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ABSTRACT 

 

Due to the expansion of semantic web technologies, Resource Description frameworks (RDFs) and triple 

stores became more prevalent. Since there is a huge amount of RDF data available, managing them in a 

proper and efficient manner is challenging. Many Triple stores were implemented to support the queries 

related to semantic web. The queries submitted in this context is called as SPARQL queries which are 

read dominant. These SPARQL queries needs to be answered quickly and efficiently. RDF data is stored 

in <subject, predicate, object> form and which is called as a triple. A typical triple store contains billions 

of triples in the above form. 
 
Much work has been devoted to handle RDF data efficiently. But state of the art systems still cannot 

handle web scale RDF data effectively. Most existing systems store and index data in particular ways. For 

an example some systems uses relational tables, bitmap matrix to optimize SPARQL query processing on 

RDF data. This relational approach suffers from high Join cost and large intermediate results. Some have 

used prolog inference engine to handle RDF data. This also have some limitations given a huge amount of 

RDF data. 
 
 
A modern approach is to model the RDF data in its native Graph form. This approach requires 
new algorithms to build the graph and graph exploration techniques to answer SPARQL queries. 
This yields no join cost and very small intermediary results. Also this approach yields less query 

execution time for complex SPARQL queries. 

 
The objective of this research is to build a graph based triple store for Apache Cassandra. It uses Apache 

Jena Graph Processing framework to build and explore the RDF graph. Towards the end, it conducts a 

performance benchmark of this RDF store with some other RDF store implementations using DBPedia 

dataset and sample queries and proves  that this graph based approach outperforms other RDF store 

implementations.  
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The Introduction section is organized as follows. First some basic concepts related to the RDF 

data such as triples, SPARQL queries etc is explained. Then the challenges faced by the existing 

RDF data management systems are elaborated. This opens up avenues to discuss about new 

approaches to manage RDF data efficiently. One of such a new approach is called Graph 

processing frameworks which is elaborated next. The problem/opportunity is explicitly stated 

next while the conclusion section pays attention on objectives of the research. 

 

1.1 Semantic web, RDF and Triples 

RDF [1] data is becoming increasingly more available: The semantic web movement towards a 

web 3.0 world is proliferating a huge amount of RDF data. Commercial search engines including 

Google and Bing are pushing web sites to use RDF to explicitly express the semantics of their 

web contents. 

 

Before moving forward some basic concepts related to RDF is explained here. An RDF data set 

consists of statements in the form of (subject, predicate, object). Each statement, also known as a 

triple, is about a fact, which can be interpreted as subject has a predicate property whose value is 

object. For example, a movie knowledge base may contain the triples[2] as shown in figure 1.1. 

 

 

 
 

Figure 1.1: Set of triples 

 

These triples can be stored in different ways such as relational tables, Prolog based inference 

engines or in its native graph form. Those are different approaches in building triple stores. 

 

An RDF dataset can be considered as representing a directed graph, with entities (i.e. subjects 

and objects) as nodes and relationships (i.e. predicates) as directed edges [3]. SPARQL [4] is the 

standard query language for retrieving data stored in RDF format. 
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1.2 Challenges faced by existing RDF management systems. 

Mainly RDF data management systems are facing two challenges which are system scalability 

and generality. The challenge of scalability is particularly important. Tremendous efforts have 

been devoted to build high performance RDF systems and SPARQL engines. But still the 

scalability remains as the biggest hurdle. Mainly RDF data is highly connected graph data, and 

SPARQL queries are like sub graph matching queries. But most approaches model RDF data as a 

set of triples, and use RDBMS for storing, indexing, and query processing. These approaches do 

not scale as processing a query often involves a large number of join operations that produce 

large intermediate results. Several distributed RDF systems such as SHARD [5], YARS [6] were 

introduced recently. However, they still model RDF data as a set of triples. 

 

The second challenge lies in the generality of RDF systems. State-of-the-art systems are not able 

to support general purpose queries on RDF data. In fact, most of them are optimized for 

SPARQL only, but a wide range of meaningful queries and operations on RDF data cannot be 

expressed in SPARQL. 

 

There are few distributed in-memory RDF systems that are capable of handling web scale RDF 

data (billion or even trillion triples). Unlike existing systems that use relational tables (triple 

stores) or bitmap matrices to manage RDF, these systems model RDF data in its native graph 

form (i.e., representing entities as graph nodes, and relationships as graph edges). Such a 

memory-based architecture that logically and physically models RDF in native graphs opens up a 

new paradigm for RDF data management. It not only leads to new optimization opportunities for 

SPARQL query processing, but also supports more advanced graph analytics on RDF data [1]. 

 

Storing RDF graphs in disk-based triple stores is not a feasible solution since random accesses 

on hard disks are notoriously slow. Although sophisticated indices can be created to speed up 

query processing, they introduce excessive join operations, which become a major cost for 

SPARQL query processing [2]. 

 

Some data models RDF data as an in-memory graph. Naturally, it supports fast random 

accesseson the RDF graph. But in order to process SPARQL queries efficiently, the issues such 
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as how to reduce the number of join operations, and how to reduce the size of intermediary 

results needs to be addressed. 

 

1.3 New approaches in managing RDF data efficiently 

Some researches addressed novel techniques that use efficient in-memory graph exploration 

instead of join operations for SPARQL processing. In one approach SPARQL query was 

decomposed into a set of triple patterns, and conduct a sequence of graph explorations to 

generate bindings for each of the triple pattern. The exploration-based approach uses the binding 

information of the explored sub graphs to prune candidate matches in a greedy manner. In 

contrast, previous approaches isolate individual triple patterns, that is, they generate bindings for 

them separately, and make excessive use of costly join operations to combine those bindings, 

which inevitably results in large intermediate results [2]. 

 

These new query paradigm greatly reduces the amount of intermediate results, boosts the query 

performance in a distributed environment, and makes the system scale. Those new systems 

achieves several orders of magnitude speed-up on web scale RDF data over the state-of-the-art 

RDF systems. 

 

Since these new approaches models data as a native graph, which enables a large range of 

advanced graph analytics on RDF data. For example, random walks, regular expression queries, 

reachability queries, distance oracles, community searches can be performed on web scale RDF 

data directly [2]. 

 

Some approaches build a parallel in-memory triple store designed to address the need for 

efficient graph stores that quickly answer queries over large-scale graph data. These systems 

borrow from the database literature to investigate efficient means for storing large graphs and 

retrieving sub graphs, which are usually defined via a pattern matching language such as 

SPARQL. Other approaches focus on adapting triple stores to a distributed setting. 

 

Trinity.RDF [2] is a graph engine for SPARQL queries that was built on the Trinity distributed 

graph processing system. To answer queries, Trinity.RDF represents the graph with adjacency 

lists and combines traditional query processing with graph exploration. 
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Joins are the major operator in SPARQL query processing. Trinity.RDF outperforms existing 

systems by orders of magnitude because it replaces expensive join operations by efficient graph 

exploration [2]. 

 

Another approach introduced by set of researchers was named as TripleRush [7], a triple store 

which is based on an index graph, where a basic graph pattern SPARQL query is answered by 

routing partially matched query copies through this index graph. TripleRush routes query de- 

scriptions to data. For this reason, TripleRush does not use any joins in the traditional sense but 

searches the index graph in parallel [7]. 

 

TripleRush is built on top of the distributed and parallel graph processing framework known as 

SIGNAL/COLLECT. [8] The index structure is represented as a graph where each index vertex 

corresponds to a triple pattern. Partially matched copies of a query are routed in parallel along 

different paths of this index structure [7]. 

 

TripleRush takes less than a third of the time to answer queries compared to the fastest of the 

three state-of-the-art triple stores. On individual queries TripleRush is up to three orders of 

magnitude faster than other triple stores [7]. This system mainly focuses on investigating 

efficient means for storing large graphs and retrieving subgraphs, which are usually defined via 

pattern matching languages such as SPARQL. Also it focuses on adapting a triple store to a 

distributed setting. MapReduce has been used to aggregate results from multiple single node 

RDF stores in order to support distributed query processing. 

 

Distributed graph processing frameworks can offer more flexibility for scalable querying of 

graphs. Some of the triple stores built on top of abstractions such as SIGNAL/COLLECT in 

TripleRush. 

 

TripleRush, is a triple store which is based on an index graph, where a basic graph pattern 

SPARQL query is answered by routing partially matched query copies through this index graph. 

Whilst traditional stores pipe data through query processing operators, TripleRush routes query 

descriptions to data. For this reason, TripleRush does not use any joins in the traditional sense 



6 
 

but searches the index graph in parallel. TripleRush is implemented on top of Signal/Collect, 

which is a scalable, distributed, parallel and vertex-centric graph processing framework [7]. 

 

It has experimentally been shown that TripleRush outperforms the other triple stores by a factor 

ranging from 3.7 to 103 times in the geometric mean of all queries. Also the memory usage for 

TripleRush, which is comparable to that of traditional approaches. 

 

 

1.4 Existing Graph Processing Frameworks. 

SIGNAL/COLLECT [8] is a parallel and distributed large-scale graph processing system written 

in Scala. The model is suitable for expressing data-flow algorithms, with vertices as processing 

stages and edges that determine message propagation. In contrast to other systems Signal/Collect 

supports different vertex types for different processing tasks. Signal/Collect also supports 

features such as bulk-messaging and Pregel-like message combiners to increase the message- 

passing efficiency [7].  

 

Signal/Collect supports asynchronous scheduling, where different partial computations progress 

at their own pace, without a central bottleneck. The system is based on message-passing, which 

means that no expensive resource locking is required. These two features are essential for low- 

latency query processing [7]. 

 

Many systems such as SW-Store, Hexastore and RDF-3x are single machine systems. But 

Trinity is a completely distributed system which spans across multiple nodes. As the size of RDF 

data keeps soaring, it is not realistic for single-machine approaches to provide good performance. 

Recently, several distributed RDF systems were introduced to alleviate these challenges. 
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1.5 The Problem/Opportunity 

Apache Cassandra is a Distributed, No-SQL [9], multi-tenant and multi data centric database 

[10] which is being used heavily these days. Building a scalable triple store for Apache 

Cassandra exponentially increase the value of Cassandra in semantic web domain. There are 

more triple stores built for relational databases. Most of these triple stores suffer from 

performance and scalability issues which are inherent to relational model due to costly joins and 

large intermediate results. But by building a triple store for a distributed No-SQL database like 

Apache Cassandra leads to alleviate these issues and build a scalable RDF store which 

outperforms RDF stores built on top of Relational databases. Since Apache Cassandra is used by 

eBay, Twitter, Cisco [11] etc it has large active data set. The largest known Cassandra cluster has 

over 300 TB of data in over 400 machines. This motivates us to build a distributed, scalable RDF 

store to answer user queries related to them efficiently. 

 

Though this implementation is specific to Apache Cassandra persistence layer, any user can 

implement their own Data Access Layer implementation to fetch RDF data from any database or 

file system and pass those data to the RDF graph processing engine to build an in-memory graph. 

Therefore if someone already has some RDF data in any format, they can plug their data sources 

easily to this implementation and get the benefits of this graph based approach instead of costly 

joins. That implies our solution is much more extensible and reusable. 

 

1.6 Objectives 

The main objective of this research is to build a scalable, in memory RDF store for Apache 

Cassandra. Apache Cassandra is a No-SQL and distributed database system. Even though the 

current implementation is done only to fetch RDF data from Apache Cassandra, any other RDF 

data source can be easily plugged with this by merely implementing their own Data Access layer 

implementation to fetch the data from any custom source and switching the data access 

implementation used inside the graph processing engine. The custom source can be any other 

RDBMS, file system resource etc.  The plan is to implement an in memory Graph based RDF 

store for a given set of triples stored in Apache Cassandra. An algorithm needs to be 

implemented to build an in memory graph given a set of triples. Subjects and objects are 

represented as nodes in the graph whereas predicates are represented as directed edges in the 

graph. 
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Given a SPARQL query an algorithm has to be implemented to explore the directed in memory 

graph and find the answer to that query. This algorithm should be designed carefully so that the 

way it explores the graph should NOT deteriorate the performance while answering the 

SPARQL queries. While answering the SPARQL queries, the order of exploration plays an 

important role. 

 

This graph based approach is chosen since it does NOT incur any join costs and the intermediate 

results are much smaller, which is almost negligible compared to the relational approach. After 

the successful implementation of the RDF graph building and graph exploration algorithms a 

benchmark needs to be conducted. This benchmark compares the newly implemented system 

with existing RDF stores and tells whether the new approach outperforms the existing ones or 

not. 

 

These solutions are planned to be implemented using Java language. But this might have some 

impact on performance. Ideal language for this would be C language. But given the Object 

oriented high level API support in java language and due to the high familiarity Java language is 

used instead of C. But that selection will still lead to some performance impact which may be 

discovered during the benchmarking stage of the research work. 
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2 LITERATURE REVIEW 
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The literature review section is organized as follows. First some basic concepts pertaining to the 

RDF store is covered. Since the triple store is built on Apache Cassandra, it is explained next. 

Some time is devoted to elaborate different approaches to build a triple store today. Since 

benchmarking plays an important role in this context, next section is dedicated to explain 

benchmarking RDF stores for performance evaluation and which ultimately concludes the 

literature review section. 

 

2.1. RDF Store - What, Why and How 

Resource Description Framework (RDF) was designed with the initial goal of developing 

metadata for the Internet. [12] The vision of the Semantic Web has brought about new challenges 

at the intersection of web research and data management. One fundamental research issue at this 

intersection is the storage of the Resource Description Framework (RDF) data: the model at the 

core of the Semantic Web. The core of the Semantic Web is built on the Resource Description 

Framework (RDF) data model. RDF provides a simple syntax, where each data item is broken 

down into a <subject, predicate, object> triple. This can be interpreted as subject has a predicate 

property whose value is object [2]. A typical triple store holds a multi millions or billions of such 

triples within its RDF triple data model. Figure 2.1 shows some sample triple patterns. As an 

example take the pattern <person1, name, mike>. In this person1 is the subject, Mike is the 

object. Name is the predicate property here. This triple can be read like, Person1 has a name and 

its value is Mike. Actually the predicate describes the relationship between the subject and 

object. 

 

Efficient and scalable management of RDF data is a fundamental challenge at the core of the 

Semantic Web. Many popular RDF storage solutions use relational databases to achieve this 

scalability and efficiency. Figure 2.1 shows different RDF storage mechanisms available in 

relational DBMS. 

 

SPARQL is the typical query language which is submitted to an RDF store. The SPARQL query 

submitted here is “Find people who has both a name and a website.” This SPARQL query is 

more or less same as the SQL query sent to a typical relational database. These type of queries 

are more prominent in Semantic web especially in search engines like Google, yahoo and bing 
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etc. The main purpose of a triple store is to answer these queries efficiently. A triple store can be 

built on top of any DBMS, File system etc. It can be a relational DBMS, post Relational DBMS, 

No-SQL database, distributed file system etc. But building a scalable, high performance RDF 

store is a huge challenge and it is not an easy task. This challenge is going to be addressed 

throughout this paper. 

 

Triple stores are the backbone of increasingly many Data Web applications. It is thus evident that 

the performance of those stores is mission critical for individual projects as well as for data 

integration on the Data Web in general [13]. With the W3C SPARQL standard [4] a vendor- 

independent query language for the RDF triple data model exists. SPARQL is based on powerful 

graph matching allowing to bind variables to fragments in the input RDF graph. In addition, 

operators akin to the relational joins, unions, left outer joins, selections and projections can be 

used to build more expressive queries [14]. 

 

It is evident that the performance of triple stores offering a SPARQL query interface is mission 

critical for individual projects as well as for data integration on the Web in general. 
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Figure . 2.1. RDF Storage Example [15] 

 

 

 

2.2 Apache Cassandra 

Apache Cassandra is a Distributed, high performance, extremely scalable, fault tolerant (i.e. no 

single point of failure), post relational database solution [11]. Post relational means that 

Cassandra is not a typical relational database. Cassandra can serve as both operational data store 

for online/transactional applications, and as a read intensive database for business intelligence 

systems. Cassandra is basically a combination of Google Bigtable and amazon Dynamo. 

 

Cassandra was designed with the understanding that system/hardware failures can occur. It was 

designed as a peer to peer distributed database management system as shown in the figure 2.2. 

All the nodes are the same and there’s no concept of a master node or main node here. Cassandra 

automatically partitions the data you write to the database across all the nodes in the clusters and 
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you control the data replication within Cassandra to ensure fault tolerance. That means you 

determine how many copies of the piece of data you want duplicated on the nodes that are 

participating in a particular database cluster. Because of the peer to peer design Cassandra is read 

and write anywhere style architecture. You can read from and write to any node in Cassandra. 

Cassandra uses a gossip protocol to communicate with the various nodes participated in the 

cluster. When you write data to Cassandra it is first written into the commit log to ensure the 

durability. Then data is written to an in memory structure called as a memtable. When that 

memtable becomes full it then pushes to the disk. 

 

 

 
 

Figure. 2.2. Peer to Peer architecture of Apache Cassandra [10] 

 

The schema used in Cassandra is a row-oriented column structure design. In Cassandra there is a 

concept called a keyspace which is similar to a database in DBMS world. Column family in 

Cassandra is the core object which is used to manage the data and this is somewhat similar to a 

relational database table but it is more flexible/dynamic. Columns and rows in a column family 

can be indexed, you can have a primary key index or other columns may be indexed as well. 

 

Cassandra has variety of different features and benefits. Cassandra is very well known for being 

Big-Data capable. You can add new nodes to the cluster online and that gives you linear 
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performance gains. Cassandra offers no single point of failure. Cassandra is also capable of 

replicating data between different racks. It is smarter enough to position particular piece of data 

in one rack and a redundant copy in another rack. If the first rack fails the data is actually safe on 

the second rack. 

 

Cassandra offers very easy replication capability. Everything is transparently handled by 

Cassandra. This replication can be done within a single data center or multiple datacenters. It is 

often easy to replicate data among different geographically dispersed data centers and alike. 

Because of the design Cassandra exploits all the benefits that you would expect in cloud 

computing. 

 

There’s no need for special type of secondary caching layer and the programming that goes with 

it in Cassandra. Cassandra also offers what is called tunable data consistency. That means it 

offers options between very strong data consistency and eventual consistency depending on the 

use case. This can be handled on a per operation basis. If you have a particular transaction that 

you want to ensure written to all the nodes you can make sure that happens. All nodes responds 

or the actual write fails. Whereas in some use cases where it might be ok to have write goes to 

one node and eventually propagates to other nodes. You can control that data consistency so that 

it is called as tunable data consistency. Also this tunable data consistency handles multiple 

datacenter operations. 

 

Cassandra uses column family to store the data inside the Cassandra keyspace as shown in figure 

2.3. This schema withcolumn family is much more dynamic and flexible than the schema can be 

seen in a relational database. It handles structured, semi-structured and unstructured data. Any 

modification to the column family can be done online without any downtime. Data in Cassandra 

can be indexed by a primary key as well as secondary indexes that can be created on various 

columns inside the column family. Cassandra also offers very strong data compression. It uses 

Google’s snappy data compression algorithm. Internal tests at datastax show up to 80% + 

compression for row data in some use cases. There is no performance penalty due to the 

compression. Overall performance improves due to less physical I/O that occurs with 
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compressed data. Cassandra uses CQL which complements to traditional SQL language in 

relational world. 

 
Figure 2.3. Keyspace in Cassandra [11] 

 

 

All nodes in the cluster communicate with each other through the gossip protocol. If a node goes 

down, the cluster detects the failure and automatically routes user requests away from the failed 

machine. Once the failed node is operational again, it rejoins the cluster, and its data is brought 

back up to date via the other nodes. 

 

Cassandra is a logical choice for enterprises that need high degrees of uptime, reliability, and 

very fast performance. Leading companies like Netflix, Twitter, Cisco, HP, Motorola, 

Rackspace, Ooyala, Openwave, and many more rely upon Cassandra to manage the data needs of 

their critical production applications. [16] 
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2.3 Different approaches to build a triple store 

2.3.1 Relational Approach 

The main challenges faced by most of the RDF data management systems are scalability and 

efficiency. Many different approaches exist to manage RDF data, each with its own advantages 

and disadvantages. Efficient and scalable management of RDF data is a fundamental challenge at 

the core of the Semantic Web. Many popular RDF storage solutions use relational databases to 

achieve this scalability and efficiency. Many state-of-the-art RDF systems store RDF data as a 

set of triples in relational tables, and therefore, they rely excessively on join operations for 

processing SPARQL queries. 

 

The simplest way to store RDF triples comprises a relation/table of three columns, one each for 

subjects, predicates and objects. However, this approach suffers from lack of scalability and 

abridged query performance, as the single table becomes long and narrow when the number of 

RDF triples increases. The approach is not scalable since the table is usually located on a single 

machine. In addition, query performance is diminished since a query requires several self-joins 

with the same table. [17] 

 

In general, query processing consists of two phases [18]: The first phase is known as the scan 

phase. It decomposes a SPARQL query into a set of triple patterns. For an example consider the 

Set of triples shown in Figure 1.1. Suppose we need to retrieve the cast of an award-winning 

movie directed by an award-winning director using the following query [2]. 

 

SELECT ?movie , ? actor WHERE { 

? director wins ? award . 

? director directs ? movie . 

? movie has_award ? movie_award . 

? movie casts ? actor .} 

 

 

The triple patterns for the above query can be written as ?director wins ?award, ?director 

directs ?movie, ?movie has award ?movie award, and ?movie casts ?actor. For each triple 

pattern tables or indices are scanned to generate bindings. The base tables that contain bindings 
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are shown in the table 1. These base tables are joined to find the answers to the queries. 

 

 

 

 

 

 
Table 1: Base tables and bound variables. [2] 

 

 

Some sophisticated techniques are used to optimize the order of joins to improve the query 

performance. Still this approach has two inherent limitations. (1) It uses costly join operations. 

(2) The scan-join process produces large redundant intermediary results. Most intermediary join 

results are produced in vain. Moreover useless intermediate results are detected at the later 

stages of the join process. 

 

2.3.2 RDF data centric storage 

RDF data centric storage is one way of alleviating these tradeoffs inherent in relational model. It 

improves the relational approach by (1) reducing, on average, the need to join tables in a query 

by storing as much RDF data together as possible, and (2) reducing the need to process extra data 

by tuning extra storage (i.e., null storage) to fall below a given threshold. This approach involves 

two phases: clustering and partitioning. 

 

The clustering phase scans the RDF data to find groups of related properties (i.e., properties that 

always exist together for a large number of subjects). Properties in a cluster are candidates for 

storage together in an n-array table. Likewise, properties not in a cluster are candidates for 

storage in binary tables. 

 

The partitioning phase takes clusters from the clustering phase and balances the tradeoff between 

storing as many RDF properties in clusters as possible while keeping null storage to a minimum 
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(i.e., below a given threshold). 

 

By considering all these tradeoffs this approach comes up with an optimal schema to manage 

EDF data efficiently. The data centric schema creation approach improves query processing 

compared to previous approaches. Results show that the data centric approach achieves orders of 

magnitude performance improvements over the triple store. 

 

2.3.3 RDF graph based approach 

This is the new approach adopted recently that greatly improves the performance of SPARQL 

query processing. The idea is to use graph exploration instead of joins. Set of triples shown in 

Figure 1.1 can be mapped to the RDF graph shown in figure 2.4. 

 

 

Figure 2.4: An example RDF graph [2] 

 

Using this approach unnecessary intermediary results can be pruned down efficiently. The above 

intuition is only valid if graph exploration can be implemented more efficiently than join. If the 

RDF graph is managed by relational tables, triple stores, or disk-based key-value stores, then join 

operations needs to be used to implement graph explorations which means graph exploration 

cannot be more efficient than join. 

 

This approach uses native graphs to model RDF data. The order of exploration is important. 

Starting with the highly selective pattern can prune a lot of unnecessary candidate bindings. 

Thus, query plans need to be carefully optimized to pick the optimal exploration order, which is 

not trivial. 

 

One graph based triple store implementations is known as Trinity RDF. Trinity model and store 

RDF data as a directed graph. Each node in the graph represents a unique entity, which may 
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appear as a subject and/or an object in an RDF statement. Each RDF statement corresponds to an 

edge in the graph. Edges are directed, pointing from subjects to objects. Furthermore, edges are 

labeled with the predicates. To ensure fast random data access in graph exploration, RDF graphs 

are stored in memory. 

 

Web scale RDF graph may contain billions of entities (nodes) and trillions of triples. It is 

unlikely that a web scale RDF graph can fit in the RAM of a single machine. Trinity.RDF is 

based on Trinity [2], which is a distributed in-memory key-value store. 

 

Trinity RDF randomly partitions an RDF graph across a cluster of commodity machines by 

hashing on the nodes. Thus, each machine holds a disjoint part of the graph. Given a SPARQL 

query, a search is performed in parallel on each machine. During query processing, machines 

may need to exchange data as a query pattern may span multiple partitions. Figure 2.5 shows the 

high level architecture of Trinity.RDF. 

 

 
Figure 2.5: Distributed query processing framework [2] 

 

 

 

A user submits his query to a proxy. The proxy generates a query plan and delivers the plan to all 

the Trinity machines, which hold the RDF data. Then, each machine executes the query plan 
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under the coordination of the proxy. When the bindings for all the variables are resolved, all 

Trinity machines send back the bindings (answers) to the proxy where the final result is 

assembled and sent back to the user. The proxy plays an important role in the architecture. Each 

Trinity machine not only communicates with the proxy. They also communicate among 

themselves during query execution to exchange intermediary results. All communications are 

handled by a message passing mechanism built in Trinity. 

 

SPARQL query Q is represented by a query graph G. Nodes in G denote subjects and objects in 

Q, and directed edges in G denote predicates. Figure 2.6 shows the query graph corresponding to 

the example query, and lists the 4 triple patterns in the query as q1 to q4. 

 

 
Figure 2.6 The query graph [2] 

 

 

With G defined, the problem of SPARQL query processing can be transformed to the problem of 

subgraph matching. However most existing RDF query processing and subgraph matching 

algorithms rely excessively on costly joins, which cannot scale to RDF data of billion or even 

trillion triples. Instead Trinity uses efficient graph exploration in an in-memory key-value store 

to support fast query processing. 

 

The exploration is conducted as follows: First SPARQL query Q is decomposed into an ordered 

sequence of triple patterns: q1; ... ; qn. Then, matches for each qi is found, and from each match, 
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the graph is explored to find matches for qi+1. Furthermore, the exploration is carried out on all 

distributed machines in parallel. In the final step, matchings for all the individual triple patterns 

are gathered to a centralized query proxy and combined together to produce the final result. 

 

Another graph based approach to build an RDF store is known as TripleRush. It is a parallel in 

memory triple store which is designed to answer the queries quickly over large scale graph data. 

TripleRush is built on top of a parallel graph processing framework known as 

SIGNAL/COLLECT. TripleRush is a store which is based on an index graph structure. The 

basic SPARQL query is answered by routing this index graph structure. Instead of using 

traditional joins like other stores , TripleRush searches the index graph in parallel. 

 

TripleRush is a highly parallel triple store, based on graph-exploration. SIGNAL/COLLECT is a 

scalable graph processing [19] framework which is used as a foundation for TripleRush. 

SIGNAL/COLLECT [8] is a parallel and distributed large scale graph processing system written 

in SCALA. The TripleRush architecture is based on three different types of vertices. Index and 

triple vertices form the index graph. In addition, the TripleRush graph contains a query vertex for 

every query that is currently being executed. 
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Figure 2.7: TripleRush index graph that is created for the triple vertex [7]. 

 

 

Triple vertices are illustrated on level 4 of Figure 2.7 and represent triples in the database. Each 

contains subject, predicate, and object information. 

 

Index vertices, illustrated in levels 1 to 3 in Figure 2.7, represent triple patterns and are 

responsible for routing partially matched copies of queries (referred to as query particles) 

towards triple vertices that match the pattern of the index vertex. Index vertices also contain 

subject, predicate, and object information, but one or several of them are wildcards. For example, 

in Fig. 2.7 the index vertex [ *inspired * ] (in the middle of the gure on level 2) routes to the 

index vertex [ *inspired Dylan ], which in turn routes to the triple vertex [ Elvis inspired Dylan ]. 

 

Query vertices, depicted in the example in Figure 2.7, are query dependent. For each query that 

is being executed, a query vertex is added to the graph. The query vertex emits the rst query 

particle that traverses the index graph. All query particles successfully matched or not eventually 
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get routed back to their respective query vertex. Once all query particles have succeeded or failed 

the query vertex reports the results and removes itself from the graph. 

 

The index graph is built by adding a triple vertex for each RDF triple that is added to TripleRush. 

These vertices are added to Signal/Collect, which turns them into parallel processing units. Upon 

initialization, a triple vertex will add its three parent index vertices (on level 3) to the graph and 

add an edge from these index vertices to itself. 

 

When an index vertex is initialized, it adds its parent index vertex, as well as an edge from this 

parent index vertex to itself. Note that the parent index vertex always has one more wildcard than 

its child. The construction process continues recursively until the parent vertex has already been 

added or the index vertex has no parent. In order to ensure that there is exactly one path from an 

index vertex to all triple vertices below it, an index vertex adds an edge from at most one parent 

index vertex. 

 

 
Figure 2.8 Query execution on the relevant part of the index that was created for the triples [ 

Elvis inspired Dylan ] and [ Dylan inspired Jobs ]. [7] 

 

TripleRush is designed for the efficient parallel routing of messages to triples that correspond to 

a given triple pattern. All vertices that form the index structure are active parallel processing 

elements that only interact via message passing. 

 

A query is defined by a list of SPARQL triple patterns. Each query execution starts by adding a 

query vertex to the graph. Upon initialization, a query vertex emits a single query particle. A 

query particle consists of the list of unmatched triple patterns, the ID of its query vertex, a list of 
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variable bindings, a number of tickets, and a flag that indicates if the query execution was able to 

explore all matching patterns in the index graph. 

 

The emitted query particle is routed to the matching index vertex that matches the first 

unmatched triple pattern. The index vertex then sends the copies of the query particle to all of its 

immediate child vertices. 

 

When the query particle encounters a triple pattern, it matches the next unmatched pattern to its 

triple vertex. If this yields success, then variable bindings are created and existing triple patterns 

are updated with the newly found bindings. The query particle gets routed back to the query 

vertex only if either all the triple patterns are matched or a match failed. In all the other instances 

the query particle is sent to either an index or triple vertex which conducts matching intern. 

 

If an index vertex cannot be found for the given id, then the failed query is sent back to the query 

vertex by undeliverable message handler. Ultimately somehow the query particle is sent back to 

the query vertex, whether a match is found or not. Each query particle is associated with a 

number of tickets, to keep track of its query execution state. When the query execution is 

completed, the query vertex returns the variable bindings for all the successfully matched query 

particles and removes itself from the query graph. 

 

For an example which describes a full query execution, consider the graph and queries shown in 

the figure 2.8. The execution is started from the query vertex. 

 

1. First the query vertex is added to the graph. Just after that, it emits a query particle which 

is depicted in blue. Then the query particle is routed to the matching index vertex with 

the id [* inspired *]. 

2. The query particle is split into two inside the index vertex. For the purpose of illustration 

one of them is colored in green whereas the other one is colored in orange. Both the 

particles are sent down to the immediate index vertices. 

3. The very first pattern in the green particle is matched with the triple vertex with the id [ 

Elvis inspired Dylan ]. The triple vertex then sends the updated particle (unmatched 
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=[Dylan inspired ?Z ]; with the bindings = f ?X=Elvis, ?Y=Dylan g) to the index vertex 

with ID [ Dylan inspired * ]. 

4. From the index vertex, the green particle is routed down to the triple vertex [ Dylan 

inspired Jobs ], which binds ?Z to Jobs. As there are no more unmatched triple 

patterns,the triple vertex routes the particle containing successful bindings for all 

variables back to its query vertex. 

5. The first pattern of the orange particle gets matched in the triple vertex [ Dylan inspired 

Jobs ]. The triple vertex sends the updated particle (unmatched = [ Jobs inspired ?Z ]; 

bindings = f ?X=Dylan, ?Y=Jobs g) to the index vertex with ID [ Jobs inspired * ]. Since 

there is no index vertex with that id, the message cannot be delivered. 

6. The query vertex receives both the successfully bound green and the failed orange 

particle. Query execution has finished, because all tickets that were sent out with the 

initial blue particle have been received again. The query vertex reports the successful 

bindings f ?X=Elvis, ?Y=Dylan, ?Z=Jobs g and then removes itself from the graph. 

 

 

2.3.4 Hybrid Approaches 

 

There are few new hybrid approaches exist to store, index and query RDF data in triple stores 

efficiently. Graph structure of the RDF data is helped to reduce the join cost while manipulating 

them. The idea is to partition RDF data into overlapped groups and each group is given a unique 

identity. These RDF data then stored in a triple table with one more columns to store the group 

identity for each triple. The join operation is performed only within a given group, such a way 

that it reduces the join cost drastically. The SPARQL query execution cost can be minimized via 

this approach. Though RDF data representation is flexible in typical triple stores, it potentially 

results in serious performance issues since RDF queries involve intensive self-joins over the 

triple table. The new hybrid approach is going to address these issues in a typical RDF 

environment. 

 

For an example instance, consider the Figure 2.9 depicted below. This shows that the traditional 

approach ends up with a fairly high join cost. 
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The new approach partitions the RDF graph into three groups as shown in dotted lines in Figure 

2.10 below. An additional column is added to the triple table which refers to the unique group id 

value. Join operation is conducted only within one group, and in between the groups joins are 

restricted. This yields very less join cost while answering the SPARQL queries. A SPARQL 

query is decomposed into smaller sub-queries, and for each sub query is mapped into a RDF 

group using the signature tree index. 

 

 

 

 
Figure 2.9: A Motivated Example. [20] 

 

 

 
Figure 2.10: Newly Proposed Idea. [20] 
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2.4 Benchmarking RDF stores for performance evaluation 

Triple stores are the backbone of increasingly many Data Web applications. It is evident that the 

performance of those stores is mission critical for individual projects as well as for data 

integration on the Web in general. Assessing the performance of current triple stores is, 

therefore, important to observe weaknesses and strengths of current implementations [27].  There 

are different ways of measuring the performance of triple stores offering a SPARQL query 

interface. It is consequently of central importance during the implementation of any Data Web 

application to have a clear picture of the weaknesses and strengths of current triple store 

implementations [14]. 

 

There are few SPARQL benchmarking [22] efforts such as LUBM [23], BSBM [24] and SP2 

[25] [276 all of which resemble relational database benchmarks. The data structures behind these 

benchmarks are basically relational data structures. But there are heterogeneous RDF data stores 

being used today. Therefore some of those RDF stores does not follow orthodox relational 

approach and even cannot be represented in that way. DBPSB is a general SPARQL benchmark 

procedure, which is applied to the DBpedia knowledge base. Therefore DBpedia can be used to 

measure the performance of both relational and non-relational RDF stores. 

 

The main idea is to come up with a generic SPARQL benchmarking methodology. The very first 

step of benchmarking process is to generate the dataset. Generation of a suitable dataset is a 

crucial step in every benchmarking. The generated dataset should resemble the original data as 

much as possible. The data generation process should allow generating knowledge bases of 

various sizes ranging from smaller to larger. The data generation process should be easily 

repeatable with new versions of the considered dataset. 

 

The second step is Query analysis and clustering which detects prototypical queries sent to the 

SPARQL endpoint. This approach uses string similarity measures. The query analysis and 

clustering is a four step approach. First queries that were executed frequently on the input data 

source are selected. For this SPARQL query log which contains all queries posed to the official 

SPARQL endpoint for a three-month period is used. In order to obtain a small number of 

distinctive queries for benchmarking triple stores, those queries are reduced. For an example 

queries with a low frequency are discarded. 
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Every SPARQL query contains substrings that segment it into different clauses. Although these 

strings are essential during the evaluation of the query, they are a major source of noise when 

computing query similarity. Therefore all SPARQL syntax keywords such as PREFIX, SELECT, 

FROM and WHERE are stripped from the query. This process is known as string stripping. 

 

The third step is known as the similarity computation which computes the similarity of the 

stripped queries. The final step of this approach is known as clustering, which applies graph 

clustering to the query similarity graph computed above. The goal of this step is to discover very 

similar groups queries out of which prototypical queries can be generated. 

 

Then we execute same set of prototypical SPARQL queries against the same RDF data set for 

different RDF store implementations which resides on the same hardware configuration, 

Operating system and compare the results. The main and simplest performance measurement is 

the SPARQL query execution time and which can be compared between different RDF store 

implementations. There are other different benchmarking measurements as well and we will 

discuss them later. 
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3 METHODOLOGY 
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This section begins by explaining some existing approaches to build an RDF store. Then it 

elaborates on proposed solution and it’s salient features. Next it explains about the solution 

architecture using a class diagram, which depicts the design. Solution implementation is covered 

in the next section with few sequence diagrams and that concludes this chapter. 

 

  

3.1. Existing Solutions 

The main challenges faced by most of the RDF data management systems are scalability and 

efficiency. Many different approaches exist to manage RDF data, each with its own advantages 

and disadvantages. Efficient and scalable management of RDF data is a fundamental challenge at 

the core of the Semantic Web. Many popular RDF storage solutions use relational databases to 

achieve this scalability and efficiency. Many state-of-the-art RDF systems store RDF data as a 

set of triples in relational tables, and therefore, they rely excessively on join operations for 

processing SPARQL queries. 

 

The simplest way to store RDF triples comprises a relation/table of three columns, one each for 

subjects, predicates and objects. However, this approach suffers from lack of scalability and 

poor query performance, as the single table becomes long and narrow when the number of 

RDF triples increases. The approach is not scalable since the table is usually located on a single 

machine. In addition, query performance is diminished since a query requires several self-joins 

with the same table. 

 

RDF graph based approach is the new approach adopted recently that greatly improves the 

performance of SPARQL query processing. The idea is to use graph exploration instead of joins. 

Using this approach unnecessary intermediary results can be pruned down efficiently. This 

approach uses native graphs to model RDF data. One graph based triple store implementations is 

known as Trinity RDF. Trinity model and store RDF data as a directed graph. This opens up a 

new arena in the field of RDF data management. 
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3.2 Proposed Solution 

There are more triple stores built for relational databases. Most of these triple stores suffer from 

performance and scalability issues which are inherent to relational model due to costly joins and 

large intermediate results. The main idea of this research is to address the aforementioned issues 

while building a scalable, in memory graph based RDF store for Apache Cassandra. 

 

Figure 3.2.1 depicts all the main use cases pertaining to RDF store. For a given set of triples 

stored in a data source, an in memory Graph based RDF store needs to be implemented. For the 

very first time we need to read all the data stored in the database table, in order to build an in 

memory RDF graph. This incurs some substantial I/O cost but occurs only once. After the graph 

based triple store is built in memory any number of SPARQL queries can be executed against it. 

This is where the performance boost comes due to lower I/O cost.  

 

 

 
 

 

 

 

 

Figure 3.2.1: Usecase diagram for RDF Graph building 

 

 

 

The intention here is to perform in memory RDF graph explorations instead of joins which will 

improve the performance and reduce the I/O cost ultimately. 
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3.3 Solution Architecture 

The solution was designed using the Object Oriented Programming methodologies and is 

stipulated in the figure 3.3.1. Each interface and/or implementation classes are assigned with 

some cohesive and discrete set of responsibilities that it performs. CassandraUtil class is 

responsible for handling low level Apache Cassandra related stuffs such as Sessions and clusters 

etc. RDFStoreDAOService interface and it’s implementation is responsible for performing all the 

Create, Read, Update, Delete operations related to the triple table. This interface defines all the 

necessary methods to build an RDF store and query it. It also provides some utility methods to 

connect/disconnect to the database on which the Triple store is placed. 

 

 

 

 
 

 

Figure: 3.3.1 High level class diagram of the Graph based RDF store. 
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The current data access layer is only implemented to support RDF data stored in Apache 

Cassandra. But any RDF data stored in any other data source such as RDBMS, file system can be 

plugged to this Graph processing engine very easily. All you need to do is implement the Data 

Access Service which implements necessary logic to manipulate the data stored in that specific 

data store and pass them in correct format to the RDF graph processing engine. That implies this 

solution is more flexible and extensible. Therefore if someone is already having an RDF store on 

hand they don’t need to import all the RDF data to Cassandra to make use of this 

implementation. What they just need to do is to write their own data access layer implementation 

which manipulates the data stored in the data store and pass the RDF data in correct form to the 

graph processing engine. Then the graph processing engine will build the graph in-memory and 

there after the story remains the same. Also the class CassandraRDFStoreDaoServiceImpl 

internally uses the CassandraUtil class to perform common database operations such as low-level 

cluster and session handling. 

 

The RDFGraphProcessingEngineService contract deifnes an API which is used to manipulate an 

RDF graph. For an example builds an RDF graph given set of RDFTriple instances, traverse the 

RDF graph model and prints it, query the RDF graph model and retrieves the answers given a 

SPARQL query. 

 

Finally RDFStoreAction class acts as the boundary class which accepts user input. The user 

input can be a SPARQL query with it’s prefix which needs to be executed against the RDF graph 

built. Then this returns the result of the SPARQL query back to the client.  
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3.4 Solution Implementation 

The solution is implemented using the Java Programming language. The aforementioned 

architecture and design was realized using Object Oriented infrastructure and platform provided 

by the Java programming language.  Also Apache Jena framework which is shown in figure 

3.4.1 was used as an RDF Graph processing framework.  

 

Apache Jena is a free and open source Java framework for building Semantic Web and Linked 

Data applications. The framework is composed of different APIs interacting together to process 

RDF data. The interaction between the different APIs belongs to Jena is depicted below. 

 

Though there are many different APIs are provided by Jena, main focus here is on the Jena RDF 

API [28]. The Jena RDF API provides a level of abstraction over RDF data manipulation. 

Thanks to Jena it is not necessary to implement a new algorithm to build an RDF graph given a 

set of RDF triples. Jena does that on behalf of us. Also Jena is capable in submitting and 

executing SPARQL queries against the RDF graph built so that answers can be retrieved. 

Apache Jena is an open source framework backed by Apache software foundation so that it can 

be trusted and also widely used in the industry today. Since there is no point of reinventing the 

wheel, capabilities provided by the Apache Jena framework is used to get the work done. 

 

The solution implementation can be explained using three main scenarios each of which can be 

represented using a sequence diagram. 

 

 

http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/semanticweb/data
http://www.w3.org/standards/semanticweb/data
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 Figure 3.4.1: Jena Framework Architecture [29] 
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3.4.1 Populating data into Cassandra Cluster 

The sequence diagram for this scenario is given in figure 3.4.2. When the user clicks on the 

Create RDF Store hyperlink on the web interface, that event is detected by the Struts 

RDFStoreAction class and it’s createRDFStore method is called.  Then RDFStoreAction reads 

the config.properties file to get the NTRIPLE file(s) which will be used as the dataset to create 

the RDF store.Here DBPedia homepages and geocoordinate data set was used and together 

yields to 0.7 million triples.  A user can specify any data set by merely giving the path to the 

NTRIPLE files as a comma separated list. Then using these RDF Statements it creates an RDF 

store in the Cassandra cluster via the RDFStoreDaoService. First it creates the schema and table 

structures and then inserts the data read from the Ntriples files into the cassandra cluster. Also 

note that this is just a onetime operation which is used to populate the triple store with data. 

 

 

Figure 3.4.2 Populating data into Cassandra Cluster 

 

There are different formats which can be used to represent RDF data. Some of them are orthodox 

RDF/XML, Turtle format and N Triple format. N-Triples is a simplified version of Turtle that 

removes most of the shorthand. One line of an N-Triples equals one triple.  N-Triples is more 

verbose than Turtle, but N-Triples is convenient when you need to handle millions of triples. 
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Many thinks that Turtle and N-Triples are superior replacements for the obsolete RDF/XML 

format. Turtle is the preferred format to write a few hundred triples by hand, and N-Triples is 

used to publish large RDF data sets like DBpedia. 

 

 

 

3.4.2. Building the RDF Graph 

Figure 3.4.3 shows how the RDF graph is built using the RDF triples. First the the user clicks on 

the Build RDF Graph hyperlink. This triggers the buildGraph method in RDFStoreAction class. 

This part of the job is done by the Struts 2 framework by using the configurations given in 

struts.xml file. It then reads the RDF Trples stored in the Cassandra cluster. This returns Apache 

Jena ResultSet which represents RDF triples stored inside the Cassandra cluster/triple table. 

RDFStoreAction uses RDFStoreDaoService to access the Cassandra cluster. Then it uses this 

Apache Jena ResultSet to build the RDF graph. Manipulation of the RDF graph is the 

responsibility of the RDFGraphProcessingEngineService. Therefore RDFStoreAction uses the 

RDFGraphProcessingEngineService to build the RDF graph given the set of RDFTriples. The 

graph needs to be built only once and can be reused for many SPARQL queries afterward. 

 

 

 

Figure: 3.4.3: Building the RDF Graph 
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3.4.3. Querying the RDF Graph 

The next step is to query the RDF graph built and get the answers to those queries. The figure 

3.4.4 depicts this scenario. Mainly DBPedia homepages and geo-coordinates data set is used with 

few sample queries which will be discussed in a later section in detail. The user needs to enter 

and submit the query using the web interface of the RDF store. Then it triggers the executeQuery 

method in RDFStoreAction according to the Struts configuration specified. Then the action class 

passes that SPARQL query to RDFGraphProcessingEngineService class by invoking the 

queryRdfModel method. This method is responsible for querying the RDF model using the given 

SPARQL query and retrieves the answers. 

 

 

Figure 3.4.4: Querying the RDF Graph 
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3.4.4: Dropping the RDF Store 

This use case is explained in figure 3.4.5 and which begins whenever the user clicks on Drop 

RDF Store hyperlink. It then triggers the dropRDFStore method in the RDFStoreAction class. 

That method then will invoke the dropRDFStore method of the RDFStoreDaoService class. This 

is responsible for closing the database connection and executing the following statement which 

intern drops the keyspace. 

CassandraUtil.getSession().execute("DROP KEYSPACE IF EXISTS rdfstore;"); 

 

 
 

Figure 3.4.5: Drop the RDF Store 
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3.4.5: Techniques used to render RDF/XML results on the webpage 

After executing a query against the RDF Graph model, the output which yields the answer to the 

SPARQL query looks something like below. This is in the form of RDF/XML which is not that 

human friendly as shown in figure 3.4.6. 

 

 
 

Figure 3.4.6: SPARQL query result in RDF/XML form 

 

Therefore this is transformed into more readable human friendly form using the XSLT shown in 

figure 3.4.7. 
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Figure 3.4.7: XSLT used for transformation 

 

 

 

This depicts the result in a more readable tabular format on the web interface of the RDF store. 

Some XPath expressions are used to access the values of the RDF/XML results obtained. The 

Welcome.jsp file fetches the results of the SPARQL query execution from the RDFStoreAction 

via the support provided by the Struts framework. Then it transforms this results using the xslt 

file provided. The sample coding of this jsp file which does all these magic with the help of 

Struts tag library is given in Figure 3.4.8. 
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Figure 3.4.8: Sample jsp/struts code used to render results 
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3.4.6: Solution Extensibility and Flexibility 

The current data access layer is only implemented to support RDF data stored in Apache 

Cassandra. But any RDF data stored in any other data source such as RDBMS, File System, etc 

can be plugged to this Graph processing engine very easily. All you need to do is implement the 

Data Access Service which implements RDFStoreDaoService contract with necessary logic to 

manipulate the data stored in that specific data store and pass them in correct format to the RDF 

graph processing engine. That implies this solution is more flexible and extensible. Therefore if 

someone is already having an RDF store on the hand they don’t need to import all the RDF data 

to Cassandra to make use of this implementation. What they just need to do is to write their own 

data access layer implementation which manipulates the data stored in the data source and pass 

the RDF data in correct form to the graph processing engine. Then the graph processing engine 

will build the graph in-memory and there after the story remains the same. 
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4 USE CASE SCENARIOS 
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The main use case scenario for an RDF store is to execute SPARQL queries against it and fetch 

the results. But the first step here is to build the RDF graph in memory. This section mainly 

describes how the new implementation is used by an end user. It mainly focuses on end users 

perspective of the system. 

 

 

4.1. Build the RDF graph 

An end user needs to build the RDF Store web client [30] application and deploy it into any web 

container that the user prefers. This section assumes that the user deploys this web client to the 

Apache Tomcat servlet container. The http://localhost:8080/RDFStoreWebClient/ takes the user 

to the homepage of the web application. There the user first needs to click on Build RDF Graph 

hyperlink which is responsible for building the RDF graph in memory. This is a onetime 

operation and the graph remains until the next server restart assuming that is a fairly large period 

of time. In Between the server restart any number of queries can be executed against the built 

RDF graph. The user interface is shown in figure 4.1. 

 

 

http://localhost:8080/RDFStoreWebClient/
http://localhost:8080/RDFStoreWebClient/buildGraph.action
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Figure 4.1: Web Client Building RDF Graph 
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4.2 Executing SPARQL query 

The main objective of a user as far as an RDF store is concerned is to execute SPARQL queries 

against it to answer questions. So in this implementation the user needs to access the homepage 

as stated above the hit the query in the text area provided. Then the execute button will submit 

the query against the RDF store. The user interface is shown in figure 4.2. 

 

 

 
 

Figure 4.2: Execute Query against the RDF graph 
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4.3 Rendering Results 

The successful execution of a query will automatically take the user towards the results rendering 

page. That displays all the answers to the query submitted. That page is shown in figure 4.3. If 

the user needs to go back to the home page, she just need to click on the relevant link and 

execute the next query against the previously build RDF graph. 

 

 

 
 

Figure 4.3: Rendering Results of the SPARQL query  



49 
 

5 EVALUATION AND RESULT 
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This section begins with different RDF store benchmarking methodologies. Then it focuses on 

dataset generation and different RDF data formats. Other RDF stores considered for this 

benchmarking process and SPARQL queries used for that is elaborated next. The benchmark 

configuration and benchmarking metrics concludes the section.  

 

5.1 RDF Store Benchmarking 

There are different methodologies which can be followed to evaluate and compare performance 

between triple stores. Some of them are briefly described below. 

 

● Berlin SPARQL Benchmark (BSBM), provides for comparing the performance of RDF 

and Named Graph stores as well as RDF-mapped relational databases and other systems 

that expose SPARQL endpoints. Designed along an e-commerce use case. SPARQL and 

SQL version available. [22] 

● Lehigh University Benchmark (LUBM) is developed to facilitate the evaluation of 

Semantic Web repositories in a standard and systematic way. The benchmark is intended 

to evaluate the performance of those repositories with respect to extensional queries over 

a large data set that commits to a single realistic ontology. 

● The SP
2
Bench SPARQL Performance Benchmark, provides a scalable RDF data 

generator and a set of benchmark queries, designed to test typical SPARQL operator 

constellations and RDF data access patterns. 

● DBpedia SPARQL Benchmark - Performance Assessment with Real Queries on Real 

Data. 

 

There are many other tools and mechanisms which are not stated here. DBPedia benchmarking is 

used to evaluate the performance between different RDF store implementations in this research. 

DBPedia uses wikipedia dataset and imposes real queries on real data. 

 

 

 

 

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://swat.cse.lehigh.edu/projects/lubm/
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
http://svn.aksw.org/papers/2011/VLDB_AKSWBenchmark/public.pdf
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5.1.1 Dataset Generation 

DBPedia knowledge base consists of a large dataset, which is backed by wikipedia. Out of the 

large dataset homepages and geocoordinate data set will be considered in this RDF store 

benchmark. These two dataset together accounts for around 0.7 million triples together. The first 

step of the benchmarking process is to load these data into the RDF stores which are used to 

compare the performance. This Graph based RDF store implementation is compared with well-

known 4Store [31] and BigData [32][33] RDF store implementations. The benchmark dataset 

consists of DBpedia's geocoordinates and homepages [34] datasets with minor corrections. 

 

● geocoordinates-fixed.nt (447,517 triples; 64 MB) Based on DBpedia's 

geocoordinates.nt. Gives geo locations for different real world resources 

● homepages-fixed.nt (200,036 triples; 24 MB) Based on DBpedia's homepages.nt. Gives 

home page for some real world resources. 

 

There are different RDF formats which can be used to represent RDF data. Also an RDF graph 

can be serialized into one of these RDF formats.  These formats are explained briefly in the 

coming section. 

 

5.1.1.1 RDF/XML 

RDF is most commonly expressed in an XML format: RDF/XML. The RDF/XML for what we 

know about the Manchester authority looks like figure 5.1.1.1. 

 

In RDF/XML, the triples for each resource, are contained within<rdf:Description> nodes, with a 

sub-node for each property and its value. This format has the advantage that most programming 

languages have support for XML, and XML namespaces can be used to avoid having to use full 

URIs everywhere, which keeps the size down.  

 

In RDF/XML, the triples for each resource, are contained within<rdf:Description> nodes, with a 

sub-node for each property and its value.  

http://wifo5-03.informatik.uni-mannheim.de/benchmarks-200801/geocoordinates-fixed.nt.gz
http://dbpedia.org/docs/downloads/2007-08-30/geocoordinates.nt.bz2
http://wifo5-03.informatik.uni-mannheim.de/benchmarks-200801/homepages-fixed.nt.gz
http://dbpedia.org/docs/downloads/2007-08-30/homepages.nt.bz2
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Figure: 5.1.1.1 Multiple resources as RDF/XML [35] 
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5.1.1.2 Turtle 

Turtle (Terse RDF Triple Language) is an RDF-specific subset of Tim Berners-Lee’sNotation3 

language. 

 

Multiple local authorities could be serialized in Turtle as in figure 5.1.1.2. 

 

 
 

Figure: 5.1.1.2: Multiple resources as Turtle 
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The URI for the each resource is followed by the predicates and objects of the triples about it 

(essentially, as key-value pairs). Each pair is separated by a semi-colon, and the information 

about a resource is closed off by a dot. Note that the whitespace is not important here, but for 

readability, the predicates and objects are often indented and appear on separate lines. 

 

It’s fairly easy to read for humans due to the lack of punctuation noise, it groups together the 

triples about each resource.  

 

5.1.1.3 N-Triples 

N-Triples are a simplified version of Turtle. Here’s the RDF for the Manchester authority again, 

this time as N-triples is given in figure 5.1.1.3. 

 

 
 
Figure 5.1.1.3: Multiple Resources as N-Triples 

 

With N-triples, each triple appears on its own line, separated by a dot. 
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N-triples’ simplicity makes it easy for software to parse and generate, but it lacks some of the 

features of RDF/XML and Turtle (such as support for nested resources). Due to the repetition of 

the resource URIs, it’s not as compact as Turtle, and the triples for each resource aren’t 

necessarily grouped together which makes it harder to read by eye. 

For the purpose of this benchmark N-Triples RDF format is used hereafter.  

 

5.1.2 Tested RDF Stores 

The following stores were selected, 

 

● 4Store 

● BigData 

● Current Implementation 

 

The 4Store [31] RDF store was selected since it is an efficient, scalable and stable RDF database 

which is widely used in the industry today. On the other hand BigData [33] is a graph based RDF 

store which was built on top of the Sesame framework and used for a fair comparison with this 

graph based implementation. The current Graph based RDF store implementation can be found 

in the github location [36]. 
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5.1.3 Query Generation 

Mainly four queries are used to evaluate the performance of different triple store 

implementations. The queries used are explained in the following section.  

 

Query1:  

● Finds the homepage of the Metropolitan museum of Art which is given in figure 5.1.3.1. 

 

 

Figure 5.1.3.1. Query 1 

 

 

Query 2: 

● Finds the Homepage of Kevin_Bacon given in figure 5.1.3.2. 

 

Figure 5.1.3.2. Query 2 
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Query 3: 

● Finds all the resources and their homepages which reside near the area of Berlin. This 

query is shown in figure 5.1.3.3. 

 

 

Figure 5.1.3.3. Query 3 

 

Above is a fairly complex query with some range checks and joins. 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

Query 4:  

● Finds all the resources and their homepages which reside near the area of New York. This 

query is shown in figure 5.1.3.4. 

 

 

 

Figure 5.1.3.4. Query 4 
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Query 5: 

This query is based on the DBPedia person dataset. It finds all the people who born in England. 

This query is given in figure 5.1.3.5. 

 

 
Figure 5.1.3.5. Query 5 

 

 

This is just to show that our solution is extensible. So a user can point to any dataset, person 

dataset in this instance and build the RDF graph using that. Only thing she needs to do is stop the 

server, replace the NTRIPLE file lication in config.properties file and restart it. Upon restart she 

needs to drop the existing RDF store, create a new one using the specified file and build the 

graph model. Then she can execute any relevant SPARQL query against that graph model. So 

this solution is extremely flexible and extensible. 

 

As few data has been prepared for actual use in the application, the queries are mostly of generic 

nature. They run against the DBpedia geo coordinates and homepages data set and assess 

performance with varying levels of joins and constraints.  
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5.1.4. Benchmark Configuration 

The configuration used for the benchmarking process is given in the Table 2. 

 

Processor Intel Pentium CORE i7 vPro 

Physical Memory 16 GB 

Hard Disk 500 GB 

Operating System Ubuntu Linux 7.14 64-bit 

 

Table 2: Benchmark Configuration 

 

5.1.5. Benchmark Metrics 

The main metrics used in DBPSB for performance measurement are: 

1. Query Mixes per Hour (QMpH), which denotes the number of query mixes posed to the 

test store in one hour. 

2. Queries per Second (QpS), which is the number of queries (query variations of a specific 

query) the test store can answer in one second. 

3. Query execution time in ms. 

The execution time taken by different RDF stores, to execute above four queries is given in table 

3. The time is measured in milliseconds. We are comparing 4Store RDF store and Bigdata with 

our custom implementation. A histogram and a line graph which represents these results in 

pictorial form is given in figure 5.1.5.1. 

 Q1 Q2 Q3 Q4 

Our 

implementation 

216ms 7ms 336ms 279ms 

4Store 16ms 18ms 455ms 416ms 

Bigdata 41ms 30ms 2sec, 355ms 1sec, 600ms 

 

 

Table 3: Performance Benchmark results  
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Figure 5.1.5.1: SPARQL Query Execution time 
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For a fair comparison, the query execution time was compared. Based on this results we may 

conclude that the Graph based approach yields more performance boosts when query becomes 

more and more complex compared to other relational approaches. Starting from Query 1 

traversing towards Query 3 and Query 4, the complexity becomes higher. The first two queries 

are simple queries which does not contain any costly join operations whereas the last two queries 

are complex queries which involves costly join operations on range checks. Based on the above 

results we can conclude that the graph based implementation outperforms 4Store RDF 

implementation and Bigdata in most of the cases especially when the SPARQL query becomes 

more and more complex. In graph based implementation the first query takes more time, since it 

builds index structure of the graph for the first time. There after it caches them and continues to 

work as expected.  
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6 FUTURE WORK    
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This section briefly discusses about major limitations of this approach and how those limitations 

can be alleviated by adding some enhancements to this Triple store implementation. 

 

The main limitation of this approach is the scalability. RDF store may contain large amount of 

RDF triples, possibly several millions or even trillions of triples. If all those triples are loaded in 

to a graph model in memory at once, there is a high tendency that the system will encounter with 

an OutOfMemoryError while the RDF graph model is being built. This implementation is 

constrained by the size of the RDF dataset. 

 

As a solution a distributed implementation of this approach can be suggested. The figure 6.1  

illustrates the high level architecture for such a system. The existing system is written in a way 

such that it can be extended easily to cater these new needs. 

 

 

 

 

 

Figure 6.1: Distributed Implementation of the RDF store 
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The query submitted by the client may contain small segments which would be answered by 

querying different datasets. For an example suppose a given complex join query can be answered 

fully using homepages, geo coordinates and people dataset together. The homepages and geo 

coordinates dataset can be loaded to two different nodes respectively as a graph model. But if the 

data set is much larger to fit into the memory of a one single worker node, for an example people 

data set, then that dataset is distributed across multiple worker nodes while many graph models 

residing on multiple worker nodes representing that dataset. This is a complex situation which 

needs to be handled carefully. 

 

The client submits a complex query to the coordinator node which then splits that query to few 

simple queries and submitted to the worker nodes. Worker nodes are responsible for executing 

the simple queries against the graph model resides in it and results are sent back to the 

coordinator. Then the coordinator merges the results and pass it back to the client. A distributed 

coordination support needs to be implemented here. Since Apache Cassandra is distributed, 

multi-tenant, this will leverage the capabilities of our new implementation. With this 

enhancement the RDF store will be more scalable, efficient and useable as far as end users are 

concerned. 
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7 CONCLUSION 
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This thesis begins by investigating different approaches used to model and retrieve RDF data 

efficiently. It compares and contrasts those approaches and outlines their salient features. 

 

Also this thesis discussed a new approach to manage RDF data efficiently. It used graph based approach 

to model RDF data which yields high performance and efficiency. It explained the design and 

implementation details of the proposed system. The system use cases are also described to assist end users 

of the system. It also proved that this new approach outperforms the existing solutions to manage RDF 

data efficiently especially when the submitted SPARQL queries are more and more complex. The thesis 

used DBPedia homepages, geo coordinates and people dataset with some sample queries ranging from 

simple to complex for the performance evaluation. The current implementation is compared with 4Store 

and Bigdata RDF store implementations and results were explained with the rationale behind it.  

 

Finally it identifies the limitations of this implementation. The major limitation is the size of the RDF 

dataset which constrains this implementation. If the dataset is much larger the in memory graph consumes 

more memory space and leads to exhaust the memory in the system. Then it comes up with some 

enhancements to this implementation which will alleviate those constraints and limitations.  

 

It suggests a distributed graph based approach to build this RDF store in a worker manager distributed 

setup. Since Apache Cassandra is distributed and multi-tenant, this approach will leverage the capabilities 

of the existing implementation.  The manager splits a complex query into few simple queries and 

submitted to the workers. Workers are executing the simple queries against their own graph model and 

answers are sent back to the manager node. Finally manager merges the results and returns back to the 

client. The future work and improvements section concludes the thesis. 
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