TECHNO ECONOMIC ANALYSIS, DESIGN AND IMPLEMENT A SUITABLE COMMUNICATION METHOD FOR UTILITY SYSTEMS

Mahesh Sachinthha Dunuweera

(118665 N)

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

August 2016
Declaration

“I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)”.

.................................
M.S. Dunuweera Date

The above candidate has carried out research for the Masters Thesis under my supervision.

.................................
Signature of the supervisor Date
(Dr. P.S.N. De Silva)

.................................
Signature of the supervisor Date
(Dr. K.T.M.U Hemapala)

.................................
Signature of the supervisor Date
(Dr.Chandika Wavegedara)
Abstract

This thesis presents a research work which is carried out to optimize the Zigbee based remote meter reading network. There are various technologies available to automate the meter reading such as PLC, GSM, Optical fibre and RF technologies. As far as utilities providers are concerned, their focus is on a reliable RMR system to read the meter at minimum possible cost. The development of a reliable RMR system is highly dependent on telecommunication infrastructure which is costly if GPRS is used as a way of communication. Therefore, research were done in depth to analyse the cost and function of RMR system as large number of sensors are used in the electrical utility.

This particular research is on data concentrator based RMR system focusing on the analysing of communication delay and resource optimization.

In this research Matlab Simulink software was used for simulations and Visual Studio C# is used for creating the software. Several simulations were carried out in this research, for simulating communication speed, communication path and study the behaviour with the presence of noises.

As the final outcome of the research, software was developed for selecting Zigbee power rating based on GPS locations and generated algorithms for calculating communication delay and path which can be incorporated to the coordinator.
Acknowledgement

This dissertation is prepared as a result of the support and guidance provided by various personnel and parties.

First of all, I would like to express my heartiest gratitude to my supervisors, Dr. P.S.N De Silva from Lanka Electricity Company private Limited (LECO), Dr. K.T.M.U Hemapala from the Department of Electrical Engineering, University of Moratuwa (UOM) and Dr. Chandika Wavegedara from the Department of Electronic and Telecommunication Engineering (UOM) for their support, guidance and valuable advices throughout these academic years. Their continuous supervision and advices on the research, pave me the way for a successful completion of the scope of work. I would like to thank University of Moratuwa for giving me the opportunity for my Master studies. I would like to give my special thanks to Dr. P.S.N De Silva as the Head of Engineering of LECO, Mr. S.D.C. Gunawardana as the System Development Manager of LECO, the Branch Manager and all the staff at LECO Negombo Branch for giving me the support to accomplish my study by providing necessary details on power distribution network.

Finally, thanks to all the lecturers & my friends that I have been working with throughout the period of study in University of Moratuwa.
Table of Contents

Chapter 1 INTRODUCTION 1
 1.1. Introduction to Remote Meter Reading Technology 1
 1.2. Analysis of Remote Meter Reading Technology 2
 1.3. Problem Identification 3
 1.4. Objective 5
 1.5. Methodology 5
 1.6. Contribution 5

Chapter 2 LITERATURE REVIEW 9

Chapter 3 ENERGY METER AND RMR 15
 3.1. Introduction to Electricity Energy Meter 15
 3.1.1. Meter Data Communication Protocols 16
 3.1.1.1. Introduction to Object Identification System 17
 3.1.2. Read Meter Through GPRS (Mobile Network) 19
 3.1.3. GPRS 19
 3.1.4. PLC 19
 3.1.5. Radio Frequency 20
 3.1.6. Optical fibre Communication 21

Chapter 4 DEVELOPMENT OF TEST BENCH FOR ZIGBEE NETWORK 22
 4.1. AnteLECO DDSF949 meter 24
 4.1.1. Communication module 24
 4.1.2. Coordinator 25
 4.2. LQI 27
 4.3. RSSI Measurement (dBm) 29
 4.4. Data usage of modem 32
 4.5. MATLAB Simulink 33
 4.6. White Gaussian Noise 34
 4.7. Free Space Propagation Model 34
 4.8. Economic Analysis 45
 4.9. Visual Studio C# 45
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. CONCLUSION AND DISCUSSION</td>
<td>50</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>52</td>
</tr>
<tr>
<td>6. FUTURE DEVELOPMENTS</td>
<td>52</td>
</tr>
<tr>
<td>7. REFERENCES</td>
<td>53</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1 Observe Mesh network using XCTU software 7
Figure 2-1 Cost and power consumption comparison of wireless technologies 10
Figure 2-2 Zigbee Network topologies 12
Figure 2-3 Zigbee tree routing and shortcut tree routing 13
Figure 3-1 Meter Reading Software 17
Figure 4-1 Location 22
Figure 4-2 Selected locations 23
Figure 4-3 DDSF949 Meter 24
Figure 4-4 Zigbee Routers 24
Figure 4-5 Coordinator 25
Figure 4-6 Observation of mesh network on XCTU software 26
Figure 4-7 LQI variation 26
Figure 4-8 RSSI Logger Software 28
Figure 4-9 Communication delay variation Vs Meter ID on 80 min and 1320 min time stamps 29
Figure 4-10 Communication delay variation Vs Time Stamp for 6th and 56th Meters 29
Figure 4-11 RSSI variation Vs Time Stamp for 1st and 23rd Meters 31
Figure 4-12 RSSI Variation Vs Meter No for day time and night time 31
Figure 4-13 Data usage for 100 meters Vs Reading No 32
Figure 4-14 Data Usage for meter reading 32
Figure 4-15 Number of Attemps to read meter 33
Figure 4-16 Simulation Model 35
Figure 4-17 Simulation Model 36
Figure 4-18 Configuration Window Of Gaussian Noise Generator 37
Figure 4-19 Communication Speed Variation Of Links Vs Time 38
Figure 4-20 Communication Speed of 7th Link Vs Time 38
Figure 4-21 Number of Routings Vs Gaussian Noise Mean Value 39
Figure 4-22 Received No of Nodes Vs Test No 40
Figure 4-23 Simple zigbee arrangement of 10 nodes 41
Figure 4-24 Simulation of communication delay 42
Figure 4-25 Data propagation path 42
Figure 4-26 Developed software for generating levels 43
Figure 4-27 Generated Levels 43
Figure 4-28 Application and Network layers in Zigbee network 44
Figure 4-29 Distance Matrix 45
Figure 4-30 Report 46
Figure 4-31 Flow chart 47
Figure 4-32 Cost reduction vs Number of nodes (between 1 mW and 63 mW) 49
List of Tables

Table 2-1 Comparison among different wireless technologies 10
Table 2-2 Comparison between wireless technologies 11
Table 3-1 Some registers 18
Table 4-1 Selected Transformers 23
Table 4-2 Result of communication distance measurement 23
Table 4-3 Communication delay Vs time stamp and meter ID 28
Table 4-4 RSSI variation VS Meter ID and Time Stamp 30
Table 4-5 Transmit power 35
Table 4-6 Coordinates of Positions 37
Table 4-7 Test-Communicate with multiple Zigbee units in same time 40
Table 4-8 Practical tests with considering levels 44
Table 4-9 Cost comparison 48
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMR</td>
<td>Remote Meter Reading</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>PLC</td>
<td>Power Line Carrier</td>
</tr>
<tr>
<td>AMR</td>
<td>Automatic Meter Reading</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>IOT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indicator</td>
</tr>
<tr>
<td>ZTR</td>
<td>ZigBee Tree Routing</td>
</tr>
<tr>
<td>STR</td>
<td>Shortcut Tree Routing</td>
</tr>
<tr>
<td>AODV</td>
<td>Ad Hoc On Demand Distance Vector</td>
</tr>
<tr>
<td>DSDV</td>
<td>Destination Sequenced Distance Vector</td>
</tr>
<tr>
<td>TOD</td>
<td>Time Of Day</td>
</tr>
<tr>
<td>OBIS</td>
<td>Object Identification System</td>
</tr>
<tr>
<td>EDIS</td>
<td>Energy Data Identification System</td>
</tr>
<tr>
<td>LQI</td>
<td>Line Quality Index</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LD</td>
<td>Laser Diode</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix – A</td>
<td>Meter Readout data</td>
<td>55</td>
</tr>
<tr>
<td>Appendix – B</td>
<td>Some Photos</td>
<td>58</td>
</tr>
<tr>
<td>Appendix – C</td>
<td>Coordinator Program code</td>
<td>59</td>
</tr>
<tr>
<td>Appendix – D</td>
<td>LQI Variation</td>
<td>68</td>
</tr>
<tr>
<td>Appendix – E</td>
<td>Simulation Program-Communication Speed</td>
<td>69</td>
</tr>
<tr>
<td>Appendix – F</td>
<td>Simulation Program-Communication Path</td>
<td>73</td>
</tr>
<tr>
<td>Appendix – G</td>
<td>Program-VS-Finding Levels and Zigbee pro selection</td>
<td>76</td>
</tr>
<tr>
<td>Appendix – H</td>
<td>BZ 501 Transformer area map</td>
<td>81</td>
</tr>
</tbody>
</table>