TECHNO-ECONOMIC FEASIBILITY STUDY ON LIGHTNING PROTECTION OF OVERHEAD TRANSMISSION LINE HAVING MULTI-CHAMBER INSULATOR ARRESTERS (MCIA). (CASE STUDY: MATHUGAMA-KUKULE, 132KV TRANSMISSION LINE)

Kanduboda Panditha Ralalage Dhammika Saman Kumarasiri Dharmadasa

(119122G)

Dissertation submitted in partial fulfillment of the requirement for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

May 2016

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

(K.P.R.D.S.K. Dharmadasa) May 17, 2016

The above candidate has carried out research for the Masters dissertation under our supervision.

.....

(Dr. K.M.T.U. Hemapala) May 17, 2016

ABSTRACT

Transmission lines are a key factor of the transmission network of a country which connects Grid Substations and the Power stations. Performance of transmission lines has a great impact on reliability aspects of a particular power supply system of a country. Unreliable transmission lines can lead to partial or even total power failures resulting with great financial losses. Radially connected power stations can be isolated from the transmission network by tripping the connected lines to the transmission system. The lightning back flashover effects are recognized as one of the major causes of transmission line outages.

Several types of solutions are presently available to address the issue of lightning back flashovers. Installing of Transmission Line Arresters (TLA) is of great popularity due to its good performance, with low cost compared to the other traditional solutions. However, latest technology called "Multi Chamber System (MCS)" are now being widely used worldwide to protect transmission lines as well as distribution lines from lightning surges including direct and indirect lightning surges. A novel technology, extension of MCS, Multi Chamber Insulator Arresters (MCIA) are the latest arrester technology which has great advantages over all the traditional surge mitigation techniques including installation of TLAs.

This report describes a case study which was carried out on one of a critical 132kV transmission line of the Sri Lankan transmission network, having several past records of lightning back flashover related outages resulting with partial system failures.

The study described in this report is mainly focuses on the way of analyzing the back flashover events by transient modeling and subsequent simulation of the selected transmission line in an electromagnetic transient computer program. The study uses the Power System CAD (PSCAD) software program as the software tool for the purpose of modeling and simulation of selected 132kV, Mathugama-Kukle transmission line.

Simulation of the created transmission line model is carried out with and without MCIA model to evaluate the improvements in lightning back flashover performance after installation of MCIAs in the selected transmission line.

The result of the simulations shows that the installation of 06 Nos. of MCIAs on all phases of a selected tower improves the back flashover mitigation performance on the same tower as well as the towers on the either sides of the selected tower. Thus, lightning performance of the selected transmission line is improved.

DEDICATION

To my loving Parents, Wife and Son

ACKNOWLEDGEMENT

I sincerely thank my supervisor, Dr. K.T.M.U. Hemapala for his great supervision and guidance offered for the successful completion of this study. I extent my sincere thanks to lecturers of Electrical Engineering Department, University of Moratuwa, who gave me the theoretical knowledge and the support during the study period to make the study practical and meaningful.

My special thanks go to Dr. U.N. Gnanarathna, University of Manitoba, Canada, who spent his valuable time to guide me and providing valuable information required for this study.

Further, my great gratitude goes to Mr. Matthieu ZINCK, Asia-Pacific Manager, Mr. Potcharamon KALAPONG, Regional Office Manager for their valuable support and the MCIA samples given free of charge to the University of Moratuwa. Also, my special thanks to the Supplies Unit of the University of Moratuwa, Sri Lanka for the support given for obtaining free samples from the Streamer Company.

I would like to express my sincere gratitude to Eng. W.W.R.Pitawala, Eng. W.N. Jayalath, Eng. K.S.S.Kumara, Eng. C.D. Wijeweera, Eng. M.Chanaka, Eng. D.L.P. Munasinghe, Eng. S.C.D. Kumarasinghe, Eng. R.C.P. Rajapakshe, Eng. A.D.G. Chandrasena Eng. L.A.A.N. Perera, Eng. W.M.O.M. Withanage working at Ceylon Electricity Board for their excellent support and the encouragement towards the success of this academic work.

Further, I would like to thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success.

Finally, I admire with great pleasure that I remember the encouragement and support extended by my parents and my wife. May be I could not have completed this research without their valuable support.

K.P.R.D.S.K. Dharmadasa May 17, 2016

TABLE OF CONTENTS

D	eclarati	on	i
Abstract			ii
D	Dedication		
A	cknowl	edgement	iv
Та	able of	Contents	v
List of Figures			ix
List of Tables			xii
Li	st of A	bbreviations	xiii
Li	st of A	ppendices	xiv
1.	Intro	duction	1
	1.1.	Back Flash-Over Effect of Transmission Lines	1
	1.2.	Historical Overview of Lightning	1
	1.3.	Mechanism of Lightning	4
	1.4.	Charge separation of thunder clouds	5
	1.5.	Breakdown Process and leader formation	6
	1.6.	Types of lightning	8
	1.7.	Frequency of occurrence of lightning flashes	8
	1.8.	Lightning data of Sri Lanka	9
	1.9.	Lightning Problem for Transmission Lines	10
	1.10.	Lightning Parameters	12
	1	10.1. The quantity of lightning activity in a given area	12
	1	10.2. The distribution of the crest current of a lightning flash	13
	1	10.3. The wave shape of a lightning flash	14
	1	10.4. Total charge delivered by a lightning stroke	14
	1.11.	Selected transmission line for the study	15
	1.12.	Kukule Power Station	16
	1	12.1. Transmission Towers and configuration	18
	1	12.2. Insulators and arc horn gaps	18
	1	12.3. Phase conductors	19
	1	12.4. Earthing of towers	19

2.	Problem Identification			22
	2.1.	Intr	oduction	22
	2.2.	Pre	liminary studies	22
	2.	2.1.	Relationship between monthly IKL and line failures	23
	2.	2.2.	Line sections/towers having high probability of insulator failures	24
	2.3.	Bac	ck flashover effects on transmission lines	24
	2.	3.1.	Earth faults at power frequency voltage due to back flashover	25
	2.4.	Pre	vention of Back flashover events	26
	2.5.	Pro	ject objectives	26
3.	Meth	odol	ogy	28
	3.1.	EM	TP/PSCAD Modelling and Simulation	28
	3.2.	Pro	posed Electromagnetic transient model for Kukule-Mathugama	
		Tra	nsmission Line	28
	3.3.	Ele	ctromagnetic fast front transient sub models for transmission line	
		eler	ments	29
	3.	3.1.	Frequency dependent (Phase) model representing Transmission lin	ne
			sections and spans	30
	3.	3.2.	Loss-Less Constant Parameter Distributed Line (CPDL) model	
			representing the transmission towers.	30
	3.	3.3.	Tower Grounding Resistance Model	33
	3.	3.4.	Line Insulators and Back Flashover Model	35
		3.3	3.4.1. Conventional Cap and Pin Insulator String	35
		3.3	3.4.2. Multi Chamber Insulator Arrester (MCIA) String	37
	3.	3.5.	Line Termination Model	40
	3.	3.6.	Multi-Chamber Insulator Arrester (MCIA) Model	40
		3.3	3.6.1. Multi Chamber System (MCS)	40
		3.3	3.6.2. Operating Principle of MCS	41
		3.3	3.6.3. Construction of MCIA	43
		3.3	3.6.4. Modelling of MCIA	46
	3.	3.7.	Lightning Stroke Current Generator	48
	3.	3.8.	Power Frequency Phase Voltage Generator	50

4.	Applicatio	on of The Methodology	51
	4.1. Intr	oduction	51
	4.2. Pov	ver Systems Computer Aided Design (PSCAD) modeling tool	51
	4.2.1.	PSCAD Graphical User Interface (GUI) window	51
	4.3. Cre	ation of sub models in PSCAD	53
	4.3.1.	Transmission line model	53
	4.3.2.	Transmission tower model	54
	4.3.3.	Tower grounding resistance model	55
	4.3.4.	Line insulator string with back flashover model	57
	4.3.5.	Power frequency phase voltage generator model	58
	4.3.6.	Line end termination model	59
	4.3.7.	Multi Chamber Insulator Arrester Model and the Back Flashover	
		Control Module	60
	4.3	3.7.1. Multi Chamber Insulator Arrester (MCIA) Model	60
	4.3	3.7.2. Back Flashover Control Module for MCIA	63
	4.3.8.	Lightning surge generator model	65
	4.4. Me	thod of simulation	67
	4.4.1.	Multiple Run component and variable settings	67
	4.4.2.	Simulation criteria	70
	4.4.3.	Project simulation settings	72
5. Results and Analysis		d Analysis	73
	5.1. Intr	oduction	73
	5.2. Tec	hnical Analysis	73
	5.2.1.	Introduction to Simulation Results	73
	5.2.2.	Back flashover minimum current variation results and analysis	74
	5.2	2.2.1. Results of simulations without MCIA protection (Step-1)	74
	5.2	2.2.2. Results of simulations with MCIA protection (Step-2)	76
	5.2.3.	Electrical and Mechanical Properties	80
	5.3. Ecc	onomic Analysis	80
	5.3.1.	Introduction	80
	5.3.2.	Cost Estimation for installing 06 MCIA Strings at Tower-09	81
	5.3.3.	Loss Estimation due to tripping of line.	81

	5.3	3.3.1. When Kukule Regulation Pond is spilling	82
	5.3	3.3.2. When Kukule Regulation Pond is not spilling	83
5	.3.4.	Calculation of Simple Pay Back Period	84
5	.3.5.	Indirect benefits of installing MCIA	85
6. Conc	lusio	n and Recommendations	86
6.1.	Cor	clusion	86
6.2.	Rec	ommendations	86
Referenc	es Li	st	88
Appendix-01 Present		Present Transmission System of Sri Lanka	92
Appendix-02		Transmission System of Sri Lanka (Single Line Diagram)	93
Appendix-03		Mathugama-Kukule, 132kV Transmission Line Parameters	94
Appendix-04		Typical Transmission Tower	95
Appendix-05		Tower Schedule	96
Appendi	x-06	Grounding Resistance Variation of Towers due to soil ionization	97
Appendi	x-07	Calculations of Tower Surge Impedance	99
Appendi	x-08	Technical Data for MCIA String	108
Appendi	x-09	Simulation Results	109
Appendi	x-10	Loss of Profit Calculation	115

LIST OF FIGURES

Figure 1.1	Time-resolved photograph of a lightning flash	3
Figure 1.2	Induced charges on transmission lines	4
Figure 1.3	Charge distribution of thunder clouds and types of lightning	6
Figure 1.4	Propagation of lightning channel	7
Figure 1.5	Isokeraunic level map of Sri Lanka	10
Figure 1.6	Geometry of lightning leader stroke and transmission line	11
Figure 1.7	Lightning Stroke Current Probability Distribution	13
Figure 1.8	Mathugama-Kukule, 132kV Transmission Line	15
Figure 1.9	Single Line Diagram of Transmission Lines in Southern Part	16
Figure 1.10	Regulation Pond of the Kukule Ganga Hydro Power Plant	16
Figure 1.11	Vicinity of the Kukule Ganga Hydroelectric Power Plant	17
Figure 1.12	Tower Footing Resistance Variation	20
Figure 1.13	Tower footing condition of the Tower-09	20
Figure 1.14	Elevation profile of the line	21
Figure 2.1	Comparison of Monthly Line Failures with IKL	24
Figure 3.1	Complete Transmission Line Model for Analysis	29
Figure 3.2	Frequency Dependent (Phase) Model in PSCAD	30
Figure 3.3	Constant Parameter Distributed Lie (CPDL) Model for Towers	31
Figure 3.4	Tower Grounding Resistance Model	34
Figure 3.5	Flashover voltage-time characteristic of 132kV line insulators	36
Figure 3.6	Insulator string and back flashover model	37
Figure 3.7	Logic diagram for back flashover control module for	
	conventional insulator string	37
Figure 3.8	Voltage-time curves of a 10 U120AD unit string and a MCIAS	38
Figure 3.9	Logic diagram for back flashover control module for MCIA string	39
Figure 3.10	Grounding Arrangement of a typical end termination model.	40
Figure 3.11	Multi Chamber System (MCS)	41
Figure 3.12	Cascading operation of MCS	42
Figure 3.13	MCIA based on a porcelain rod insulator used in 3 kV DC	
	railway overhead contact systems	44

Figure 3.14	U120D Glass MCIA	45
Figure 3.15	U120D Glass MCIA String	45
Figure 3.16	Electrical representation of Short-Gap Arcing Horn	46
Figure 3.17	Variation of the Ohmic Resistance of two MCIAs at its actuation	47
Figure 3.18	MCIA model in PSCAD software	48
Figure 3.19	Standard waveforms for lightning surge voltage and current	49
Figure 4.1	Working Space of PSCAD Software	52
Figure 4.2	Transmission Line Model (Remote End)	53
Figure 4.3	Transmission Line Component Parameter Configuration	54
Figure 4.4	General Line Geometry Data Input	55
Figure 4.5	Typical Tower Model creates in PSCAD	56
Figure 4.6	Tower Grounding Resistance Model	56
Figure 4.7	Insulator String Capacitor and Back Flashover Breaker Model	57
Figure 4.8	Back Flashover Control Module for conventional insulator string	
	implemented in PSCAD	57
Figure 4.9	Power Frequency Phase Voltage Generator Model	59
Figure 4.10	Line Termination model created in PSCAD	60
Figure 4.11	MCIA model created in PSCAD	61
Figure 4.12	Properties of the X-Y Transfer Function	61
Figure 4.13	Configuration of Spark Gap Properties	62
Figure 4.14	MCIA model current variation with time	63
Figure 4.15	MCIA model residual voltage variation with current	63
Figure 4.16	Back Flashover Control Module for MCIA string	
	implemented in PSCAD	64
Figure 4.17	MCIA String Capacitor and Back Flashover Breaker Model	65
Figure 4.18	Lightning Surge Generator Model created in PSCAD	65
Figure 4.19	8/20µs surge from the Created model	66
Figure 4.20	1.2/50µs surge from the Created model	67
Figure 4.21	Multiple-Run Simulation component of PSCAD	68
Figure 5.1	Typical view of an output data file	74
Figure 5.2	Simulation results with no MCIA protection for 8/20µS	
	Surge for the ground resistance of 9Ω	75

Figure 5.3	Simulation results with no MCIA protection for $1.2/50\mu$ S	
	Surge for the ground resistance of 9Ω	75
Figure 5.4	Simulation results with two MCIA protection on TOP phases for	
	$8/20\mu S$ Surge for the ground resistance of 9Ω	76
Figure 5.5	Simulation results with two MCIA protection on TOP phases	
	for $1.2/50\mu$ S Surge for the ground resistance of 9Ω	77
Figure 5.6	Simulation results with 04 MCIA on TOP and MIDDLE	
	phases for $8/20\mu S$ Surge for the ground resistance of 9Ω	78
Figure 5.7	Simulation results with 04 MCIA on TOP and MIDDLE	
	phases for $1.2/50\mu S$ Surge for the ground resistance of 9Ω	79

LIST OF TABLES

Table 1.1	Range of values for lightning parameters	12
Table 1.2	Maximum power and the Annual power generation	18
Table 1.3	CEB specification for a single insulator disc	19
Table 2.1	Monthly Line Failures and IKL	23
Table 3.1	Calculated parameters for a KMDL Tower model	33
Table 4.1	Range of values used for variables in Multiple-Run component	68
Table 4.2	Simulation criteria for step-1	70
Table 4.3	Simulation criteria for step-2	71
Table 5.1	Properties of the Conventional Insulator String and MCIA String	80
Table 5.2	Loss of Profit (if Generation loss is Substitute) for Kukule	
	Regulatory Pond is Spilling	83

LIST OF ABBREVIATIONS

BFR	Back Flashover Rate
CEB	Ceylon Electricity Board
CFO	Critical Flashover
CIGRE	Conseil International des Grands Réseaux Électriques
CPDL	Constant Parameter Distributed Line
EMTDC	Electromagnetic Transients including DC
EMTP	Electromagnetic Transients Program
GFD	Ground Flash Density
GSW	Galvanized Steel Wire
GUI	Graphical User Interface
GW	Ground Wire
IEEE	Institute of Electrical and Electronics Engineers
IKL	Isokaraunic Level
KMDL	Kukule Mathugama Double Circuit Line
MCIA	Multi Chamber Insulator Arrester
MCS	Multi Chamber System
OPGW	Optical Fiber Ground Wire
PSCAD	Power System Computer Aided Design
TLA	Transmission Line Arrester

LIST OF APPENDICES

Appendix-01	Present Transmission System of Sri Lanka	92
Appendix-02	Transmission System of Sri Lanka (Single Line Diagram)	93
Appendix-03	Mathugama-Kukule, 132kV Transmission Line Parameters	94
Appendix-04	Typical Transmission Tower	95
Appendix-05	Tower Schedule	96
Appendix-06	Grounding Resistance Variation of Towers due to soil ionization	97
Appendix-07	Calculations of Tower Surge Impedance	99
Appendix-08	Technical Data for MCIA String	108
Appendix-09	Simulation Results	109
Appendix-10	Loss of Profit Calculation	115