COLLABORATIVE SUPPLY CHAIN MANAGEMENT USING MULTI-AGENT APPROACH

Lokuketagodage Chandana Manoj Perera

(139106F)

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Seignge in Artificial Intelligence www.lib.mrt.ac.lk

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

December 2015

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.

Name of Student

Signature of Student

L.C. Manoj Perera

Date:

Supervised by

Prof. Asoka S Karunananda

Signature of Supervisor

Date:

Dedication

I dedicate this thesis to my family and friends. A special feeling of gratefulness for my loving wife, daughter and parents because their word of encouragement and push for immense achievement. I will always appreciate all they have done and their valuable thoughts. I dedicate this work and give many thanks to people at SLIDA for their help and especially for the library staff.

Acknowledgment

I would like to extend my sincere gratitude to many people around me those who have helped to bring this research success. I would like to thank Professor Asoka S Karunananda is my research supervisor and for the opportunity he has provided me for taking part of this Artificial Intelligence programme. I am so deeply appreciate his valuable guidance, help and professionalism throughout this course. I have no words to express my deep and earnest appreciation for my research supervisor.

I would also like to acknowledge Professor Priyan Dias for valuable thoughts. Many thanks to other lecturers, those who have deliver valuable knowledge and guidance. Many thanks for my best friends Tharindu and Dinesh for helping me to dominate the critical areas in technology. I will always appreciate Harendra contribution of many hours for proofreading throughout this document. Finally, I must express my gratitude to faculty, staff for the help and support throughout this master program.

> University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

IV

Abstract

Supply chain management (SCM) manifests an inherently complex system. It involves a large number of distributed and interconnected entities which are far from the sequential execution while facing so much of uncertainty within the operational environment. The complexity in a supply chain management exercise to profit loss, customer dissatisfaction and sustainability of the business. Due to inherent complexity, in particular, dynamic nature of supply chain management, the traditional software technologies such as databases and web technology cannot be effectively used to model supply chain management. However, a large body of literature on research in a Multi Agent System technology (MAS) has demonstrated how the complex systems can be modeled to exploit the complexity as an opportunity to devise smart solutions which could not be achieved otherwise.

A research has been conducted to design and development of a MAS for the domain of SCM. A multi-agent solution for SCM primarily envisages the implementation of effective collaborations entrong the stakeholders within the process of supply chain domain. In this solution, each phase in the supply chain has been developed as an agent enabling communication, coordination and negotiation among the agents to achieve intended business goals. Our solution presents a decentralized, collaborative planning, architecture and agents are attached to different containers of the system. The identified stakeholders of a MAS solution for supply chain management include raw material supplier agents, manufacturer agents, transport agents, warehouse agents, retail supplier agents and customer agents. These agents activate when applicable and disappear from the deliberation if the interaction is counterproductive. This system has been tested using real world data, simulations and customer behaviors against agent response. Our solution has demonstrated the essential features of a MAS including, communication, coordination, negotiation, butter-fly effect, emergent feature and evolvebility. This system has elegantly demonstrated how initially active agents fail in the deliberation, and the final deal has gone to an agent who joined the deliberation in the latter part of the process. The final output of the system has achieved 80% of successes, in effective collaboration and agent interaction for delivering a smart solution.

Contents

Chapte	r 1 Introduction	1
1.1	Prolegomena	1
1.2	Aim and Objectives	1
1.3	Background and Motivation	2
1.4	Problem in Brief	3
1.5	Novel Approach to SCM	3
1.6	Structure of the Thesis	4
1.7	Summary	4
Chapte	r 2 Current Trends and Issues in SCM	5
2.1	Introduction	5
2.2	Summary University of Moratuwa, Sri Lanka.	12
Chapte	Flectronic Theses & Dissertations www.lib.mrt.ac.lk	13
3.1	Introduction	13
3.2	Agent Features and Behaviors	14
3.2.1	Autonomy	14
3.2.2	Social Ability	14
3.2.3	Reactivity	14
3.2.4	Pro-activeness	15
3.2.5	Difference Behaviors of Agents	15
3.3	Multi Agent Architecture	15
3.4	JADE as Development Environment	16
3.4.1	A Runtime Environment	16
3.4.2	Library of Classes	17
3.4.3	Graphical Tools	17
3.5	Industry Acceptability and Usage	17

3.6	Comparison with Conventional Technologies	18
3.7	Summary	18
Chapte	r 4 Approach to SCM with Multi Agent Technology	19
4.1	Introduction	19
4.2	Hypothesis	19
4.3	Inputs to the System	19
4.4	Outputs to the System	20
4.5	Process of SCM	20
4.6	Features of SCM	21
4.7	Non Functional Requirements of the System	22
4.8	Users of the System	22
4.9	Summary	22
Chapte	r 5 Design of MAS for SCM	23
5.1	University of Moratuwa, Sri Lanka. Introduction Electronic Theses & Dissertations	23
5.2	Two Components Architecture of SCM	23
5.3	Essential Entities in SCM	24
5.4	Relationship between Entities in SCM	25
5.5	Agent Communication	26
5.6	Two Phase Development Architecture in SCM	27
5.7	Summary	28
Chapte	r 6 Implementation of the MAS Solution for SCM	29
6.1	Introduction	29
6.2	Agent Categorizations	29
6.3	Alias of Agent Representation	31
6.3.1	No of Agents Join with Communication Process	32
6.4	Configuration and Initializations of Agents	33
6.5	Agent Construction and Communication	34

6.5.1	Agent Creation	35
6.5.2	Agent Configuration	36
6.5.3	Message Sending Mechanism	37
6.6	Common Domain Ontology and Personal Ontology	38
6.6.1	Personal Ontology	38
6.6.2	Common Domain Ontology	39
6.7	The Main Container and its Features	40
6.8	JADE Framework and Agent Communication	41
6.9	Agent Administration	42
6.10	Ontology Management	43
6.11	Dynamic Reporting Mechanism for Real Time Communication	45
6.12	Hardware and Software Requirements	46
6.13	Summary	47
Chapte	University of Moratuwa, Sri Lanka. r 7 Real World Problem Using Novel Approach Electronic Theses & Dissertations	48
7.1	IntroductionWWW.lib.mrt.ac.lk	48
7.2	Use of Novel Approach	49
7.3	A Difference between Traditional Systems and Novel Approach	49
7.4	Roles of the Agents in Novel Approach	50
7.5	Summary	51
Chapte	r 8 Evaluation of the New Solution	53
8.1	Introduction	53
8.2	Beginning of the Negotiation in Supply Chain Management	53
8.3	Continuous Negotiation for Commitment	57
8.4	Negotiation for Scheduling	59
8.5	Interference of Human Agent	62
8.6	Further Negotiation in Supply Chain	65
8.7	Increased Complexity among Retailer Agents	67

8.8	Customer Involvement in Communication	68
8.9	Simulation and Real Data	68
8.10	Adoption to Sudden Change in Environment	69
8.11	Summary	71
Chapte	er 9 Conclusion & Further Work	73
9.1	Introduction	73
9.2	Further Work	75
9.3	Summary	76
Referei	nces	77
Append	dix A	80
Essenti	als of Multi Agent technology	80
A.1	Introduction	80
Appendix B		81
Design	University of Moratuwa, Sri Lanka. of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	81
B.1	IntroductionWww.lib.mrt.ac.lk	81
Append	dix C	84
Implen	nentation of the MAS Solution for SCM	84
C.1	Introduction	84

List of Figures

Figure 3.1: Containers, Platforms and Agents	16
Figure 5.1: Two Components Architecture	23
Figure 5.2: Module Based Architecture of SCM	24
Figure 5.3: High-Level Architecture of SCM	25
Figure 5.4: Sequence Diagram for Agent Communication	26
Figure 5.5: Development Architecture	27
Figure 6.1: Manufacturer and Raw Materials Agents	30
Figure 6.2: Sender and Receiver	31
Figure 6.3: Agent Initializations	33
Figure 6.4: Agent Construction	34
Figure 6.5: Create Individual Agents	35
Figure 6.6: Configure Individual Agents	36
Figure 6.7: Communicate Individual Agents	37
Figure 6.8: Personal Ontology MYSQL/Databasen, Sri Lanka.	38
Figure 6.9: Contemetronic Theses & Dissertations	39
Figure 6.10: JAXB Architecture.mrt.ac.lk	40
Figure 6.11: Main Container Initializations	40
Figure 6.12: Agent Communication	42
Figure 6.13: Agent Administration Tool	43
Figure 6.14: Ontology Read and Update	44
Figure 6.15: Ontology Management GUI	45
Figure 7.1: Simultaneously Active Components	51
Figure 8.1: Start of the Negotiation	54
Figure 8.2: Raw Material Agent Communication in	
Limited Competitive Environment	55
Figure 8.3: Raw Material Agent Communication in Competitive Environment	56
Figure 8.4: Agreement and Refuse from Manufacture Agents	58
Figure 8.5: Agreement and Confirmation	59
Figure 8.6: Manufacture Agent Product Dispatch Records	60
Figure 8.7 Transport Agent Delivery Schedule	61
Figure 8.8: Confirmation Message	62

Figure 8.9: Human Agent Interference	63
Figure 8.10: Sudden Change in Transport Schedule	64
Figure 8.11: Complete Transport Schedule	65
Figure 8.12: Butter-fly Effect in Transport Scheduling	66
Figure 8.13: Retailers are Join with the Negotiation Process	67
Figure 8.14: Customers Demands	68
Figure 8.15: Raw Material Agent Requested and Received Price Schedule	69
Figure 8.16: Raw Material Agent Requested and Received	
Price Schedule in Different View	70
Figure 8.17: Manufacture Agent Proposed and Received Quantities	71
Figure B.1: Class Diagram for SCM	81
Figure B.2: Sequence Diagram for Human Agent Interaction	82
Figure B.3: State Transition Diagram	83
Figure C.1: Login Screen of MASSCM	84
Figure C.2: Dashboard of MASSCM	84
Figure C.3: Ontology Update form	85
Figure C.4: Transport Schedule Data Electronic Theses & Dissertations	85
Figure C.5: Fransport Schedule Data (Confirmed by Manufacturers)	86
Figure C.6: Transport Schedule of Manufacturers Agents	86
Figure C.7: Code for MYSQL Data Base Connection	86
Figure C.8: Message Space Agent Code	87
Figure C.9: Agent Initialization Code	87
Figure C.10: Common Domain Ontology Access (XML Access)	88
Figure C.11: Sending Multicast Messages to Manufacturer Agents	88
Figure C.12: Agent Performatives Code	88
Figure C.13: Ontology Update and Send Reply to Manufacturers	89
Figure C.14: Message Template for to Receive Messages from Transport Agent	89
Figure C.15: Warehouse Agent Ontology Management	90
Figure C.16: Warehouse Agent Utility Methods	90
Figure C.17: Transport Agent Different Behaviors	91
Figure C.18: Human Agent Interference	91
Figure C.19: Retailor and Warehouse Agents Negotiation	92
Figure C.20: Customer and Retailer Negotiation	92

List of Tables

Table 4.1: Inputs by Various Agents	20
Table 4.2: Outputs of the System	20
Table 6.1: Agents Categories in Supply Chain with Alias	32
Table 6.2: Number of Agents in Supply Chain	32
Table 6.3: Hardware and Software Requirement	46
Table 7.1: Traditional Systems and MAS	50
Table 8.1: Competitive Price Schedule of Manufacturer Agent "M4	57
Table 8.2: Steps in Transport Schedule Communication	60
Table A.1: A Multi Agent System Features	80

