A HETEROGENEOUS DATA ENSEMBLE APPROACH FOR PROTEIN FUNCTION PREDICTION UNDER MITOCHONDRION ORGANIZATION

Dinithi Navodhya Sumanaweera

158013D

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Research) in Computer Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

October 2016

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Signature:

Date:

Date:

The above candidate has carried out research for the Masters thesis/Dissertation under my supervision.

Signature of the Supervisor: Name of the Supervisor: Dr. Amal Shehan Perera

ABSTRACT

A heterogeneous data ensemble approach for the classification of *Sac*charomyces cerevisiae proteins under 'mitochondrion organization'

Proteins are the real role players in keeping a cell healthy and well functioning. An important group of proteins is the subset of mitochondrial proteins that engage in the assembly, arrangement and disassembly of the mitochondrion. Several of them have been identified to cause human diseases. Hence, annotating proteins under the 'mitochondrion organization' Biology process is vital for identifying disease causative factors and for designing therapeutics. As manual annotation requires costly and laborious in vitro methods, in silico function prediction is preferred nowadays. Recent studies identify the importance of incorporating data from various biological aspects, to formulate a strong functional context for classification. In addition, many approaches from literature employ ensemble classifiers to attain a higher prediction accuracy. However, an insightful approach for accurate classification; biological data utilization; and biological data type significance determination; is still in need. This study presents an assessment of a heterogeneous data ensemble to classify Saccharomyces cerevisiae proteins under 'mitochondron organization'. The ensemble consists of nine euclidean-distance based nearest neighbour models and three affinity-based neighbourhood models; it utilizes sequences, protein domains, peptide chain properties, gene expression, secondary structure and interactions. The base models were trained upon annotations from the Gene Ontology, as well as from a publicly available benchmark gold dataset. They show a substantial level of disagreement, implying their effectiveness in collective decision making. Six combination schemes were evaluated for fusing the base model outputs. A Genetic Algorithmically weighted ensemble gives the highest improvement to the best performing base classifier, by displaying an average area under the Receiver Operating Characteristic curve of 92.52%. Moreover, it is capable of determining the biological importance of each data type. Overall, the proposed heterogeneous data ensemble is capable of identifying eight disease related proteins and one disease related protein in a strong and moderate sense, respectively.

Keywords: yeast; proteins; mitochondrion; weighted ensemble; data heterogeneity; genetic algorithm; supervised learning

To my beloved parents, grandmother and brother

ACKNOWLEDGEMENT

I would like to express my heartiest and sincere gratitude,

To my parents, for all their support, guidance, motivation and inspiration

To my advisor and supervisor Dr. Amal Shehan Perera, for his immense support, invaluable advice, continuous guidance and encouragement, through productive discussions and progress reviews, in making this research a success

To my Research Review Committee: Prof. Nalin Wickramarachchi and Dr. Dulani Meedeniya for their constructive feedback and encouragement

To Prof. T. L. Shamala Tirimanne from the University of Colombo, for offering me with her expertise in Biology through informative discussions, despite her busy scheep University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

To Dr. Surangika Ranathunga and Dr. Charith Chitraranjan, for those illuminating and motivating discussions despite their busy schedules

To Prof. Gihan Dias, for his constant advice and guidance

To Prof. Vajira H. W. Dissanayake and Mr. Nilaksha Neththikumara from the Human Genetics Unit, University of Colombo, for providing me with Training in Bioinformatics

To the Department of Computer Science and Engineering, the Senate Research Grant Committee, the Faculty of Graduate Studies and the staff in general at the University of Moratuwa, for supporting and facilitating my research with necessary resources throughout the course of study

TABLE OF CONTENTS

De	eclara	tion of	the Candidate & Supervisor	i	
Abstract				ii	
Ackowledgement				iv	
Table of Contents				V	
Li	st of I	Figures	3	1	
Li	st of '	Tables		3	
Li	st of .	Abbrev	viations	4	
1	Introduction			6	
	1.1	Sacch	aromyces cerevisiae	6	
	1.2	Impor	rtance of 'mitochondrion organization'	7	
	1.3	Need	for Protein Function Prediction	9	
	1.4	Probl	em Definition	9	
	1.5	Resea	rch Objectives	12	
	1.6	Contr	ibutions Electronic Theses & Dissertations	12	
	1.7	Orgai	^{izati@n} ww.lib.mrt.ac.lk	13	
2	Bac	kgroun	d Study	14	
	2.1	Bioinf	formatics and Biological Data Mining	14	
	2.2	Overv	view to Functional Genomics and Proteins	16	
		2.2.1	Basics of Proteins	17	
		2.2.2	Structure of Proteins	18	
		2.2.3	Protein Folding	21	
		2.2.4	Protein Motifs	21	
		2.2.5	Importance of Protein Structure Determination	22	
		2.2.6	Protein Domains	22	
		2.2.7	Protein Families	23	
		2.2.8	Origination of Proteins	23	
	2.3	Functions of Proteins			
	2.4	Importance of Protein Function Annotation			

	2.5	Biolog	ical Data Sources for Functional Genomics	28
	2.6	Microa	array Gene Expression	29
	2.7	Gene (Ontology (GO) Functional Classification Scheme	32
		2.7.1	Standard Format	33
		2.7.2	Hierarchical Structure	33
		2.7.3	Annotations	34
	2.8	The 'n	nitochondrion organization' GO Term	35
3	Liter	rature F	Review	37
	3.1	Homol	ogy based Protein Function Prediction	37
	3.2	Multi-	class Classification and Data Heterogeneity	38
		3.2.1	A True Path Rule Hierarchical Ensemble Approach	38
		3.2.2	Hierarchical Classification of G Protein-Coupled Receptors	40
		3.2.3	Predictive Clustering Trees and their Ensembles	42
		3.2.4	Bayesian Hierarchical Correction	43
		3.2.5	HML Boosting	45
		3.2.6	Labeh Similarity Jn corporated kNNr Algorithm	46
		3.2.7	SVM casedre as The contractions	47
		3.2.8	Hierarchical Bayesian Integration Algorithm	49
		3.2.9	Semi Supervised Multi-label Collective Classification	50
		3.2.10	Ensemble based GPCR Class Prediction	51
		3.2.11	Transductive Multi-label Ensemble Classification	51
		3.2.12	MS-kNN for Multiple Data Integration	53
		3.2.13	Functional Association Network based Approaches	54
		3.2.14	BLAST based Local Prediction	55
		3.2.15	An Ensemble for 'mitochondrion organization' Prediction	57
	3.3	Selecti	on of Positive and Negative Examples	57
		3.3.1	Negative Example Selection Methods	58
	3.4	Class 1	mbalance	64
		3.4.1	Class Imbalance and Feature Selection	66

4	Met	hodolog	BY	67
	4.1	Data I	Retrieval and Preprocessing	67
		4.1.1	Protein Annotation Data	68
		4.1.2	Sequence Data	68
		4.1.3	Domain Data	69
		4.1.4	Properties Data	70
		4.1.5	Gene Expression data	70
		4.1.6	Secondary Structure Data	77
		4.1.7	Interaction Data	77
	4.2	Protei	in Instance Representation Methods	78
		4.2.1	Pseudo Amino Acid Composition (PAAC)	78
		4.2.2	Quasi-Sequence-Order Descriptor (QSOD)	80
		4.2.3	Conjoint Triad Descriptors	81
		4.2.4	Secondary Structure based Representation	83
		4.2.5	Latent Dirichlet Allocation (LDA) Topic Representation	83
		4.2.6	Generation Profile Representationanka.	86
	4.3	Eusen	ble Ease Classifications & Dissertations	87
		4.3.1	Heterogeneous Data Ensemble	89
		4.3.2	Affinity-based Neighbourhood models	89
		4.3.3	Nearest Neighbour Models	89
		4.3.4	Base Model Combination Scheme	92
		4.3.5	Performance Measures	95
5	Exp	eriment	tation, Results Analysis and Discussion	99
	5.1	Exper	imental Setup	99
	5.2	LDA '	Topic Modeling based Approach	102
	5.3	Optim	al Number of Neighbours	104
	5.4	Base 1	Model Evaluation	106
	5.5	Evalua	ation of the Inter-rater Agreement	108
	5.6	Genet	ic Algorithm based Weight Optimization	109
	5.7	Ensen	able Classification Performance	115
	5.8	Identi	fication of Disease Related Proteins	119

6	Con	clusions and Recommendations	122
References			126
А	Expl	loratory Data Analysis	139
	A.1	Initial Analysis of GO Annotations	139
	A.2	Data Visualizations	139

LIST OF FIGURES

Figure 1.1.1	Saccharomyces cerevisiae	7
Figure 2.2.1	Amino acid residue and Peptide bond formation	17
Figure 2.2.2	List of 20 Amino acid types	18
Figure 2.2.3	Example alpha helix protein and beta sheet protein	19
Figure 2.2.4	Parallel and anti-parallel beta sheets	20
Figure 2.2.5	Gene expression	23
Figure 2.6.6	Microarray technology	30
Figure 2.8.7	GO ancestor chart for 'mitochondrion organization'	36
Figure 3.2.1	Fuzzy kNN ensemble model by Gu et al. (2015)	52
Figure 3.2.2	Directed bi-relation graph	52
Figure 4.1.1	Example FASTA sequence of a protein	69
Figure 4.2.2	Amino acid residue classification	82
Figure 4.2.3	Conjoint triads	82
Figure 4.3.4	Parallel and anti-parallel β sheet formation.	91
Figure 4.3.5	Example bayesian network Ik	96
Figure 4.3.6	Kappa scale	98
Figure 5.2.1	ROC plots for the LDA model based approach	104
Figure 5.3.2	k vs mean AUC	105
Figure 5.6.3	(a) GA optimized weights (b) mean ROC AUC of base models	110
Figure 5.6.4	Best fitness value over each sample	110
Figure 5.6.5	Order of data types with respect to both average and maximum	
	fitness giving weight vectors	112
Figure 5.7.6	ROC plots of base models and GA-weighted Ensemble	117
Figure 5.7.7	ROC plots of Ensemble models	119
Figure 5.8.8	Disease protein identification matrix	121
Figure 5.8.9	Disease related protein identification over the 10 samples	121
Figure A.2.1	Expressions 1 - Before normalization/preprocessing	140
Figure A.2.2	Expressions 1 - After normalization/preprocessing	141

Figure A.2.3	Expressions 2 - MA plots before background correction	141
Figure A.2.4	Expressions 2 - MA plots after background correction	142
Figure A.2.5	Expressions 2 - MA plots after within/between array normalization	142
Figure A.2.6	Expressions 2 - After normalization/preprocessing	143
Figure A.2.7	Expressions 2 - After further normalization	144
Figure A.2.8	Expressions 3 - before & after normalization/preprocessing	145
Figure A.2.9	Expressions 4 - Before & after normalization/preprocessing	146
Figure A.2.10	Expression profiles of housekeeping genes	147
Figure A.2.11	Properties Data	148

LIST OF TABLES

Table 1.1	Disease related 'mitochondrion organization' proteins as listed in [8]	8
Table 5.1	LDA model based approach evaluation results	102
Table 5.2	Individual base model performance results I	106
Table 5.3	Individual base model performance results II	107
Table 5.4	Kappa measure for individual samples	109
Table 5.5	GA optimized weights for all 10 samples	114
Table 5.6	Ensemble performance results I	115
Table 5.7	Ensemble performance results II	115
Table 5.8	PR curve AUC values of ensemble models	119

LIST OF ABBREVIATIONS

AGPS	Annotating Genes with Positive Samples
ANOVA	Analysis of Variance
AUC	Area Under the Curve
BioGRID	Biological General Repository for Interaction Datasets
BLAST	Basic Local Alignment Search Tool
CAFA	Critical Assessment of protein Function Annotation
CD	Czekanowski-Dice
CTD	Conjoint Triad Descriptor
Da	Dalton (atomic mass unit)
DF	Degrees of Freedom
DNA	Deoxyribonucleic Acid
FunCat	Functional Catalogue
GA	Genetic Algorithm University of Moratuwa, Sri Lanka.
GO	Gene Phelosynic Theses & Dissertations
GPCR 🎽	C Protein-Coupled Receptor
HER2	Human Epidermal Growth Factor Receptor 2
IEA	Inferred from Electronic Annotation
LDA	Latent Dirichlet Allocation
MIPS	Munich Information Center for Protein Sequences
NGS	Next Generation Sequencing
NLP	Natural Language Processing
NMR	Nucleic Magnetic Resonance
NN	Nearest Neighbour

mRNA Messenger Ribonucleic Acid

- PAAC Pseudo Amino Acid Composition
- PCT Predictive Clustering Tree
- PDB Protein Data Bank
- PPI Protein Protein Interactions
- PR Precision-Recall
- QSOD Quasi Sequence Order Descriptor
- RNA Ribonucleic Acid
- ROC Receiver Operating Characteristic
- SGD Saccharomyces Genome Database
- SS Secondary Structure
- SVM Support Vector Machine
- TMC Transductive Multi-label Classifier
- TPR True Path Rule
- 3D Three dimensional

