SUSTAINABLE USE OF WATER IN CONSTRUCTION PROJECTS: THE CASE OF SRI LANKA

Kapugama Geeganage Anuradha Samarajeewa Waidyasekara

(128006G)

Department of Building Economics

University of Moratuwa

Sri Lanka

August 2016
DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the PhD thesis under my supervision.

Signature of the supervisor: Date:

University of Moratuwa, Sri Lanka
Electronic Theses & Dissertations
www.lib.mrt.ac.lk
ABSTRACT

One of the major constraints for sustainable development is the limited quantity of freshwater available. However in construction projects, water is one of the poorly acknowledged resources as far as its efficiency and conservation are concerned. The waste and the misuse of water in construction sites have been identified as critical problems, although there is a high potential for saving water during the construction stage by adopting various water efficiency measures. Nevertheless, this aspect has not been explored sufficiently in current body of knowledge as per exiting literature. This induced the need for the research on sustainable use of water in construction. Therefore, the aim of this research was to develop a framework for improving sustainable water use practices in construction projects, from a Sri Lankan perspective.

Within a pragmatic philosophical view, a triangulation based mixed method approach was adopted for data collection and analysis. Four (04) case studies were carried out into building construction projects located in Colombo to explore the efficient water use practices that are being adopted. Concurrently, a questionnaire survey was administered among experienced construction professionals to identify important measures which can ensure efficient water use.

One of the key findings that emerged from the study was that water efficiency practices are strongly influenced by conditions prevailing within the operational environment of a project. However, some measures for improvement that go beyond on-site project level which have industry-wide support and intervention at policy level are required for these measures to be successful. This study revealed and clearly favoured ‘soft’ measures such as changes in the behaviour of workers as opposed to ‘hard’ measures which were primarily technology-based, for achieving water efficiency. The study also identified that the attitudes and behaviour of the parties that influence efficient water use in construction sites. The experience and commitments of the parties are also identified as an influential factor for the efficient use of water. The main barrier for achieving water efficiency was the low priority assigned to water management by the top managements of the relevant organisations due to their heavy engagements with other managerial functions.

The research findings introduced three new dimensions namely, Regulation, Responsibility, and Reward that could extend the existing 6R water hierarchy in a more effective manner. This led to the introduction of a novel 3R.6R extended water hierarchy model that can be applied to achieve the efficient use of water in the construction industry.

Among on-site construction activities, ‘site cabins and sanitation’ taken together was identified as consuming the highest volume of water and also as an activity that causes water wastage. It was revealed that indirect construction activities approximately consume more than two thirds of the amount of water used in a site. As a result, water wastage has become rampant among these indirect construction activities although in contrast it is minimal in direct construction activities. Therefore, the efficient use of water could be improved further by implementing the ‘soft’ measures in this study rather than implementing technology oriented ‘hard’ measures. Based on the results of the study, a framework has been proposed which provides the best practice guidelines on implementing sustainable water use during the construction stage of a project.

Keywords: 3R.6R Extended Water Hierarchy, Framework for Sustainable Water Use, Water Management, Water Efficiency, Construction Projects
I dedicate this piece of research to my loving husband and son who have always stood by me, endured my absences on many occasions with a smile.
ACKNOWLEDGEMENTS

It is a great pleasure to acknowledge all the individuals and institutions for their great support, encouragement and assistance contributed towards the completion of this thesis. First and foremost, I like to extend my deepest gratitude to my supervisors Prof. Lalith De Silva and Dr. Raufdeen Rameezdeen for their unparallel interests, continuous guidance, advices and support throughout my PhD Study. I further extend my sincere gratitude to progress review panel members Dr. Jagath Manatunga and Dr. Janaka Wijesundara for their constructive comments and guidance.

A very special thank is extended to Dr. Yasangika Sandanayake, the head of the Department of Building Economics, for her excellent support and encouragement given in fulfilling my PhD study. My sincere thanks also goes to the Dean of Faculty of Architecture, the Director of the Postgraduate Studies Division, the Postgraduate Research Coordinator of the Department of Building Economics, all the past Deans, Heads, Postgraduate Directors and Department Research Coordinators, and to respective staff and to the University of Moratuwa, who provided me with the institutional guidance, research facilities and encouragement.

My appreciation goes to the 105 informants who participated and gave their valuable time in responding to my questionnaire survey. My special thanks go to all of those who gave their valuable time in allowing me to interview them and providing all necessary information during the case analysis. Issues of confidentiality prevent me from mentioning their names. However, I cannot find words to express my gratitude to them. I also extend my gratitude to all of those who maintained their interest and involvement with my work.

My sincere appreciation goes to the academic and academic support staff of the Department of Building Economics, University of Moratuwa for their great cooperation. I also thank all my dear colleagues and friends for their assistance and encouragement extended throughout the study. I would like to remember Dr. Gayani, Dr. Thanuja and Dr. Nirodha for all the guidance given to me. A very special thank is extended to Dr. Inoka Gamage, Dr. Mohan Siriwardena and Dr. Anupa Manewa for their constructive comments, suggestions, and kind assistance given especially during the final stage of the thesis. Also I would like to thank my English proofreaders.

I am indebted to my parents, sisters and brother for their continuous motivation and encouragement and all their continuous support given to me throughout my life with their best wishes. Parents-in-law, brothers-in-law and sisters-in-law are specially thanked for their kind wishes and support. I am grateful to my loving husband Nadin and my son Nethum for their love, patience, commitment and understanding throughout the duration of my PhD study. Finally, I would like to thank everyone who assisted me in many ways to make this a success.
LIST OF PUBLICATIONS AND AWARDS

RESEARCH AWARDS

Built Environment Project and Asset Management (BEPAM) **Highly Commended Paper Award** for the paper titled “3R.6R Extended water hierarchy model for Sustainable use of water during Construction” by Emerald Group Publishing at, The 5th World Construction Symposium Colombo, Sri Lanka, July 2016.

The best paper award was received on paper title “Water efficiency techniques and strategies for sustainable use of water during construction phase of building projects” in the 4th World Construction Symposium June 2015 awarded by The Ceylon Institute of Builders (CIOB).

RESAERCH PUBLICATIONS

Referred Index Journal

Referred Journal

Referred Conference Publications

Symposium and Other publications

TABLE OF CONTENTS

DECLARATION... I
ABSTRACT.. ii
DEDICATION.. iii
ACKNOWLEDGEMENTS .. iv
LIST OF PUBLICATIONS AND AWARDS .. v
TABLE OF CONTENTS ... viii
LIST OF FIGURES ... xiii
LIST OF TABLES .. xx
LIST OF ABBREVIATIONS ... xxii

1 INTRODUCTION ... 1
1.1 Background .. 1
1.2 Research Problem and Rationale .. 3
1.3 Research Aim and Objectives .. 6
1.4 Research Methodology Used for the Study ... 6
1.5 Contribution to the Body of Knowledge .. 9
1.6 Outline of the Thesis Structure ... 9

2 LITERATURE REVIEW ... 11
2.1 Introduction ... 11
2.2 Role of Water in Sustainability .. 11
2.2.1 Water as a Valuable Commodity .. 11
2.2.2 Water in the Context of Sustainability .. 14
2.3 Water Management, Water Conservation and Water Efficiency .. 18
2.4 Sustainability Assessment Tools for Efficient Water-Use during the Construction Stage 20
2.5 Water Efficiency Practices in the Construction Industry .. 26
2.5.1 Importance of Resource Management in the Construction Industry .. 26
2.5.2 Opportunities Gained from Resource Efficiency in the Construction Industry 27
2.5.3 Water Management and Water Usage in Construction Projects ... 33
2.5.3.1 Water Management in Construction Projects .. 33
2.5.3.2 Research Studies on Water Usage in the Construction Industry .. 36
2.5.3.3 Water Sources and Water Quality Needed for Construction Activities 41
4.7.1 Mixed Method Design Adopted in the Research .. 103

4.8 Techniques and Procedures for Data Collection .. 106

4.8.1 Case Study Design: Qualitative Data Collection ... 106

4.8.1.1 Selection of Cases ... 106

4.8.1.2 Data Collection Techniques ... 108

4.8.2 Questionnaire Survey Design: Quantitative Data Collection Techniques 112

4.8.2.1 Questionnaire Design and Development .. 112

4.8.2.2 Sample Selection and Data Collection ... 115

4.9 Mapping Study Objectives with Data Collection Techniques 118

4.10 Data Analysis .. 119

4.10.1 Qualitative Data Analysis .. 119

4.10.2 Quantitative Data Analysis ... 120

4.11 Validity and Reliability of Data Collected ... 122

4.12 Research Ethics .. 123

4.13 Chapter Summary ... 123

5 DATA ANALYSIS: CASE STUDY RESULTS ... 124

5.1 Introduction ... 124

5.2 Procedure Adopted in Analysing Case Study Data .. 124

5.3 Analysis of CASE STUDY 1 .. 126

5.3.1 Background to the Case Analysis .. 126

5.3.2 Water Sources and Water Storage ... 126

5.3.2.1 Water Sources .. 126

5.3.2.2 Water Storage Methods ... 127

5.3.3 Water Usage on Construction Sites ... 128

5.3.3.1 Records of On-site Water Consumption .. 128

5.3.3.2 Computing Water Requirements ... 130

5.3.4 On-Site Water Wastages .. 132

5.3.5 On –Site Water Efficiency Practices ... 134

5.3.5.1 Water Management Plans ... 134

5.3.5.2 Monitoring and Supervision .. 134

5.3.5.3 Raising Worker Awareness ... 134

5.3.5.4 Assign Responsibilities .. 135
5.3.5.5 Compliance with Obligations .. 135
5.3.5.6 Water Efficient Techniques ... 136
5.3.5.7 Re-Use and Recycle ... 136
5.3.5.8 Rain Water Collection ... 136
5.3.6 Drivers and Barriers that Effect on Efficient Use of Water During
Construction .. 137

5.4 Analysis of CASE STUDY 2 .. 140
5.4.1 Background to the Case Analysis .. 140
5.4.2 Water Sources and Water Storage .. 140
5.4.2.1 Water Sources .. 140
5.4.2.2 Water Storage Methods .. 141
5.4.2.3 Quality Control of Water .. 141
5.4.3 Water Usage on Construction Site .. 141
5.4.3.1 Records of On-Site Water Consumption 143
5.4.3.2 Computing Water Requirements .. 146
5.4.4 On-Site Water Wastages .. 147
5.4.5 On-Site Water Efficiency Practices ... 149
5.4.5.1 Water Efficient Techniques ... 149
5.4.5.2 Raising Worker Awareness ... 150
5.4.5.3 Assign Responsibilities .. 150
5.4.5.4 Water Auditing ... 151
5.4.5.5 Compliance with Obligations ... 151
5.4.5.6 Encourage Innovative Methods/Techniques 151
5.4.6 Drivers and Barriers that Effect on Efficient Use of Water During
Construction .. 152

5.5 Analysis of CASE STUDY 3 .. 154
5.5.1 Background to the Case Analysis .. 154
5.5.2 Water Sources and Water Storage .. 154
5.5.2.1 Water Sources .. 154
5.5.2.2 Water Storage Methods .. 155
5.5.2.3 Quality Control of Water .. 155
5.5.3 Water Usage on Construction Sites ... 155
5.5.3.1 Records of On-Site Water Consumption 155

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk
5.5.3.2 Water Auditing on the Site .. 158
5.5.3.3 Computing Water Requirements .. 160
5.5.4 On-Site Water Wastages ... 161
5.5.5 On – Site Water Efficiency Practices ... 163
 5.5.5.1 Raising Worker Awareness .. 163
 5.5.5.2 Assign Responsibilities .. 163
 5.5.5.3 Water Efficient Techniques ... 163
 5.5.5.4 Compliance with Obligations ... 165
 5.5.5.5 Site Policies ... 165
 5.5.5.6 Worker Behaviour and Attitudes ... 165
5.5.6 Drivers and Barriers that Effect on Efficient Use of Water During
 Construction ... 166
5.6 Analysis of CASE STUDY 4 ... 168
 5.6.1 Background to the Case Analysis .. 168
 5.6.2 Water Sources and Water storage ... 168
 5.6.2.1 Water Storage Methods ... 169
 5.6.2.2 Quality Control of Water .. 169
5.6.3 Water Usage on Construction Sites .. 169
 5.6.3.2 Water Audit on the Site ... 172
 5.6.3.3 Computing Water Requirements .. 173
5.6.4 On-Site Water Wastages ... 174
5.6.5 On –Site Water Efficiency Practices ... 175
 5.6.5.1 Monitoring and Supervision .. 175
 5.6.5.2 Water Efficient Techniques ... 176
 5.6.5.3 Raising Worker Awareness .. 176
 5.6.5.4 Assign Responsibilities .. 176
5.6.6 Drivers and Barriers that Effect on Efficient Use of Water During
 Construction ... 177
5.7 Cross-Case Analysis .. 179
 5.7.1 Water Sources for On-site Construction Activities 179
 5.7.1.1 Main Water Supply ... 179
 5.7.1.2 Water Trucks (Bowser Water) .. 179
5.7.1.3 Well Water ... 180
5.7.1.4 Tube Well Water .. 180
5.7.1.5 Rain Water .. 180
5.7.1.6 Bottled Water .. 180
5.7.2 On-site Water Storage Methods .. 181
5.7.3 Quality Control of Water .. 181
5.7.4 Cost of Water Used for Construction Activities 181
5.8 Use of Water Sources in Construction Sites 183
5.8.1 Water Sources for Direct and Indirect Construction Activities .. 183
5.8.2 Water Sources Usage by On-Site Management Staff and Labourers 183
5.9 Water Consumption During the Construction Phase 183
5.9.1 Water Consuming Activities .. 183
5.9.2 Record Keeping of Water Consumption at Sites 184
5.9.3 Computing Water Requirements of Construction Activities .. 184
5.9.4 Factors Affecting On-site Water Consumption Levels 187

Condition of Materials ... 187

5.10 Water Wastage during Construction 189
5.10.1 Water Wasting Activities ... 189
5.10.2 Reasons for On-Site Water Wastage 189
5.11 Practices for the Efficient Use of Water during the Construction Phase 190
5.11.1 On-Site Water Efficiency Measures 190
5.11.2 Drivers and Barriers for Implementing On-Site Water Efficiency Practices 191
5.11.3 Applicability and Application of Nine (09) R Principles for the Efficient Use of Water in Construction Sites 192
5.11.3.1 Review ... 192
5.11.3.2 Replace ... 193
5.11.3.3 Reduce .. 193
5.11.3.4 Reuse ... 193
5.11.3.5 Recycle .. 194
5.11.3.6 Removal ... 194
5.11.3.7 Regulation ... 195
5.11.3.8 Reward ... 195
5.11.3.9 Responsibility .. 196
5.12 Recommendations for the Sustainable Use of Water during Construction 196
5.13 Challenges Faced during Data Collection and Case Study Analysis 197
5.14 Validity of Case Study Findings .. 199
5.15 Chapter Summary .. 200

6 DATA ANALYSIS: QUESTIONNIERE SURVEY RESULTS 201
6.1 Introduction .. 201
6.2 Questionnaire Survey Administration and Background Information 201
 6.2.1 Questionnaire Survey Administration and Response Rate 201
 6.2.2 Professional Views .. 203
 6.2.3 Background Information .. 203
6.4 “Water Efficiency” and “Water Conservation” in the Context of Construction Industry .. 207
6.5 “Water Using Activities” and “Water Wasting Activities” in Building Construction Projects .. 208
6.6 Water Efficiency Measures (WEMs) .. 210
 6.6.1 Applicability of WEMs: Policies and Planning (PP) .. 210
 6.6.2 Applicability of WEMs: Attitudes and Behaviours (AB) 212
 6.6.3 Applicability of WEMs: Alternative Construction (AC) methods 214
 6.6.4 Applicability of WEMs: Efficient Technologies (ET) 215
 6.6.5 Discussion on Overall Findings of WEMs ... 216
6.7 Drivers, Barriers, and Other Attributes that Impact on Efficient Water-Use in Building Projects ... 218
 6.7.1 Drivers for Enhancing Water Efficient Practices .. 218
 6.7.2 Barriers that Affect on Enhancing Water Efficient Practices 220
 6.7.3 Assessment of Exiting 6R and New 3R Principles in the Context of Efficient Use of Water during Construction Phase .. 222
 6.7.3.1 Applicability of R Principles to Enhance Efficient Water-Use 222
 6.7.3.2 Application of Existing 6R Principles in Water Hierarchy to Achieve Efficient Use of Water ... 223
 6.7.3.3 Application of New Three R (3R) Principles for Achieving Efficient Use of Water ... 225
 6.7.4 Sustainability Assessment Criteria for Efficient Use of Water during the Construction Phase ... 226
6.8 Actions for Enhance Efficient Water Use in Construction Projects227
6.9 Validity and Reliability ..227
6.10 Chapter Summary ...228

7 DISCUSSION ON RESEARCH FINDINGS ..230
7.1 Introduction ..230
7.2 Existing Water Management Practices during Construction Phase230
 7.2.1 Water Management Practices ...230
 7.2.2 Water Efficiency and Water Conservation ..231
 7.2.3 Water Sources for On-Site Construction ..231
 7.2.4 On-Site Water Storage Methods ..233
 7.2.5 On-Site Quality Control of Water ..233
 7.2.6 Cost of Water Used in Construction Activities234

7.3 On-Site Water Consumption ...235
 7.3.1 On-Site Record Keeping of Water Consumption237
 7.3.2 Computing Water Requirements for Construction Activities238
 7.3.3 Factors Affecting On-Site Water Consumption Levels239
 7.3.4 Water Efficiency Measures (WEMs) for Enhancing On-Site Water Efficiency Practices ..240

7.4 Drivers for Enhancing On-Site Water Efficiency Practices243

7.5 Barriers that Effect On-Site Water Efficiency Practices244

7.6 R Principles for Enhancing On-Site Water Efficiency Practices245
 7.6.1 Assessment of R Principles ..245
 7.6.2 3R.6R Extended Water Hierarchy Model for the Construction Industry248

7.7 Sustainability Assessment Criteria for Enhancing On-Site WE Practices250

7.8 Actions Recommended to Improve Efficient Water Use in Construction Projects 250
 7.8.1 Stakeholder Involvement: On-Site Project Level and Beyond On-Site Project Level ..250
 7.8.2 Actions Recommended to Enhance Efficient Water-Use: On-Site, Project Level ..252
 7.8.3 Actions Recommended to Enhance Efficient Water-Use: Beyond On-Site Project Level ..253

7.9 Development of a Framework for Improving Sustainable Use of Water in Construction Projects ...255
 7.9.1 Structure of the Framework ..255
 7.9.1.1 On-Site Project Level (Post-Contract Stage)255

xvi
7.9.1.2 Beyond On-Site Project Level (Organisational Level/Pre-contract Stage) 255
7.9.1.3 Beyond On-Site Project Level (Policy Level, both Pre and Post Contract Stages) 256
7.9.2 Communication and Information Flow Diagram for Implementing the Directions Proposed in the Framework 256
7.10 Framework for Sustainable Water Use in Construction Projects 257
7.10.1 Uses of the Proposed Framework 262
7.10.2 Validation of the Content of the Proposed Framework 262
7.11 Chapter Summary 265

8 CONCLUSIONS 266
8.1 Introduction 266
8.2 Achievement of the Research Aim and Objectives 266
8.2.1 Objective 1: Review Principles and Practices of Sustainable Use of Water in Construction Projects 266
8.2.2 Objective 2: Evaluate Water Use Practices of Construction Projects in Sri Lanka 267
8.2.3 Objective 3: Investigate the Most Applicable Water Efficiency Measures (WEMs) for Construction Projects 268
8.2.4 Objective 4: Determine Relevant Drivers, Barriers and Other Attributes for Water Efficiency Measures in Construction Projects 269
8.2.5 Objective 5: Develop a Framework for Improving Sustainable Use of Water in Construction Projects 270
8.3 Contribution of the Research 271
8.3.1 Contribution to Theory 271
8.3.2 Contribution to Practice 272
8.3.3 Limitations of the Study 272
8.3.4 Recommendations for Further Research 273

REFERENCES 275

APPENDIX – A: CASE STUDY INTERVIEW GUIDE 299
APPENDIX – B: STRUCTURED QUESTIONNIRE SURVEY 303
APPENDIX C: One-way ANOVA Test Results 310
Appendix D: Internal Reliability: Cronbach’s Alpha Values 317
APPENDIX E: Supportive Information for Contractor 319
APPENDIX F: Concept of developing a Mobile APP for Improving Sustainable use of water in Construction industry 320
LIST OF FIGURES

Figure 1.1: Summary of the Research Methodology Used for the Study ... 8
Figure 2.1: Distribution of Earth’s Water .. 12
Figure 2.2: Demand for Water ... 12
Figure 2.3: Asia’s Future Water Demand ... 13
Figure 2.4: Growth in Global Water Industry Spending in the Next Five (05) Years 14
Figure 2.5: (a) Environmentally Safe and (b) Environmentally Water Scarce Situations 15
Figure 2.6: Intentional and Unintentional Pressure on Water Resources 16
Figure 2.7: Green and Blue Water ... 17
Figure 2.8: Planning Process for Water Management ... 18
Figure 2.9: Relationship among Water Management, Conservation and Efficiency 20
Figure 2.10: Weightage given for Water Category ... 23
Figure 2.11: Total Weightage given for Water Aspects in all Categories 23
Figure 2.12: Distribution of Water Credits in the Construction Phase vs. In-use Phase 24
Figure 2.13: Norm Activation Model .. 31
Figure 2.14: Theory of Planned Behaviours with a Water Saving Example 31
Figure 2.15: General Principles for Cost and Value of Water ... 43
Figure 2.16: ‘3E’ Value of Water ... 43
Figure 2.17: Fluctuation of the Unit Rate of Water under the Industrial/Construction Category ... 44
Figure 2.18: Water Hierarchy in Construction ... 48
Figure 2.19: Water Usage Hierarchy .. 49
Figure 2.20: Water Identified in a Water Audit Process .. 52
Figure 2.21: Water Audit Procedure Flowchart ... 52
Figure 2.22: Drive On-Wheel Wash Area ... 54
Figure 2.23: Water Efficient Devices: (i) Spray Gun Hoses and (ii) High Pressure Washers 55
Figure 2.24: Dust Suppression Systems Used in Construction Sites ... 57
Figure 2.25: Exploration of the Research Focus of the Study ... 67
Figure 3.1: Conceptual Framework .. 81
Figure 4.1: Literature Review Process .. 85
Figure 4.2: Reviewing Process of Literature Resources ... 86
Figure 4.3: Research Onion .. 90
Figure 4.4: Triangulation Design: Convergence Model ... 105
Figure 4.5: Unit of Analysis and Study Boundary .. 107
Figure 4.6: Basic Types of Designs for Case Studies .. 107
Figure 4.7: Online Questionnaire Developed through Google Form 113
Figure 4.8: Types of Questionnaires ... 117
Figure 5.1: Tree Node Coding Structure for Case Study Data Analysis and Presentation 125
Figure 5.2: Volume of Water Supplied to the Site (m³) - Case Study 1 129
Figure 5.3: Display Posters at Bathing Area ... 135
Figure 5.4: The Existing Filtering System Used Prior to Wastewater Disposal 136
Figure 5.5: Cognitive Map for Water Usage During the Construction Stage – Case Study 1 ... 139
Figure 5.6: Stationary Pump to Transport Concrete for Upper Floors 142
Case Study 2: Communication and Information Flow Diagram between Three (03) Key Participants’ Response on Highly Applicable Measures under PP and AB

Case Study 3: Cognitive Map for Water Usage During the Construction Stage of Construction Industry Work Experience of Respondents by Profession

Case Study 4: Cognitive Map for Water Use Efficency Practice in Case Study 4

Remove Showerheads

Display Posters on the Site to Save Water at Bathing Area

1:5): Site Practice and Water Consumption Pattern

Total Water Volume per Day

Mix Concrete

Vegetable Cultivation

Cognitive Map for Water Usage During the Construction Stage of

Cumulative Water Usage

Participants’ Response on Highly Applicable Measures under AB

3R.6R Extended Water Hierarchy Model for Construction Industry

Three Levels for Enhancing Efficient Water Management Practices during Construction Phase

BSR Norms

Water Requirement for 1:2:4 Concrete Mix based on Site Practice and Water Consumption Pattern

Water Requirement for 2

Volume of Water Consumed by Non-Construction - Case Study 3

Water Consumption Pattern

Total Water Volume per Day

Columns Covered with Gunny Bags to Reduce Water Evaporation

Trays For Mixing Mortar and Concreting

Sustainability Practices - Vegetable Cultivation

Water Consumption Pattern of a Day - Case Study 2

Mixing Mortar on the Floor

Pressure Spray Gun Hoses for Curing Concrete Slabs

Posters on the Site to Save Water at Bathing Area

Figure 6.1: Questionnaire Survey Administration Duration

Figure 5.30: Water Requirement of 20mm Concrete Mix based on Site Practice and BSR Norms

Figure 5.29: Water Requirements for In-House (BSR Norms) and Ready-Mix Concrete

Figure 5.28: Water Resources Arrangement in Construction Sites

Figure 5.27: Cognitive Map for Water Use Efficiency Practices in Case Study 4

Figure 5.26: Cumulative Water Usage

Figure 5.25: Water Consumption per Day

Figure 5.24: Consumption of Bottled Water

Figure 5.23: City Water Supply on the Site (m³) - Case Study 4

Figure 5.22: Cognitive Map for Water Usage During the Construction Stage of Case Study 3

Figure 5.21: Sustainability Practices - Vegetable Cultivation

Figure 5.20: Trays For Mixing Mortar and Concreting

Figure 5.19: Columns Covered with Gunny Bags to Reduce Water Evaporation

Figure 5.18: Total Water Volume per Day

Figure 5.17: Water Consumption Pattern

Figure 5.16: Volume of Water Consumed by Non-Construction - Case Study 3

Figure 5.15: Volume of Water Supplied to the Site (m³) - Case Study 3

Figure 5.14: Cognitive Map for Water Usage During the Construction Stage of Case Study 2

Figure 5.13: Display Posters on the Site to Save Water at Bathing Area

Figure 5.12: High-Pressure Spray Gun Hoses for Curing Concrete Slabs

Figure 5.11: Remove Showerheads

Figure 5.10: Mixing Mortar on the Floor

Figure 5.9: Water Consumption Pattern of a Day - Case Study 2

Figure 5.8: Cost of City Water per Month - Case Study 2

Figure 5.7: Main Water Supply on the Site (m³) - Case Study 2

Reference:
University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations. www.lib.mrt.ac.lk
LIST OF TABLES

Table 2.1: Key Requirements Identified by Rating Tools under Water Category22
Table 2.2: Issues of Sustainable Construction (SC) ...28
Table 2.3: Principles of Sustainable Construction ...28
Table 2.4: Determinants of Water Conservation Behaviour ...30
Table 2.5: Views on Water Usage and Research Needs in Construction Projects34
Table 2.6: High Priority Activities on Water Use ..37
Table 2.7: Water Efficiency Measures ..38
Table 2.8: Embodied Water Coefficients of Main Building Materials40
Table 2.9: Water Efficient Plumbing Fixtures ...55
Table 2.10: Standard Norms Available for Water Requirements of Construction
Activities/Processes ..61
Table 3.1: WEMs Related to Policies and Planning (PP) ...72
Table 3.2 - WEMs related to Attitudes and Behaviours ..73
Table 3.3: WEMs Related to Alternative Construction Methods73
Table 3.4: WEMs Related to Efficient Technologies ...74
Table 3.5: Drivers that Impact on Water Efficiency ..75
Table 3.6: Barriers for Implementing Water Efficiency in Construction Sites76
Table 3.7: Steps of Water Hierarchy with the Proposed ‘R’ Principle77
Table 3.8: New Three (03) R Sustainability Principles for Water Efficiency78
Table 4.1: Summary of Philosophical Assumptions ...92
Table 4.2: Characteristic Features of Four Philosophical Positions According to
Philosophical Assumptions ...93
Table 4.3: Differences between Deductive and Inductive Approaches95
Table 4.4: Dimensions of Contrast among the Three (03) Methodical Traditions97
Table 4.5: Relevant Situations for Different Research Strategies99
Table 4.6: Major Mixed Method Design Types ...104
Table 4.7: Six Sources of Evidence - Strengths and Weaknesses109
Table 4.8: Advantages and Disadvantages of Audio Recording of Interviews111
Table 4.9: Questionnaire Survey Sample Distribution ..116
Table 4.10: Mapping of Study Objectives with Data Collection Techniques118
Table 5.1: Pseudonyms Used for the Respondents ...125
Table 5.2: Project Details of Case Study 1 ...126
Table 5.3: Total Water Supplied to the Construction Site by Water Source129
Table 5.4: Water Quantity Required to Produce Ready Mixed Concrete
(by Concrete Grade) ...130
Table 5.5: Water Requirement for Wet Trade Activities - Case Study 1131
Table 5.6: Project Details of Case Study 2 ..140
Table 5.7: Water Requirement for Wet Trade Activities - Case 2146
Table 5.8: Project details of Case Study 3 ..154
Table 5.9: Information of Water Auditing - Case Study 3 ..158
Table 5.10: Water Requirement for Wet Trade Activities - Case Study 3161
Table 5.11: Project Details of Case Study 4 ...168
Table 5.12: Information for Water Auditing in Case 4 ...172
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Attitudes and Behaviour</td>
</tr>
<tr>
<td>AC</td>
<td>Alternative Construction</td>
</tr>
<tr>
<td>BOQ</td>
<td>Bill of Quantities</td>
</tr>
<tr>
<td>BEAM</td>
<td>Building Environmental Assessment Method</td>
</tr>
<tr>
<td>BREAM</td>
<td>Building Research Establishment’s Environmental Assessment Method</td>
</tr>
<tr>
<td>BRS</td>
<td>Building Rating System</td>
</tr>
<tr>
<td>BSR</td>
<td>Building Schedule of Rates</td>
</tr>
<tr>
<td>CE</td>
<td>Civil Engineer</td>
</tr>
<tr>
<td>CEA</td>
<td>Central Environment authority</td>
</tr>
<tr>
<td>CIDA</td>
<td>Construction Industry Development Authority</td>
</tr>
<tr>
<td>CIRIA</td>
<td>Construction Industry Research and Information Association</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact assessment</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental management system</td>
</tr>
<tr>
<td>ET</td>
<td>Efficient Technologies</td>
</tr>
<tr>
<td>GBCSL</td>
<td>Green Building Council, Sri Lanka</td>
</tr>
<tr>
<td>GRIHA</td>
<td>Green Rating for Integrated Habitat Assessment</td>
</tr>
<tr>
<td>ICTAD</td>
<td>Institute of Construction Training and Development</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Environmental and Energy Design</td>
</tr>
<tr>
<td>MC</td>
<td>Municipal Council</td>
</tr>
<tr>
<td>M & E</td>
<td>Mechanical and Engineering</td>
</tr>
<tr>
<td>NAM</td>
<td>Norm Activation Model</td>
</tr>
<tr>
<td>NBRO</td>
<td>National Building Research Organization</td>
</tr>
<tr>
<td>NCPC</td>
<td>National cleaner Production Centre</td>
</tr>
<tr>
<td>NGOs</td>
<td>Non-Government Organizations</td>
</tr>
<tr>
<td>NRBV</td>
<td>Natural Resource Based View</td>
</tr>
<tr>
<td>NRW</td>
<td>Non-Revenue Water</td>
</tr>
<tr>
<td>NWS&DB</td>
<td>National Water Supply and Drainage Board</td>
</tr>
<tr>
<td>PM</td>
<td>Project Manager</td>
</tr>
<tr>
<td>PP</td>
<td>Policies and Planning</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>QS</td>
<td>Quantity Surveyor</td>
</tr>
<tr>
<td>RDA</td>
<td>Road Development Authority</td>
</tr>
<tr>
<td>SFfC</td>
<td>Strategic Forum for Construction</td>
</tr>
<tr>
<td>SLS</td>
<td>Sri Lanka Standard</td>
</tr>
<tr>
<td>SP</td>
<td>Sustainability Policies</td>
</tr>
<tr>
<td>SS</td>
<td>Sustainability Strategies</td>
</tr>
<tr>
<td>TPB</td>
<td>Theory of Planned Behaviour</td>
</tr>
<tr>
<td>UDA</td>
<td>Urban Development Authority</td>
</tr>
<tr>
<td>WC</td>
<td>Water Conservation</td>
</tr>
<tr>
<td>WE</td>
<td>Water Efficiency</td>
</tr>
<tr>
<td>WEMs</td>
<td>Water Efficiency Measures</td>
</tr>
<tr>
<td>WRAP</td>
<td>Waste and Resources Action Program</td>
</tr>
<tr>
<td>WRD</td>
<td>Water Resource Department</td>
</tr>
</tbody>
</table>