OPTIMIZATION OF RECEIVER FIFO FOR IEEE 802.3ba 40GBASE PCS SUBLAYER

Anuradha Nirmala Nanayakkara

(118411J)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

June 2015

OPTIMIZATION OF RECEIVER FIFO FOR IEEE 802.3ba 40GBASE PCS SUBLAYER

Anuradha Nirmala Nanayakkara

(118411J)

Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

June 2015

Declaration of the Candidate and the Supervisor

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried on hessearch for the Master's dissertation under my supervision www.lib.mrt.ac.lk

Signature of the supervisor:

Date:

Abstract

Keywords: FIFO, IEEE802.3, PCS Sub layer, 40GBASE-R, 10GBASE-X

Local Area Networks (LAN) are based on Ethernet technology. Commonly used 10 and 40 Gigabit Ethernet systems are adopting IEEE 802.3 standards.

The aim of this dissertation is to optimize the FIFO design for the receiver of Physical Coding Sub layer (PCS) specified by IEEE 802.3 standards. This dissertation is having two phases. In the first phase, optimal FIFO for IEEE 802.3ae 10GBASE-X PCS receiver is designed and implemented. Proper operation of the proposed design is verified with simulation results. In the second phase, possible optimization for receiver FIFO of IEEE 802.3ba 40GBASE-R PCS layer is identified. Potential implementation for 40GBASE-R PCS is simulated with proposed FIFO design, to verify the proper functionality.

Proposed designs will save gate count, power and the silicon area of ASIC design considerably. As future work it is suggested to emulate the proposed design with a suitable hardware.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

First and foremost I would like to express my sincere thanks to my supervisor, Dr. S. Thayaparan, Senior Lecturer, Department of Electronic and Telecommunication Engineering, University of Moratuwa, for his continuous guidance and support provided to me throughout this research. His encouragement to tackle difficulties encountered and the patience with my mistakes should always be appreciated.

I also wish to acknowledge Prof. S.R. Munasinghe, Senior Lecturer, Department of Electronic and Telecommunication Engineering, University of Moratuwa, for the guidance provided at different stages of the research.

My parents, brother and sister too should be remembered for their continuous support and encouragement. Finally I feel I should dedicate a single sentence for my little kid Poo, (who is just turning two) for bearing up her amma frowning in front of the laptop prolonged hours, in spite of the fact that she is missing the care and attention of her farther as well.

This piece of work is dedicated to all those, who helped me in numerous ways to make this is success. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

TABLE OF CONTENTS

Declaration	of the Candidate and the Supervisor	i
Abstract		ii
Acknowledgements		iii
Table of Contents		iv
List of Figures		vii
List of Tables		viii
List of Abbreviations		ix
1. Introduction 1		
1.1 Int	roduction	1
1.2 Pro	blem Statement	1
1.3 The	e Aims and Objectives of the Research	2
1.4 Re	search Methodology	2
1.5 Re	Source Requirements of Moratuwa, Sri Lanka.	3
	be of the protection Theses & Dissertations	3
	www.lib.mrt.ac.lk	
2. Analysi		4
2.1 100	GBASE-X Systems	4
2.1.1	8B/10B encoding	5
2.1.2	Special code groups [5]	8
2.1.3	Lane alignment	8
2.1.4	Clock rate compensation	9
2.1.5	Optimal receiver FIFO parameters for 10GBASE-X PCS su	b layer [11]
		10
2.2 400	GBASE-R Systems	11
2.2.1	Idle Control Character /I/	13
2.2.2	Lane Alignment Consideration	14
2.2.3	Clock rate compensation in worst case scenario	15

2.2.4	Optimization of receiver FIFO parameters for 40GBASE-R	
layer		17
3. Mode	ling PCS Sub layer of 40GBASE-R systems	18
3.1 4	0GBASE-R PCS Sub Layer Modeling	18
3.2 4	0GBASE-R PCS Sub Layer Transmitter	18
3.2.1	64B/66B Encoder [13]	19
3.2.2	Scrambler [5: Clause 82.2.5, 14]	20
3.2.3	Block distribution [5: Clause 82.2.6]	20
3.2.4	Alignment marker insertion [5: Clause 82.2.7]	21
3.2.5	Serializer	23
3.3 4	0GBASE-R PCS Sub Layer Receiver	23
3.3.1	Deserializer	23
3.3.2	Block synchronization [5: Clause 82.2.11]	23
3.3.3	Alignment markerylock 151 Glausev82, 2512] Lanka.	23
3.3.4	Service Contractions & Dissertations www.lib.mrt.ac.lk	24
3.3.5	Lane reorder [5: Clause 82.2.13]	25
3.3.6 Alignment marker removal [5: Clause 82.2.14]		25
3.3.7 Clock rate compensation FIFO		25
3.3.8 Descrambler [5: Clause 82.2.15]		25
3.3.9	Decoder [15]	26
	ation, Results and Achievements	27
4.1 S	imulation Environment	27
4.2 1	OGBASE-X Simulation and Results	27
4.2.1	Waveforms captured for FIFO Full viable situation	27
4.2.2	Waveforms captured for FIFO Empty viable situation	28
4.3 4	OGBASE-R Simulation and Results	29

4.3.1	FIFO Full viable situation	29
4.3.2	FIFO Empty viable situation	29
4.4 Publ	ication List	31
5. Conclusions and Future Works 3		32
5.1 Disc	ussion and Conclusions	32
5.1.1	For 10 GBASE-X	32
5.1.2	For 40 GBASE-R	32
5.2 Reco	ommendation for Future Work	33
Reference List		34
Appendix A: Verilog test bench for 10GBASE-X PCS Sublayer FIFO design		37
Appendix B: Verilog testbench for 40GBASE-R PCS sub layer Model 4		

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Page

Figure 2.1: Positioning of XGXS and PCS Sub layers in IEEE 802.3 10G Model	l 5
Figure 2.2: Functional block diagram of the 10GBASE-X physical layer	6
Figure 2.3: XGMII character stream to PCS code group mapping example	7
Figure 2.4: Positioning of 40G Ethernet	11
Figure 2.5: Functional block diagram 40GBASE-R physical layer	12
Figure 2.6: 64B/66B block formats	13
Figure 2.7: Formation of maximum data packet	16
Figure 3.1: 40GBASE-R Transmitter Model	19
Figure 3.2: Encoder Output	20
Figure 3.3: Scarambler	20
Figure 3.4: PCS Block Distribution	21
Figure 3.5: Alignment marker format	22
Figure 3.6: Alignment Marker Insertion University of Moratuwa, Sri Lanka.	22
Figure 3.7: Angenment Marker insertion period Dissertations	22
Figure 3.8: 40GBASE-R Receiver Madel	24
Figure 3.9: Descrambler	26
Figure 3.10: Decoder Output	26
Figure 4.1: Signals captured from ModelSim Wave simulation in a FIFO	Full
condition viable scenario for 10GBASE-X	28
Figure 4.2: Signals captured from ModelSim Wave simulation in a FIFO E	mpty
condition viable scenario for 10 GBASE-X	28
Figure 4.3: Signals captured from ModelSim Wave simulation in a FIFO	Full
condition viable scenario for 40GBASE-R	29
Figure 4.4: Signals captured from ModelSim Wave simulation in a FIFO E	mpty
condition viable scenario for 40GBASE-R	30

LIST OF TABLES

Page

Table 2.1: XGMII characters to PCS code-group mapping	6
Table 2.2: PCS code-group to XGMII character mapping	7
Table 2.3: Skew Budget for 10GBASE-X	9
Table 2.4: Control codes	14
Table 2.5: Maximum skew for PCS	14

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

Abbreviation	Description
ASIC	Application Specific Integrated Circuit
BIP	Bit Interleave Parity
CSMA/CD	Carrier Sense Multiple Access with Collision
	Detection
DTE	Data Terminal Equipment
FCS	Frame Check Sequence
FIFO	First In First Out
HDL	Hardware Description Language
IP	Internet Protocol
IPG	Inter Packet Gap
LAN	Local Area Network
MAC OSI Univer Electro	Media Access Control rsity of Moratuwa, Sri Lanka. Open System Interconnection DIC Theses & Dissertations
PCS www.l	Physical Coding Sub layer
РНҮ	PHysical Layer
PMA	Physical Medium Attachment
RS	Reconciliation Sub layer
RXC	Receive Control signals
TXC	Transmit Control signals
UI	Unit Interval
XAUI	10 Gigabit Attachment Unit Interface
XGMII	10 Gigabit Media Independent Interface
XGXS	Extender Sub layer
XLGMII	40Gb/s Media Independent Interface