CHAPTER 06: CONCLUSIONS AND RECOMMENDATIONS

This research is based on flexural behavior of CFRP strength concrete beams. The experimental work was carried out to study on RC beam elements flexural strengthen with externally bonded CFRP and the suitability of using cement grout as bonding agent was investigated. Two other modifications have been carried out for strengthen beams with CFRP bonded with cement grout adhesive. Those were;

- 1. Strengthening RF concrete (primed) beams with CFRP, and use of cement grout as bonding agent.
- 2. Strengthening RF concrete (primed) beams with CFRP, and use of cement grout as bonding agent while both ends were anchored with two 'U' wraps.

Two type of CFRP samples were used for the experiment works that was sample 1 (having properties Ultimate tensile strength 2650N/mm², Modulus of elasticity 640kN/mm²) and sample 2 (having properties Ultimate tensile strength 4300N/mm², Modulus of elasticity 240kN/mm²). The sample 1 CFRP was used with beams which were bonded with epoxy and the sample 2 CFRP was used with beams which were bonded with concert ground intersity of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

5.1 Conclusions and Recommendations: 1k

CFRP fabric properly bonded to the tension face of RC beams can enhance the flexural strength substantially. Within the indicated scope of this investigation, the particular conclusions emerging from this study are summarized as follows:

- 1. The experimental results show that beams which used CFRP (sample 1) and epoxy adhesive exhibited an increase in flexural strength about 39 %, relative to control beam, for single layer CFRP. According to the theoretical calculation, the predicted strength gain by using sample 1 CFRP was 52.6%. That shows there is a significant effect on enhancement of flexural performance with CFRP. It was observed that failure mode was de-bonding.
- 2. When observing the experimental results, beams which used CFRP (sample 2) and cement grout adhesive exhibited an increase of flexural strength about 179 %, relative to control beam, for single layer CFRP. According to experimental results, there is a significant effect on flexural performance enhancement with CFRP on ultimate load capacity. It was observed that failure mode was end delamination.

- 3. When primer coated on tension face of the beams which used cement grout as bonding agent, the ultimate strength was increased by 208%, relative to control beam. This is about 29% increment with respective to non-primed beam strength using cement grout. That clearly implies the primer has ability to increase bond capacity of the cement grout bond. It was observed that failure mode was debonding.
- 4. When primer coated on tension face of the beams which used cement grout as bonding agent and both ends of the beams were anchored using 'U' wrapped showed increase of flexural strength about 279%, relative to the control beam. This is about 71 % with respect to end anchored beam with the same substrate condition. Therefore, it can be concluded the ends 'U' wrapped can effectively increase the load carrying capacity of the beams. It was observed that failure mode was de-bonding.
- 5. In this investigation of the set of a set of the set

Finally, the experimental results have shown that the strengthening with CFRP sheets bonded with cement grout material enhances the flexural stiffness of the beam. Therefore, it can be concluded that when mortar (2:1 cement water ratio) was used as bonding material, it can effectively contribute to increase load capacity and ductility of the structural members. Results show that considerable composite action can be achieved using cement grout as bonding agent. In addition to that, the primer has ability to increase excellent bond properties of the cement grout that will further improve loading capacity of the beams. The proposed 'U' wraps at both ends are more effective method to enhance the strength capacity of the beams. It prevented the end deboning failure of CFRP sheet.

5.2 Further studies

1. Better flexural performance was shown when cement grout was used as bonding agent from the current study. Performance was further improved when primer

coated on bonding surface and ends are anchoraged. It is suggested to study shear stress and compression capacity with similar bonding agents and methods.

- 2. In the current study ends were anchored 75 mm from edge of the beam to test flexural strength gain. It is proposed to study optimum anchoring distance from edge of beam to test flexural strength, shear stress and compression capacity.
- 3. Finite element modeling of the system should be done for better behavioral understanding and for better predictability of results.
- 4. It is suggested to compare results of end anchored beams while using bonding agents as epoxy and cement grout.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

REFERENCES

Al-Abdwais, R. Al-Mahaidi, K. Abdouka (2013), "Modified cement-based adhesive for near-surface mounted CFRP strengthening system", Fourth Asia-Pacific Conference on FRP in Structures, Melbourne, Australia.

Adhikarinayake, S.R., Gayan, K.D.J.A., Thathsarani, N.G.T.T., Gamage, J.C.P.H. (2013), "Investigation on alternative bonding agents for CFRP concrete composites". Department of Civil Engineering, University of Moratuwa, Sri Lanka.

Alaa, M. and Tony, E M. (2012), "Bonding techniques for flexural strengthening of R.C. beams using CFRP". Journal of Ain Shams Engineering Volume 30 (9) P 30-36.

Alagussundaramoortthy, P., Harik,I,E., Choo, C, C (2009), "Flexural Behavior of RC beams strengthened with CFRP sheets or Fabric". A Thesis submitted in partial fulfillment of the requirements of Bachelor of the science of Engineering, College of Engineering, University of Kentucky, Lexington.

American Concrete Institute (ACI) (2008), "Guide for the Design and Construction of Externally Bonded FROSS tensify Strongthening GonStete Structures". ACI 440.2R-02, ACI Committee 10. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Anders Wiberg. (2003), "Strengthening of concrete beams using cementitious carbon fiber composites", Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden.

Anthony J. L., Lawrence, C, B. and David, W. S. (2004), "Flexural Strengthening of Reinforced Concrete Beams by Mechanically Attaching Fiber-Reinforced Polymer Strips" Journal of composites for construction volume 8(3), P 203-210.

Badanoiu A. and Holmgren J. (2003), "Cementitious composites reinforced with continuous carbon fibres for strengthening of concrete structures", Journal of Cement & Concrete Composites, vol. 25, pp 387-394.

Balamuralikrishnan, R. and Antony, C, J. (2009), "Flexural Behavior of RC Beams Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Fabrics" The Open Civil Engineering Journal. Volume 3 (6). P 102-109.

Björn Täljsten, Thomas Blanksvärd & Katalin Orosz (2006), "Strengthening of Concrete Beams in Shear with Mineral Based Composites Laboratory Tests and Theory", Third International Conference on FRP Composites in Civil Engineering (CICE 2006), December 13-15 2006, Miami, Florida, USA.

BS 8110, Structural use of concrete, part 1, 1985, British Standards Institution, London.

Davood, M., Seyed, M, S., Ardalan, H. (2012), "Experimental Study on the effectiveness of EBROG method for flexural strengthening of RC beams" Proceedings of the International Conference on FRP Composites in Civil Engineering.

Di Tommaso, A., Neubauer, U., Pantuso, A., and Rostásy, F. S. (2001), "Behavior of adhesively bonded concrete- CFRP joints at low and high temperatures." Mechanics of Composite Materials, ,37(4), 327-338.

Dolawatte, N, N, W. (2013), "Study on use of Carbon fiber reinforced polymer (CFRP) for strengthening of reinforced concrete beams (RC)". A Thesis submitted in partial fulfillment of the requirements of IESL Engineering course part III: IESL Sri Lanka.

Ernst L. Klamer, Dick A. Hordijk, Michael C. J. Hermes (2008), "The influence of temperature on RC beams strengthened with externally bonded CFRP reinforcement", Faculty of Architecture, Building and Planning, Eindhoven University of Technology, Eindhoven, The Netherlands. HERON Vol. 53 No. 3.

FIB Bulletin 14 (2001) "Externally bonded FRP reinforcement for RC structures" Technical report on the Design and use of externally bonded fibre reinforced polymer Reinforcement of EBRO for Difference Structures www.lib.mrt.ac.lk

Gamage, J.C.P.H., Al-Mahaidi, R. and Wong, M.B(2006), "Bond Characteristics of CFRP Plated Concrete Members under Elevated Temperatures" Journal of Composite Structures, Volume 75, September 2006. Pages: 199-205.

Gamage, J, C, P, H., Wong, B., and Al-Mahaidi, R. (2005), "Performance of CFRP strengthened concrete members under elevated temperatures". International Symposium on Bond Behavior of FRP in Structures (BBFS), Hong Kong, p.7-9.

Hashemi S, Al-Mahaidi (2008), "Cement based bonding material for FRP", 11th inorganic-bonded fiber composites conference, November 5-7, 2008 Madrid – Spain.

Hashemi.S , R. Al-Mahaidi, (2012), "Flexural performance of CFRP textile-retrofitted RC beams using cement-based adhesives at high temperature", construction and building materials, 791-797.

Hashemi S, R. Al-Mahaidi (2012), "Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives", Construction and Building Materials 26 268–273.

H. Shehab El – Din, Heba A. Mohamed (2013), "Effect of Temperature on Strength of Concrete Strengthening With CFRP", International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September 2013.

Imam,M., A. Tahwia,A., Elagamy,A, and Yousef,M. (2013), "Behavior of Reinforced Concrete Beams Strengthened With Carbon Fiber Strips" Mansoura Engineering Journal (MEJ), Vol. 29, No. 3, September 2004, pp C22-C40.

J.P. Firmo, J.R. Correia, D. Pitta, C. Tiago, M.R.T. Arruda, (2015), "Experimental characterization of the bond between externally bonded reinforcement (EBR) CFRP strips and concrete at elevated temperatures", Cement & Concrete Composites 60 44–54.

Laura, A., Antonio, B.and Giusy, F (2003), "Increasing the flexural performance of RC beams strengthened with CFRP materials". Journal of Construction and Building Materials Volume 19 (4). P 55–61.

Li Z., & Ding Z (2003), "Property improvement of Portland cement by incorporating with metakoalin and slag". Cement and concrete research Vol. 33, No. 4, pp 579-584.

Morgan, P. (Carbon fibers and their composites). Taylor & Francis Group, Boca Raton, FL, WWW.lib.mrt.ac.lk

Piyong, Y., Silva, P, F. and Antonio, N. (2008), "Flexural Performance of RC beams strengthened with prestressed CFRP sheets.

Riyadh Al-Amery.and Riadh Al-Mahaidi (2006), "Coupled flexural–shear retrofitting of RC beams using CFRP straps" International journal of composite structure, volume 75 (3), P 457–464.

Siavash and Riadh, (2006)," Cement Based bonding material for FRP strengthening of RC structures", Fiber composite conference, November 2008.

S.L. Sveinsdottir, (2012), "Experimental research on strengthening of concrete beams by the use of epoxy adhesive and cement-based bonding material", Reykjavik university, June 2012.

Srisangeerthanan, S. (2013), "Investigation on alternatives to prevent deboning of reinforced concrete members", Degree of Bachelor of the Science of Engineering, Department of Civil Engineering, University of Moratuwa ,Sri Lanka

Siddiqui, N, A. (2009), "Experimental investigation of RC beams strengthened with externally bonded FRP composites" Lathin American journal of solids and structures. Volume 6(10) P 343-362.

Tadeu, A. J. B. and Branco, F. J. F. G. (2000), "Shear tests of steel plates epoxy- bonded to concrete under temperature." Journal of Materials in Civil Engineering, 12(1), 74-80.

Thomas Blanksvärd & Björn Täljsten, (2006), "Strengthening of concrete structures with cement based bonded composites", International conference on FRP Composites in Civil Engineering, Zurich, Switzerland, 22-24 July 2008.

Wu, Z. S., Iwashita, K., Yagashiro, S., Ishikawa, T., and Hamaguchi, Y. (2005),"Temperature effect on bonding and debonding behavior between FRP sheets and concrete (in Japanese)." Journal of the Society of Material Science, 54(5), 474- 480.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Appendix A: Details of flexural capacity enhancement of beams

No	Research and Author	Description of sample	Material Properties	Strength gain in flexure	Observed failure mode
1.	Srisangeerthanan, S. (2013) "Investigation on alternatives to prevent debonding of reinforced concrete members"	Beam size 150 mmX 200 mmX750	Thickness= 0.19 mm, Tensile strength =2,600 N/mm ² , weight of fabric= 200 g/m ² , uni directional, E = 6.44 X10 ⁵ N/mm ² , G 30 concrete, f_y = 460 N/mm ²	29%	Flexure. debonding
2.	Anthony J. L., Lawrence, C, B. and David, W. (2004), "Flexural Strengthening of Reinforced Concrete Beams by Mechanically Attaching Fiber- Reinforced Polymer Strips" Journal of composites for construction volume 8(3), P 203-210		Modkadsser Wam, Schsile and gra. neses &/mDissectitations = .acl.ik X10 ⁵ N/mm2,, G 30 concrete,	19%	Flexure debonding

No	Research and Author	Description of sample	Material Properties	Strength gain in flexure	Observed failure mode
3.	Imam,M., A. Tahwia,A., Elagamy,A, and Yousef,M.(2013) "Behavior of Reinforced Concrete Beams Strengthened With Carbon Fiber Strips"	Beam size 120 mm X200 mm X 2300 mm,	Thickness= 0.13 mm, Tensile strength =3,500 N/mm ² , weight of fabric= 220 g/m ² ,uni directional, E = 6.44 X105 N/mm ² ,, G 30 concrete, $f_y = 400$ N/mm ²	20%	Flexture. fiber separation
4.		X250 mm X 3000	Thickness= 0.30 mm, Tensile strength MONALLYWA ighorf frabration. p_{200} are Dissertations $N_{mp_{x}}$ G 20 concrete, $f_{y} = 512 \text{ N/mm}^{2}$	20%	Flexure

No	Research and Author	Description of sample	Material Properties	Strength gain in flexure	Observed failure mode
5.	Davood, M., Seyed , M, S., Ardalan, H. (2012). "Experimental Study on the effectiveness of EBROG method for flexural strengthening of RC beams" Proceedings of the International Conference on FRP Composites in Civil Engineering	Beam size 120 mmX140 mmX1000 mm,	Thickness= 0.12 mm, Tensile strength =4100 N/mm ² , uni directional E = $2.3X10^5$ N/mm ² , G 30 concrete, f _y = 530 N/mm ²	52%	CFRP debonding
6	Alaa, M. and Tony, E M. (2012). "Bonding techniques for flexural strengthening of R.C. beams using Journal of Ain Shans Engineering Volume 30 (9) P 30-36	Priversity ¹ 91 Effectionic Tl mmX2400.mm www.lib.mrt	=2600 N/mm ² uni directional	12%	FRP debonding with concrete cover separation
7	Siddiqui, N, A. (2009). "Experimental investigation of RC beams strengthened with externally bonded FRP composites" Lathin American journal of solids and structures. Volume 6(10) P 343-362	Beam size 120 mmX140 mmX1000 mm,	Thickness= 1.0 mm, Tensile strength =846 N/mm ² , uni directional $E = 7.7X10^5$ N/mm ²) G 35 concrete, $f_y = 420$ N/mm ²	23%	Debonding

No	Research and Author	Description of sample	Material Properties	Strength gain in flexure	Observed failure mode
8	Riyadh Al-Amery.and Riadh Al-Mahaidi (2006) "Coupled flexural–shear retrofitting of RC beams using CFRP straps" International journal of composite structure, volume 75 (3), P 457–464	Beam size 260 mmX340 mm X2700 mm,	Thickness=1.40 mm, 76 mm wide Tensile strength =1,710 N/mm ² , uni directional $E = 2.15X10^5$ N/mm ²) G 30 concrete, f _y = 504 N/mm ²	62%	Debonding,cru shing of concrete
9	Dolawatte, N, N, W. (2013) "Study on use of Carbon fiber reinforced polymer (CFRP) for strengthening of reinforced concrete beams (CFRP) for Thesis submitted in partial fulfillment of the requirements of IESL Engineering course part III: IESL Sri Lanka	Exectronic Tl	Thickness 1 mm, Tensile strength =834 N/mm ² uni directional, $E =$ Dissertations 8.2X10 ⁵ N/mm ² , G 30 concrete, $f_y = 490$	78%	Separation of concrete cover
10	Piyong, Y., Silva, P, F. and Antonio, N. (2008) "Flexural Performance of RC beams strengthened with prestressed CFRP sheets"	mmX305	Thickness= 1 mm, Tensile strength =760 N/mm ² , uni directional, E = $2.28X10^5$ N/mm ² , G 20, concrete ,f _y = 414 N/mm ²	65%	Flexure.

				-	th gain in exure	0	bserved failure mode
No	Research and Author	Description of sample	Material Properties	Using Epoxy	Using cement based adhesive	Using Epoxy	Using cement based adhesive
1	S.L. Sveinsdottir, "Experimental research on strengthening of concrete beams by the use of epoxy adhesive and cement- based bonding material"	Beam size 150 mmX 250 mmX2500	Tensile strength =2,500 N/mm ² , E = 84 Gpa, G 35 concrete, f_y = 460 N/mm ²	11%	8%	debonding	Flexural failure
2	"Investigation on allternative bonding agents for CFRP concrete composites",S.R. Adhikarinayake,K.D.J.A. Gayan,N.G.T.T.Thathsara ni,J.C.P.H.Gamage,UOM, Sri Lanka	Un Ele 100mm X150mm X W 600 mm,	ivessestynen=38001 Ctronie=Piteses G.30 poncrete. fy=4691 W.110.11111.ac.11 N/mm ²	atuw & D ^{26%}	a, Sri I isserta ^{37%}	Lanka. ions debonding	Rupture of fibre
3	Hashemi S, Al-Mahaidi, "Cement based bonding material for FRP", 11th inorganic-bonded fiber	Beam size 120 mm X200 mm X 2300 mm,	Tensile strength =3,800 N/mm ² , E = 230 Gpa, G 30 concrete, $f_y = 460$ N/mm ²	56%	57%	debonding	Flexural failure

Appendix B: Details of flexural capacity enhancement of beams using Epoxy and Cement based adhesive

	Research and Author			-	th gain in exure	0	bserved failure mode
No		Description of sample	Material Properties	Using Epoxy	Using cement based adhesive	Using Epoxy	Using cement based adhesive
	composites conference,						
	November 5-7, 2008						
	Madrid – Spain.						
	Siavash Hasmi, Riadh Al						
	Mahandi,May 2011,	😫 Un	iversity of Mo	ratuw	a Sri I	anka	
	"Flexural performacne pf	Beam size 120	Newsie Sugngun - 5,000	0 D	in a set	i ara a	
4	"Flexural performacne pf CFRP textile-retrofitted	mm X180 mm	COMPONIE FAMORES	40%	Isseria	debonding	Flexural failure
	RC beam using cement	XI300 mm, YW	W51fbcreterfy.ace91				
	based adhesive at high		N/mm ²				
	temperature"						

	Research and Author			-	th gain in exure	0	bserved failure mode
No		Description of sample	Material Properties	Using Epoxy	Using cement based adhesive	Using Epoxy	Using cement based adhesive
5	Siavash Hasmi,Riadh Al Mahandi,June 2011, "Experiment and finite element analysis of flexure behaviour of FRP- strengthened RC beams uisng cement based adhesive"	Beam size 120 mmX140 mmX1000 mm,	Tensile strength =3,600 N/mm ² , E = 200 Gpa, G 38 concrete, $f_y = 460$ N/mm ²	33%	27%	debonding	debonding
6	Al-Abdwais, R. Al- Mahaidi, K. Abdouka, "Modified cement-based adhesive for near-surface mounted CFRP strengthening system", Fourth Asia-Pacific Conference on FRP in Structures, Melbourne, Australia, Melbourne, Australia, 2013	Un sizeE7te mmX200 mm	iversity of Mon Tensile strength =1450 CITONIC I MESES N/mm ² , E = 135 Gpa, W Lib mrt. ac G 41 concrete, fy = 460 N/mm ²	8-9 0-91	a, Sri I issertat 250%		crushing of concrete

	Research and Author			-	th gain in exure	Observed failure mode	
No		Description of sample	Material Properties	Using Epoxy	Using cement based adhesive	Using Epoxy	Using cement based adhesive
7	Heshamdiab,Apri 2015,"Efficiency of cement based bonding agent for FRP sheets vs epoxy"	Beam size 100 mmX100 mmX500 mm,	Tensile strength =3800 N/mm ² , E = 200 Gpa, G 20 concrete, $f_y = 460$ N/mm ²	125%	75%	debonding	Flexural failure
8	ThomasBlanksvärd&BjörnTäljsten,"Strengthening of concretestructureswithstructureswithcementbasedbondedcomposites",	Un size Este tum 500 WWW X4000 mm,	iversity of Mon Tensile strength = 3800 Ctronic Theses N/mm ² , E = 284 Gpa, Was concrete, ty = 460 N/mm ²		a, Sri I issertat 99%		Rupture of fibre

				-	th gain in exure	O	bserved failure mode
No	Research and Author	Description of sample	Material Properties	Using Epoxy	Using cement based adhesive	Using Epoxy	Using cement based adhesive
	E,Ferrier,A.Si Labri,J.F.						
	Georging, J. Ambroise, Apri		Tensile strength =2300				
	1 2012,"New hybrid	Beam size 150	N/mm^2 , E = 130 Gpa,				
9	cement based composite	mmX250 mm X2000 mm	G 30 concrete, $f_y = 460$	55%	63%	debonding	Rupture of fibre
	material externally bonded		N/mm ²				
	to control RC beam						
	cracking".	🙇 Un	iversity of Mon	ratuw	a, Sri I	Lanka.	
	Luciano Ombres,June	Beam size 150 e	Clensileriten ath 75800S	& D	issertat	ions	
10	2011,"Debonding analysis	10miX250	N/mm^2 , E = 270 Gpa, 1				
10	of RC beams strength with	mmX2700	G 27 concrete, $f_y = 460$	38%	30%	debonding	Rupture of fibre
	FR cementanious mortar"	mm,	N/mm ²				
	Luciano Ombres,June	Beam size 150	Tensile strength =5800				
11	2011,"Debonding analysis	mmX250	N/mm^2 , E = 270 Gpa,	220/		1-11'-	F 11 f '1
11	of RC beams strength with	mmX2700	G 23 concrete, $f_y = 460$	23%	40%	debonding	Flexural failure
	FR cementanious mortar"	mm,	N/mm ²				

Appendix C: Details of Cement adhesive mix ratios

			Cer	nent bond	l			
	Research & Author	material	Mix pro	portion (k	xg)	bond	Test type	
			1	2	3	4	<pre>- thickness(mm)</pre>	
1	S.L. Sveinsdottir, "Experimental research on strengthening of	Sand	20250	20250	20250		10	flexure
	concrete beams by the use of epoxy adhesive and cement-based bonding	Water	3119	3153	3448			
	material"	Cement	11250	11250	11250			
		Iniversity of Mor	aitiuswa	,1 S51]	lanka		_	
		Hentroppic Theses	& ₇₃ Di	sserta	ipns		-	
		WFWERV.11b.mrt.ac.1k		106			_	
		Acryl			380			
		SP	1.30%					
2	"Investigation on allternative bonding agents for CFRP concrete	cement grout					3	flexure
	composites",S.R. Adhikarinayake,K.D.J.A.Gayan,N.G .T.T.Thathsarani,J.C.P.H.Gamage,U OM,Sri Lanka	cement grout					6	flexure

		С	Cement bor	nd				
	Research & Author	material	Mix prop	oortion (l	kg)		bond thickness(Test type
			1	2	3	4	mm)	
3	 Hashemi S, Al-Mahaidi, "Cement based bonding material for FRP", 11th inorganic-bonded fiber 	cement	888	813	776	613		flexure
		micro cement				153		
	composites conference, November 5-7, 2008 Madrid – Spain.	water	426	406	310	427		
		Silica fume	754.8	691	659	651.5	-	
		SBR latex			194			
		Viscocrete5-500 (SP)	^{8.9} /a Sri	40.6 Lanl	3.9	42.2		
4	Siavash Hasmi,Riadh A Mahandi,May 2011, "Fleure 1	Jniversity of Moratuw cement Electronic Theses & D	674.3 155ert:	ation	S.		20	flexure
		www.lib.mrt.ac.lk	168.6					
	based adhesive at high temperature"	water	354	-				
		Silica fume	84.3	-				
		Filler(Silica200G)	716.6	-				
		Viscocrete5-500 (SP)	75.9	-				
			<u> </u>					

		С	ement bo	nd				
	Research & Author	material	Mix prop	portion (kg)	bond thickness(Test type	
			1	2	3	4	mm)	
5	Siavash Hasmi,Riadh Al	cement	674.3				20	flexure
	Mahandi,June 2011, "Experiment and finite element analysis of	micro cement	168.6					
	flexure behaviour of FRP- strengthened RC beams uisng	water	354]				
	cement based adhesive"	Silica fume	84.3					
		Filler(Silica200G)	716.6					
		Viscocrete5-500 (SP)	75.9	Lan	22			
6	Al-Abdwais, R. Al-Mahard, K. Abdouka, "Modified cement based	cement of stry of information	674.3	674.3	674.3	674.3	4	pull-out
	adhesive for near-surface mounted	Hectronic Theses & D	498.511	d 168/61	168.6	168.6		
	CFRP strengthening system Fourth Asia-Pacific Conference on FRP in	waterv.11b.mrt.ac.1k	354	354	354	354		
	Structures, Melbourne, Australia,	Silica fume	84.3	84.3	84.3	84.3		
	Melbourne, Australia, 2013.	Filler(Silica200G)	716.5	716.5	716.5	716.5	-	
		Viscocrete5-500 (SP)	42.1	33.7	25,.3	16.9		
		Primer	227.4	151.2	101.1	88.6	-	

		Cement bond						
	Research & Author	material	Mix pro	portion (kg)	bond	Test type	
			1	2	3	4	<pre> thickness(mm)</pre>	resttype
7	Heshamdiab, Apri 2015, "Efficiency	Cement	888				One layer	flexure
	of cement based bonding agent for FRP sheets vs epoxy"	water	426					
		fine sand	755					
		SP	8.9					
8	Thomas Blanksvärd & Björn Täljsten, "Strengthening of concrete structures with cement based bonded	mortor					One layer	flexure
9	composites", E,Ferrier,A.Si Labri,J.F. Georging,J.Ambroise,Aptil 2012,"New hybrid cement back composite material external bonded to control RC beam cracking".	Leinenersity of Moratuw Succession of Moratuw Succession of Moratuw Basalt sahib. mrt.ac.lk sand water SP Accelataor Matalic fiber Welam gum					35	flexure

		Cement bond						
	Research & Author	material	Mix pro	portion	(kg)	bond thiskness(Test type	
			1	2	3	4	thickness(mm)	
10	Luciano Ombres,June 2011,"Debonding analysis of RC beams strength with FR cementanious mortar"	mortor(compressive strength 30.4 Mpa)					22.5	bending test
11	Luciano Ombres, July 2011, "Flexural analysis of RFC beams strength with the cement based high strength composite materials"	mortor(compressive strength 29 Mpa)						bending test
		University of Moratuv Electronic Theses & E www.lib.mrt.ac.lk	1.1					

Appli ed loads			<i>a</i>			(5)				
(MT)	Deflection of beam specimens (Dial gauge readings)									
	C1	C2	A-E1	A E 2	B-C1	B-C2	C- PC1	C- PC2	D- PC1	D- PC2
0	0	0	0	A-E2 0	0	0	0	0	0	0
0.2	30	40	25	11	15	10	20	4	8	22
0.2	50	62	35	22	29	30	27	12	15	33
0.6	70	76	59	42	37	38	35	20	21	42
0.8	110	100	78	60	43	43	37	26	28	50
0.98	198									
1		200	96	80	48	46	47	32	30	56
1.02		202		94						
1.2			125		52	50	51	38	33	62
1.4			166		56	53	55	43	38	68
1.48			198			55				
1.6					60	58	60	46	40	71
1.8					65	62	67	50	44	75
2					140	67	73	134	48	126
2.2		(lettine			. 148	136	118	158	111	142
2.4		Such and a such as a such asuch as a such as a	2	nivers	114601	Maga	u <u>1</u> 50,	Sr ₁₈₆ .a		158
2.46			2.4	lectro		es29 8	-	ertatic	1. A.M. 1. A.M. 1.	
2.6			5 w	ww.li		ac.lk	235	205	150	182
2.8					205		268	248	182	198
3					230		302	300	208	214
3.12					232					
3.16							305			
3.2									240	236
3.4									280	248
3.6										273
3.8										296
4										328

Appendix D: Details of testing data