1999, vol. 99, p. 33.

[12] “Microcontroller,” Wikipedia, the free encyclopedia. 25-Feb-2016.

[13] “Pulse-width modulation,” Wikipedia, the free encyclopedia. 20-Jan-2016.

54

[14] “Microcontrollers - A Beginner’s Guide - Introduction to Interrupts using an LED and

330 ohm resistor.” [Online]. Available:

https://www.newbiehack.com/IntroductiontoInterrupts.aspx. [Accessed: 05-Mar-2016].

[15] C. Madrigal Mora, “A model-driven approach for organizations in multiagent systems,”

2013.

[16] T. FIPA, “Fipa communicative act library specification,” Found. Intell. Phys. Agents

Httpwww Fipa Orgspecsfipa00037SC00037J Html 306 2004, 2008.

[17] D. Isern, S. Abelló, and A. Moreno, “Development of a multi-agent system simulation

platform for irrigation scheduling with case studies for garden irrigation,” Comput. Electron.

Agric., vol. 87, pp. 1–13, Sep. 2012.

[18] S. Balbi, S. Bhandari, A. K. Gain, and C. Giupponi, “Multi-agent agro-economic

simulation of irrigation water demand with climate services for climate change adaptation,” Ital.

J. Agron., vol. 8, no. 3, p. 23, Sep. 2013.

[19] “Cayenne Docs.” [Online]. Available: http://www.cayenne-

mydevices.com/docs/?utm_campaign=website&utm_source=sendgrid.com&utm_medium=email

#introduction. [Accessed: Oct-2016].

[20] “Internet Of Things - ThingSpeak.” [Online]. Available: https://thingspeak.com/.

[Accessed: Oct-2016].

[21] M. Wooldridge, “An Introduction to MultiAgent Systems”. 2002.

[22] Russell, Stuart J., Peter Norvig, and John Canny. “Artificial Intelligence: A Modern

Approach”. 2003.

55

Appendices

Appendix A:

Arduino Hardware Platform

A.1 Introduction

Arduino hardware platform is one of the major embedded system platforms available in the

market. There are number of different types of boards are available with different hardware

specification. Based on the requirement (memory, number of I/O pints, interrupts, timers, PWM,

etc) user can select most appropriate board for the development. Following section summarize

hardware specifications of major Arduino platforms available in market.

A.2 Hardware Specifications

Arduino Platform Specifications

Arduino MICRO

Microcontroller ATmega32U4

Operating Voltage 5V

Input Voltage 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 20

PWM Channels 7

Analog Input Channels 12

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega32U4)

SRAM 2.5 KB (ATmega32U4)

EEPROM 1 KB (ATmega32U4)

Clock Speed 16 MHz

LED_BUILTIN 13

Length 48 mm

Width 18 mm

Weight 13 g

56

Arduino NANO

Microcontroller
Atmel ATmega168 or

ATmega328

Operating Voltage (logic

level)
5 V

Input Voltage 7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins
14 (of which 6 provide

PWM output)

Analog Input Pins 8

DC Current per I/O Pin 40 mA

Flash Memory
16 KB (ATmega168) or 32

KB (ATmega328)

SRAM
1 KB (ATmega168) or 2 KB

(ATmega328)

EEPROM
512 bytes (ATmega168) or 1

KB (ATmega328)

Clock Speed 16 MHz

Dimensions 0.73" x 1.70"

Length 45 mm

Width 18 mm

Weight 5 g

Arduino UNO

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins
14 (of which 6 provide

PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328P)

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED_BUILTIN 13

Length 68.6 mm

Width 53.4 mm

Weight 25 g

57

Arduino MEGA

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins
54 (of which 15 provide

PWM output)

Analog Input Pins 16

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

LED_BUILTIN 13

Length 101.52 mm

Width 53.3 mm

Weight 37 g

Table A.1 : Arduino Hardware Specifications

58

Appendix B:

Hardware Modules

B.1 Introduction

Number of hardware modules was used during the implementation and evaluation process of the

framework. Including sensor modules, communication modules, actuators, etc. Following sub

sections will provide detail about each and every hardware modules.

B.2 RF Module

Pair of RF (Radio Frequency) Modules were used in the evaluation process as Transmitter and

Receiver. Hardware specifications of these two modules are summarizing in the following table.

 Transmitter Module Receiver Module

Working voltage

Working current

Resonance mode

Modulation mode

Working frequency

Transmission power

Frequency error

Velocity

3V - 12V

9mA - 40mA

SAW

ASK

315MHz Or 433MHz

25mW

+150kHz (max)

less than 10Kbps

5.0VDC +0.5V

≤5.5mA max

OOK/ASK

-

315MHz-433.92MHz

-

-

<9.6Kbps

Connections VCC, GND and DATA

Table B.1 : RF Module Specifications

59

B.3 RTC Module

RTC (Real Time Clock) module used in the system was based on the DS1307. This module

contains the DS1307, Crystal and a Battery. Communication with the module can be established

by the I2C connection.

Connections

GND  +5v

VCC  Ground

SCL  Clock Signal

SDA  Data Signal

B.4 Wi-Fi Module

ESP-8266 module was used to establish the Wi-Fi communication channel between agents.

Since the module operational voltage is 3.3v and Arduino operate on 5v it is required to have a

regulator in between. FTDI FT232RL was used to archive the voltage regulation.

Connections

VCC shall be connected to the 3.3V power supply

GPIO0 controls the module mode (programming or

normal operation)

CH_PD Chip Enable High (3.3V) for normal operation

RST Reset, High (3.3V) for normal operation. 0V to

reset the chip.

TX Transmit Pin

RX Receive Pin

GND Ground

Table B.2 : Wi-Fi Module Connection Details

60

B.5 Bluetooth Module

Bluetooth module used in the development of the system is HC-05, which contains both master

and slave modes. Basic connection can be establish through the serial communication channel

and can configure using the AT commands.

Connections

GND  +5v

VCC  Ground

RX  Receiver Pin

TX  Transmitter

Pin

B.6 DHT Module

DHT11digital temperature and humidity sensor is a composite Sensor contains a calibrated

digital signal output of the temperature and humidity. Communication with the sensor can be

establish using the given 1-wire protocol.

Connections

GND  +5v

VCC  Ground

DATA  Data Line

Relative Humidity Temperature

Resolution : 16Bit

Repeatability : ±1% RH

Accuracy : At 25°C±5% RH

Interchangeability : fully interchangeable

Response time : 1 / e (63%) of 25°C 6s

Hysteresis : < ±0.3% RH

Long-term stability : < ±0.5% RH

Resolution : 16Bit

Repeatability : ±0.2°C

Range : At 25°C±2°C

Response time : 1 / e (63%) 10S

Table B.3 : DHT Module Specifications

61

B.7 OLED Display Module

OLED Display module used in system was an OLED monochrome display (yellow and blue)

module which contains 128X64 pixels; drive by the SSD1306 driver IC.

Features

Connections

Dimensions : 2.2 cm x 2.8 cm x 1.2 cm GND  +5v

Screen size : 0.96’’ (128px by 64px) VCC  Ground

Display Color : Monocrome SCL  Clock Line

Total Connection : Wires : 4

Power : 5V DC (PIN–VCC) SDA  Data Line

Communication : I2C

Table B.4 : OLED Module Features

B.8 Ethernet Shield

Arduino Ethernet shield was used to establish the connection to the internet. This shield can be

plug in to most of the Arduino platforms and connect to the internet using RJ45 standard

Ethernet connection.

Features

IEEE802.3af compliant

Low output ripple and noise (100mVpp)

Input voltage range 36V to 57V

Overload and short-circuit protection

9V Output

High efficiency DC/DC converter: 75% at 50% load

1500V isolation (input to output)

Table B.5 : Arduino Ethernet Shield

62

Appendix C:

Multi-Agent based Home Garden Monitoring System

C.1 Introduction

This section will discuss the design and implement process of the multi-agent based Home

Garden Monitoring System. This system was developed in order to evaluate the framework.

This system basically contains three types of modules (agents). Plant Module will place near the

plant to be monitored. Three plant modules were used during the evaluation process. All three

plant agent modules are identical to each one except from the capabilities of the communication.

First agent module contains single wireless communication line, Second agent contains one

wired communication link and third with both wired and wireless communication links.

C.2 Hardware Module Specifications

Plant agent module was implemented using Arduino NANO platform. OLED screen module was

used to display the status / information about the agent. DHT11 sensor was connected to the

plant agent to sense the temperature and humanity of the atmosphere. Real Time Clock (RTC)

module in the plant agent was used to keep the date and time information. Wired communication

link in the plant agent module is establish by using the serial interface, while wireless channel

was implemented using the two RF modules (Receiver module and Transmit module)

Water tank modules was build using the Arduino MEGA platform and consist of thermostat, a

RTC module and LCD screen was used to display the agent status and communication logs

between the agents. Wired communication was established using the inbuilt serial interface while

wireless communication was archived by the pair of RF modules connected to the module.

Resource agent module was build using the Arduino MEGA platform. It contains Ethernet shied

which is used to connect to the internet. In addition to that SD card reader / writer module is

connected to the resource agent to store the daily records locally.

63

C.3 Module Connection Details

Two plant agents are connected to the tank agent directly, while third plant agent is connected to

the second plat agent only. This type of agent configuration is used to demonstrate the indirect

agent communication behavior of the framework. (Third plant agent is indirectly connected to

the tank agent via the second plant agent.)

Water tank agent has three communication links, two wired links and one wireless link. It was

connected to the resource agent via one of this wired link. Resource agent has only one wired

link, and separate link to connect to the Internet.

64

Appendix D:

Sample Codes

D.1 Introduction

Following sub section will discuss how to use the software framework when implementing multi

agent system. Please note that this will not cover each and every functionality, methods and

features of the framework. Complete documentation on multi-agent framework will be available

on-line.

D.2 Agent Initialization

In order to initialize the agent it is only required to add the following line segment, First

parameter for the constructor is the name of the agent and the second parameter will be number

of possible communication channels.

Agent plantAgent(“P1”, 2);

Once you define the agent; communication channels can be registered as below. Following code

segment will register one wired communication channel to agent “P2” and one wireless - RF

communication channel to agent “TANK”

plantAgent.registerAgent(0, SERIAL_1, "P2");

plantAgent.registerAgent(1, SERIAL_RF, "TANK", RX_PIN, TX_PIN);

D.3 ACL Message

Once the communication channels were added to the agent, user can send and receive ACL

messages to/from other agents as shown below.

Send ACL message from agent P1 to P2,

ACLMessage aclMessage = { “P1”, "P2", P_INFORM, "Topic", "Content" };

plantAgent.send(aclMessage);

65

Receive ACL message from other agents,

plantAgent.addMessageReceivedEvent(onMessageReceive);

void onMessageReceive(ACLMessage aclMessage){

 Serial.println (aclMessage.sender + " " + aclMessage.content);

}

D.4 CFP Process Implementation

Following code segments demonstrate the implementation of simple CFP process between

agents.

String agentName = "M";

Agent motorAgent(agentName, 2);

void setup(){

 motorAgent.registerAgent(0, SERIAL_1, "S1");

 motorAgent.registerAgent(1, SERIAL_2, "S2");

 motorAgent.addMessageReceivedEvent(onMessageReceive);

 setupCFP();

}

void setupCFP(){

 String topic = "Distance";

 // Initiate the process by sending ACL message - CFP

 ACLMessage cfpMessage = { agentName, "-", P_CFP, topic, "CM" };

 motorAgent.sendToAll(cfpMessage);

 // register new behaviour for the CFP

 motorAgent.addBehaviour(BEHAVIOUR_RECEIVER,0,onReceiverBehaviour);

}

// status 0 - CFP is send, status 1 - accepted

int status = 0;

int lDistance = 1000;

String aAgent = "";

int pCount = 0;

void onReceiverBehaviour(ACLMessage aclMessage){

 if (aclMessage.topic == "Distance"){

 // continue the CFP process

 switch (status){

 case 0 :

 {

 // We are getting proposals from the other agents

66

 if (aclMessage.performative == P_PROPOSE) {

 int pDistance = aclMessage.content.toInt();

 if (pDistance < lDistance){

 lDistance = pDistance;

 aAgent = aclMessage.sender;

 logLine("Lowest Distance: " + aAgent + " - " + lDistance);

 }else{

 // We can't accept this distance

 //(It is larger than the current minimum)

 ACLMessage rejectMessage = { agentName, aclMessage.sender,

 P_REJECT_PROPOSAL, "Distance", "" };

 motorAgent.send(rejectMessage);

 logLine(aclMessage.sender + " REJECTED");

 }

 proposalCount++;

 if (proposalCount >= 2 && aAgent != NULL){

 // We have accepted distance - Send accepted ACL

 ACLMessage acceptMessage = { agentName, aAgent,

 P_ACCEPT_PROPOSAL, "Distance", "" };

 motorAgent.send(acceptMessage);

 status++;

 logLine(aclMessage.sender + " ACCEPTED");

 }

 }

 break;

 }

 }

 }

}

