PRELIMINARY STANDARD FOR ENERGY EFFICIENT DOMESTIC BUILDINGS IN SRI LANKA

P.S. Nilmini de Silva

(118356T)

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

September 2015

PRELIMINARY STANDARD FOR ENERGY EFFICIENT DOMESTIC BUILDINGS IN SRI LANKA

P.S. Nilmini de Silva

(118356T)

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

September 2015

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	Date:
The above candidate has carried out resupervision	search for the Masters Thesis under my
Signature: Dr.(Mrs.) M.M.I.D.Manthilake	Date:

ABSTRACT

In Sri Lanka the total electricity consumption of domestic units is 40% of the total electricity generated in the country. Especially in the Western province electricity usage is high, compared to other parts of Sri Lanka. By controlling building energy and implementing operational strategies to domestic units, it would provide a great opportunity to reduce domestic consumption. The saved energy could be utilized for industries to develop the nation. The current code of practice published by the SLSEA for energy efficient buildings in Sri Lanka has focused on multistory buildings with higher energy consumption. The specified criterion in the standard does not satisfy domestic units. The increase in demand for domestic energy is a major issue for supply side management. It is vital to study possible approaches to save energy in domestic units and standardization of a code of practice for energy efficient systems for domestic units in Sri Lanka. Mainly the use of electricity of a domestic unit can be categorized into different aspects namely, lighting, ventilation & air conditioning, water heating, etc. A survey was conducted and data was collected from domestic consumers, (sample size: n=50) located in Colombo district. These data were analyzed using SPSS tool to identify significant variables to electricity consumption of domestic units. Use of air conditioners is a trend which is becoming more common in domestic units in Colombo district. Hence, it is desirable to standardize and introduce a code of practice for domestic units at the current stage as a solution for the increasing electricity demand. The conclusions of the analysis reflect that domestic units located in Colombo district can be classified into two main models such as 'High Income Model and 'Middle Income Model'. Using Autodesk Revit, Building Information Modeling software, developed two designs. Revit Architecture, Revit MEP are the BIM related software which are used to design an intelligent 3D model with bidirectional associative feature for energy analysis. These models A and B are designed with suitable lighting levels and comfort levels for each defined space. This will reduce the waste of energy of the unit and could be used as a preliminary guide line for energy efficient domestic unit. International energy efficient domestic codes of India and USA are discussed in this paper. This research could be used as a preliminary document for reference and to develop a guideline for practicing authorities to implement energy efficiency in domestic units in Sri Lanka.

ACKNOWLEDGEMENT

I am very much grateful to Prof. R.A Attalage, Deputy Vice Chancellor of the University of Moratuwa for giving me his utmost support and guidance on this research. I am also grateful to Dr. Inoka Manthilake Lecturer, Department of Mechanical Engineering, University of Moratuwa, for giving her fullest support at every stage of this research. I wish to thank Dr. Himan Punchihewa, for his support of being the resource person for the research. This research was carried out under the supervision of Prof. R.A Attalage, senior professor, Department of Mechanical Engineering, University of Moratuwa. I am indebted to him for his valuable guidance, and kind co-operation and encouragement extended to me throughout the study. I like to extend my special thanks to my family members and particularly to my parents for encouraging me to complete this thesis.

Finally, I like to express my appreciation to all those who helped me in numerous ways at different stages of the research, which was of utmost importance to make my effort a success.

TABLE OF CONTENTS

DECLA	RATION	N	i
ABSTRA	ACT		ii
ACKNO	WLEDO	GEMENT	iii
TABLE	OF CON	NTENTS	iv
LIST OF	F FIGUE	RES	vii
LIST OF	F TABLI	ES	ix
LIST OF	F ABBRI	EVIATIONS	X
LIST OF			xi
CHAPT	ER 1.	INTRODUCTION	1
1.1	Backg	round	1
1.2	Proble	m Identification	3
1.3	Aim		4
1.4	Object	ives	4
1.5	Metho	dology	4
1.6	Outlin	e of the Thesis	4
CHAPT	ER 2.	REVIEW OF LITERATURE	6
2.1	Presen	t Energy Scenario of Sri Lanka	6
2.1.1	Energy	y Characteristics	6
2.1.2	Energy	y Demand in Sri Lanka	7
2.1.3	Electri	city Demand in Sri Lanka	10
2.1.4	Demar	nd Side management	13
2.1.5	Electri	city Consumption in Domestic units	14
2.1.6	Energy	y-Economy Indicators	18
2.1.7	Popula	ation Growth and Domestic Units in Sri Lanka	19
2.2	Code	of Practice for Energy Efficient Buildings in Sri Lanka	23
2.2.1	Genera	al Principles of Energy Efficient Lighting Practice	25
2.2.2	Area C	Controls	26
2.2.3	Autom	natic Lighting Controls	26
2.2.4	Davlie	tht and Skylight	28

	2.2.5	Maximum Allowable Power for Illumination Systems	. 30
	2.2.6	Light Source Selection	32
	2.2.7	Codes of Practices for Lighting Design	. 34
	2.2.8	Ventilation and Air Conditioning Systems	. 35
	2.2.9	ASHRAE Standard for Energy Efficient Buildings	. 36
	2.2.10	AC System Design and Equipment Selection	. 37
	2.2.11	ASHRAE Standard 62.2	. 39
	2.2.12	ASHRAE Standard 55-2004	. 41
	2.3	Climate of Colombo	. 44
	2.4	Energy efficient building codes in other countries.	. 44
	2.4.1	Energy Scenario of USA	. 45
	2.4.2	Energy Scenario of India	. 47
	2.5	Summary	. 49
C	НАРТЕ	R 3. DATA COLLECTION AND ANALYSIS	50
	3.1	Electricity Survey of Domestic Units in Colombo District	. 50
	3.2	Method of Analysis	. 53
	3.2.1	Preliminary Analysis of Domestic Electricity Consumption	. 54
	3.3	Statistical Analysis	. 59
	3.3.1	Selection of analytical tools	. 61
	3.3.2	Analysis of continuous variables	. 61
	3.3.3	Analysis of nominal variables	. 62
	3.4	Summary	. 66
C	НАРТЕ	R 4. RESULTS AND DISCUSSION	67
	4.1	Results Related to Electricity Consumption of Domestic Units	. 67
	4.2	Correlation between parameters	
	4.2.1	Ventilation System	
	4.2.2	Income Level	
	4.2.3	Lighting	
	4.2.4	Water Heating	
	4.2.5	Food Storage Medium	
		Floor Area	72

	4.2.7	Window Area	72
	4.2.8	Communication & Entertainment Usage	74
	4.2.9	Land Area	74
	4.3	Correlation between independent parameters	75
	4.3.1	Correlation between Income to other variables	75
	4.3.2	Correlation between occupants to other parameters	76
	4.4	Simple Payback Period (SPP)	77
	4.5	Summary	79
C	HAPTE	R 5. CONCLUSION AND FUTURE WORK	81
	5.1	Conclusion	81
	5.2	Building Information Modelling	83
	5.3	Future Work	88
	Referen	nces	90
	Append	dices	92

LIST OF FIGURES

Figure 2.1: Total Energy demand by sector	8
Figure 2.2: Energy Balance 2013 and 2014 in PJ	9
Figure 2.3: System Demand Profile in 2013	10
Figure 2.4: System Demand Profile in 2014	11
Figure 2.5:Historic Growth of the Load Curve	11
Figure 2.6: Peak Demand, Load Factor & Reserve Margin	12
Figure 2.7: Load shape objectives of DSM, CEB	13
Figure 2.8: Consumer Accounts by Category in year 2014	15
Figure 2.9: Household Electrification Rate	16
Figure 2.10: National Average Selling Price of Electricity	16
Figure 2.11: Commercial Energy Intensity	18
Figure 2.12: Annual Growth Rate 1871- 2012	19
Figure 2.13: Population Density by District, 2012	21
Figure 2.14: Criteria's for Average Daylight Factor	27
Figure 2.15: Visible Sky Angle	27
Figure 2.16: Day Light Illumination	28
Figure 2.17: Main Components of skylight	29
Figure 2.18: Comparison of Lamp Efficiencies	32
Figure 2.19: Thermal Comfort Zone	36
Figure 2.20: Predicted Mean Vote (PMV)	42
Figure 2.21: PPD vs. PMV	43
Figure 2.22: Air Speed	43
Figure 2.23: Population Growth in USA	45
Figure 2.24: Economic Growth in USA	45
Figure 2.25: Energy Consumption in India	47
Figure 3.1: Electricity Bbreakdown of Sample 1 for Feb 2014	55
Figure 3.2: Electricity Bbreakdown of Sample 1 for March 2014	55
Figure 3.3: Electricity Bbreakdown of Sample 1 for April 2014	56
Figure 3.4: Electricity breakdown of Sample 1 in Feb, March and April	56
Figure 3.5: Electricity Consumption of 50 Samples for three months	59

Figure 3.6: Average Consumption in Blocks	9
Figure 3.7: Variable View of SPSS6	0
Figure 3.8: Data View of SPSS6	0
Figure 4.1: Variation of electricity consumption against ventilation systems 6	8
Figure 4.2: Variation of energy consumption against Comfort	9
Figure 4.3: Variation of electricity consumption against Income level	9
Figure 4.4: Variation of electricity consumption against lighting usage	0
Figure 4.5: Variation of electricity consumption against water heating usage 7	1
Figure 4.6: Variation of electricity consumption against food storage usage	1
Figure 4.7: Variation of electricity consumption against Floor Area	2
Figure 4.8: Variation of electricity against window area	3
Figure 4.9: Variation of window area against floor area	3
Figure 4.10: Variation of electricity against coomunication/entertainment usage 7	4
Figure 4.11: Variation of total electricity consumption against land area	4
Figure 4.12: Variation of comfort against income level	6
Figure 4.13: Variation of total electricity consumption against occupants7	6
Figure 4.14: Comparison of CFL to Incandescent lamp	7
Figure 5.1: 2D Plan for High Income Group Domestic Units	3
Figure 5.2: 2D Plan for Middle Income Group Domestic Units	4
Figure 5.3: 3D Model for High Income Group Domestic Units	5
Figure 5.4: 3D Model for Middle Income Group Domestic Units	5
Figure 5.5: Results from Energy Analysis	8

LIST OF TABLES

Table 2.1: Total Energy Demand by Sector	7
Table 2.2: Total Energy Demand in household sectors by Energy Source	8
Table 2.3: Sectorial consumption of fuel wood	
Table 2.4: The Growth in System Capacity & Demand	12
Table 2.5: Electricity Consumers (Nos) served by the Grid	14
Table 2.6: Electrified consumer population (%) in Sri Lanka by category	
Table 2.7: Sri Lanka Total Electricity Use in GWh	
Table 2.8: National Average Selling Price of Electricity	16
Table 2.9: Electricity Prices in Year 2013	
Table 2.10: Household Electrified by the National Grid	
Table 2.11: Electricity Consumption Per Capita (kWh/Person)	
T able 2.12: Energy usage per person in Sri Lanka	
Table 2.13: Principle type of lighting usage by domestic units	
Table 2.14: Typical Surface Reflectance	
Table 2.15: Lighting Power Density	
Table 2.16: Lighting Levels for Domestic units as CIBSE	
Table 2.17: Electrical power equivalents for differing lamps	
Table 2.18: Lamp Efficacy of Linear Fluorescent Lamps	
Table 2.19: Lamp Efficacy for Integral and Modular Type CFL	
Table 2.20: Percentage Dissatisfied due to local discomfort	
Table 2.21: Allowable radiant temperature assymetry	
Table 2.22: Ventilation Air Requirements (SI) (L/s)	
Table 2.23 : Climate data for Colombo city	
Table 3.1: Data sheet of the first sample in February 2014	
Table 3.2: Electricity consumption of sample 1 in February 2014	
Table 3.3: Electricity consumption of 50 samples in Colombo for three months	57
Table 3.4: Correlation coefficient for monthly electricity consumption	61
Table 3.5: Data values for Nominal Variables	62
Table 3.6: Pearsons correlation coefficients of general data to electricity	62
Table 3.7: Kendalls & Spearman's correlation coefficients	63
Table 3.8: Correlation of window area to ventilation systems	
Table 3.10: Correlation between occupants to communication	
Table 3.10: Correlation between occupants to water heating usage	
Table 4.1: Significant variables for electricity consumption	
Table 4.2: Correlation between Independent arameters	
Table 4.3: Key Related Parameters to Electricity Consumption	
Table 5.1: Selection criteria for research models A and B	

LIST OF ABBREVIATIONS

ASHRAE American Society of Heating Refrigerating and Air conditioning

Engineers

BEE Bureau of Energy Efficiency

BS British Standard

CEB Ceylon Electricity Board

CEN Committee for European Standardisation

CIBSE Chartered Institution of Building services Engineers

COC Certificate of Conformity

CIE International Commission of Illumination

DSM Demand Side Management

ESD Energy Services Delivery

EE Energy Efficiency

EPRI Electric Power Research Institute

EMCS Energy Management Control System

GDP Gross Domestic Product

IES Illuminating Engineering Society

LECO Lanka Electricity Company

LEED Leadership in Energy and Environmental Design

LM Load Management

LOR Light Output Ratio

LPD Lighting Power Density

PUCSL Public Utilities Commission of Sri Lanka

RSE Relative System Efficiency

RERED Renewable Energy for Rural Economic Development

SLSEA Sri Lanka Sustainable Energy Authority

SPP Simple Payback Period

UDA Urban Development Authority

LIST OF APPENDICES

Appendix A	Housing Units by Category in 2012
Appendix B	Households in occupied housing Units by Districts and
	Principal type of lighting, 2012
Appendix C1	Electricity consumption of Sample1, Dehiwala in Feb 2014
Appendix C2	Electricity consumption of Sample1, Dehiwala in March 2014
Appendix C3	Electricity consumption of Sample1, Dehiwala in April 2014
Appendix D	Summary of Electricity consumption of 50 Samples in
	February 2014
Appendix E	Summary of General Data of 50 Domestic Units in Colombo
	District
Appendix F	Correlation of independent Variables of 50 Domestic Units in
	Colombo District
Appendix G	Correlation of General Data with Electricity Consumption for
	50 Domestic Units in Colombo District
Appendix H	Standard Maintained Illuminance; (Source: CIBSE: Code of
	Interior Lighting, 1994)