DEVELOPMENT OF A METHODOLOGY TO ASSESS THE GEOTHERMAL ENERGY POTENTIAL IN SRI LANKA

G.D .Nanayakkara (098099)

Department of Earth Resources Engineering

University of Moratuwa

Sri Lanka

November 2015

DEVELOPMENT OF METHODOLOGY TO ASSESS THE GEOTHERMAL ENERGY POTENTIAL IN SRI LANKA

G.D .Nanayakkara

(098099) University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

This thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Earth Resources Engineering

University of Moratuwa

Sri Lanka

November 2015

DECLARATION

" I hereby certify that this thesis does not incorporate any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief, it does not contain any material previously published, written or orally communicated by another person except where due reference is made in the text"

(Signature of the applicant)

G.D.Nanayakkara

"The above given particulars are true and correct to the best of our knowledge"

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

(Main Supervisor)

Dr.H.M.R.Premasiri Senior Lecturer of the Department of Earth Resources Engineering University of Moratuwa Sri Lanka (Co-Supervisor)

R.A.Attalage Senior Professor, of the Department of Mechanical Engineering University of Moratuwa Sri Lanka

ABSTRACT

Assessing geothermal potential is a difficult task. It is a time and money consuming process. There are many methodologies, such as deep drilling bore holes and measure temperature by using thermal sensors, silicon solubility measurement, magneto telluric, etc.

The used equipment for these methods, especially for drilling of deep bore holes are much expensive. If geothermal gradient is very low, the area cannot be effectively used to establish a geothermal power plant. Another method based on contents of amorphous silica in hot spring water is also used to determine the geothermal gradient. Main task of this study is to find a suitable cost effective method to assess the geothermal potential in Sri Lanka and to develop a lab scale plant. As a cheaply available geophysical technique, ground resistivity measurement was also used to measure the temperature. Increasing temperature again increases their resistance. This natural phenomenon has been used to develop a methodology to assess the geothermal potential in various countries.

Resistivity surveys have been carried out in various places in Sri Lanka. Gathered resistivity data has been analyzed. Geothermal gradient calculation was done in Bogala Graphite Mines to study about the temperature gradient in Sat Lanka. Also this selected place was the original determined the second here shows the temperature gradient of Sri Lanka. The average values of temperatures in those levels were computed and then geothermal gradient was calculated which is 28.046^oC/km. This method gave some reliable information as to how the temperature gradient varies at crustal level of rocks in Sri Lanka.

To calculate power generation, a laboratory model was developed with the possibility of applying varying parameters. Collected the annual average temperature data and predicted the temperature gradient of various districts. According to the calculations done, geothermal gradient in Sri Lanka is varying between 23 ^oC and 30 ^oC per km. This information has been used to develop the geothermal map of Sri Lanka.

Laboratory plant was developed and its performances were studied for varying hot spring temperatures and all data gathered and analyzed. According to that the geothermal temperature gradient in Sri Lanka is suitable to generate electricity. But the water flow rate is not sufficient to produce more power.

The research team who studied about the Mahapelessa hot springs has observed that during the period of one minute, 10 liters of geothermal hot water have been released. Another research team exposed that underground reservoir temperatures are higher in some areas by applying geochemical method. Considered all possible geothermal gradient assessment methods and the best system suitable for Sri Lankan territory is the borehole drilling, out of all of them. The reason for this is borehole can be drilled at any selected location, without facing difficulties out of all of them.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

This dream has become a truth as a result of kind supports, valuable advices, guidance and encouragement given by many individuals and organizations. With great pleasure I take this opportunity to acknowledge and express my heartfelt gratitude to all of them.

First of all I would like to express my greatest heartfelt thankfulness to my Supervisors, Dr. H.M.R.Premasiri, Senior Lecturer of Department of Earth Resources Engineering and Professor R.A.Attalage, Senior Professor of the Department of Mechanical Engineering, and Deputy Vice Chancellor, University of Moratuwa. I highly appreciate whose guidance, encouragement and support throughout the research study.My heartfelt thankfulness to you Sirs.

I am very much grateful to Professor Anurudda Pussewela, Dean of the Engineering and former Head of the Department of Earth Resources Engineering, Dr. (Mrs.). Shiromi Karunarathna, former Head of the Department of Earth Resources Engineering and Dr.T.A.G.Gunasekara Former Director, Institute of Technology and Members of Board of Management Institute of Technology and Dr. A.M.K.B Abeysinghe, former Post Graduate co-coordinator and present Head of the Department of Earth Resources Engineering.

University of Moratuwa, Sri Lanka. I cannot for Professor C.B.Dissanayaka, Senior Professor, Department of Geology, University Peradeniya and Director of the Institute of Fundamental Studies (IFS), Hanthana, Kandy, he was an examiner of my evaluation process and provided facilities to carry out various works related to my research work at Institute of Fundamental Studies. My supreme thankfulness to you, Sir.

These thanks are to the General Manager and Staff of Bogala Mines. I cannot forget Mr. Gamini Komasaru, Mr. Rashi Fernando, Mr. Pubudu Ratnayaka, and Mr. K.Percy who were with me in the field while surveying and collecting data. Mrs. P.T.N.Pathiraja helped me to analyze samples of soil and water to complete this work with the remarkable assistance of all staff members of the Department of Earth Resources Engineering.

This special thanks to senior Professor Ronald DiPippo, Chancellor, University of Massetechuset, Boston, USA, who encouraged me and gave valuable instructions via e-mails, Dr. Madhawa Hettiarachchi, Multiphysics Analyst at FMC Technologies, Houston, Texas, USA.

Special thanks to Dr. Nalin Ratnayaka, Senior Lecturer, Department of Earth Resources Engineering, Professor. Nanda Munasinghe and Mr. Bandu Samarasekara of Department of Material Science and Engineering, Mr. Rohitha Amarasekara, Managing Director, Auto Air Care (Pvt) Limited, Kesbewa, Mr. Mahendra Warnasooriya, Sri Lanka Red Cross Society.

Finally I respectfully honor my parents who brought me to this world and all of my teachers who taught me during my life time.My Wife Lakshmie, Daughter Gimhani and Son Samitha who helped me to prepare the final report and all persons who encouraged me to do this study.

G.D.Nanayakkara, Institute of Technology, University of Moratuwa

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Title	Page
Abstract	I
Acknowledgement	III
Contents	V
List of figures	IX
List of tables	XIV
List of Graphs	XV
List of abbreviations, terms and symbols	XVI

Contents

CHAPTER 1 INTRODUCTION

1.1	What is the geothermal energy	2
1.2	Geothermal Energy and hot water springs	4
1.3	Heat in the earth	4
1.4	Generation of heat inside the earth Sri Lanka.	8
1.5	Occurance of geothermassnergy resources ations	9
1.6	Tydrothermalliesourcesc.lk	11
1.7	Geothermal resovoirs	12
	1.7.1 Volcanos	13
	1.7.2 Fumaroles	15
	1.7.3 Hot Springs	16
	1.7.4 Geysers	17
1.8	Geothermal energy and environment	17
1.9	Direct use of geothermal enrgy, low temperature sources	19
1.10	Producing Electricity, High Temperaturesources	21
1.11	Energy and economical problems in Sri Lanka	22
1.12	Objectives of the Research	23

Title	Page

CHAPTER 2 LITERATURE SURVEYS

2.1	Hot sp	orings in Sri Lanka	24
	2.1.1	Kapurella hot water springs	27
	2.1.2	Maha Oya hot water springs	28
	2.1.3	Mahapelessa hot water springs	29
	2.1.4	Nelum Wewa hot water springs	29
	2.1.5	Kiwulegama / Jayanthiwewa hot water springs	30
	2.1.6	Rathkihiriya / Gomarankadawala hot water springs	31
	2.1.7	Wahawa (Ampara) hot water springs	32
	2.1.8	Muthugalwala hot water springs	33
2.2	Geoth	ermal in Asian region	34
	2.2.1	India	34
ſk	2.2.2	Pakistan	36
130	2.2.3	Bangradesh of Moraluwa, Sri Lanka.	37
and the	2.2.4	Exectionic Theses & Dissertations	40
6	2.2.5	wwwanahio.mrt.ac.lk	41
	2.2.6	Indonesia	43
2.3	Geoth	ermal usage African countries	45
	2.3.1	Africa	45
	2.3.2	Kenya	46
2.4	Europ	eon countries and their geothermal potentials	48
2.5	World	rich geothermal power producers	50
	2.5.1	United States	50
	2.6.1	Phillipines	51
	2.6.3	Indonesia	53
	2.6.4	Mexico	54
	2.6.5	Italy	54
	2.6.6	New Zealand	55
	2.6.7	Iceland	56
	2.6.8	Japan	57
	2.6.9	El Savador	58
	2.6.10	Kenya	59

Title			Page
	2.6	Methods of power generation using geothermal energy	59
		2.6.1 Dry steam power plants	60
		2.6.2 Flash steam power plants	61
		2.6.3 Binary cycle power plants	62
		2.6.4 Enhanced geothermal systems	64
		2.6.5 World top 10 geothermal power plants	65

CHAPTER 3 METHODOLOGY

3.1	Explo	ration technics	67
3.2	Geoch	nemical Survey	67
3.3	Geoph	nysical survey	69
đe	3.3.1	Resistivity survey Schlumberger method	69
	3.3.2	Resistivity survey at Bogala, Sri Lanka.	72
and the second	3.3.3	ERESISTANICSurveysacketiyaksastrations	73
3.4	Geoth	ermandialient maas kement at Bogala Graphite mines	74
	3.4.1	Location of Bogala Village	75
	3.4.2	Bogala Graphite Mines	75
	3.4.3	Temperature logging method	78
	3.4.4	Ground temperature variation	80
3.5	Temp	erature measurement at hot water springs	81
3.6	Labor	atory model power plant	85
	3.6.1	Design details	85
	3.6.2	Construction details of model generator	86
	3.6.3	Priciple of operation	90
3.7	Geoth	ermal gradient	92
3.8	Geoth	ermal Map	93

CHAPTER 4 RESULTS AND DISCUSSION

Title

4.1	Resistivity data			
	4.1.1	Resistivity data in Bogala	95	
	4.1.2	Resistivity data in Kotiyakumbura	97	
4.2	Tempe	rature gradient, Bogala mines	99	
4.3	Tempe	rature data Hot springs	102	
4.4	Power plant		103	
	4.4.1	Efficiency of power plant	103	
	4.4.2	Testing power plant	107	
	4.4.3	Power plants suitable for Sri Lanka	116	
	4.4.4	Fluids for binary plants	119	
4.6	Geothe	uversity of Moratuwa, Sri Lanka.	120	
()) F	Electronic Theses & Dissertations		
CHA	PTER	www.lib.mrt.ac.lk		
CONC	CLUSIC)N		
5.1	Conclu	ision	122	
5.2	Future	geothermal resources	125	
	5.2.1	Hot dry rock geothermal resources	125	
	5.2.2	Magma geothermal energy	126	
	5.2.3	Geopressurized resources	128	
5.3	Future	developments	129	

CHAPTER 6 REFERENCES

130

LIST OF FIGURES

No.	Contents	Page
Fig 1.1	Depth temperature plot for geothermal resources [3]	2
Fig 1.2	Interior structure of the earth. [6]	4
Fig 1.3	Temperature variation in the earth's interior. [7]	5
Fig 1.4	World tectonic plates [8]	7
Fig 1.5	Ring of Fire.[11]	10
Fig 1.6	Hydrothermal resources. [12]	11
Fig 1.7	Geothermal Reservoir.[13]	12
Fig 1.8	Volcano [14]	13
Fig 1.9	Fumaroles [17]	15
Fig 1.10	Hot Spins 29 sity of Moratuwa, Sri Lanka.	16
Fig 1.11	SyseFlootronic Theses & Dissertations	17
Fig 1.12	Building heating by geothermal heat [23]	20
Fig 1.13	High temperature geothermal resources [26]	21
Fig 2.1	Locations map of hot springs in Sri Lanka [37]	27
Fig.2.2	Kapurella Hot Springs in Sri Lanka [39]	28
Fig. 2.3	Mahaoya Hot Springs in Sri Lanka [38]	28
Fig. 2.4	Mahapelessa Hot Springs Sri Lanka [40]	29
Fig 2. 5	Nelumwewa Hot Springs in Sri Lanka [41]	30
Fig. 2. 6	Kiwulegama / Jayanthiwewa Hot Springs in Sri Lanka[38]	31
Fig 2.7	Rathkihiriya / Gomarankadawala Hot Springs in Sri Lanka [38]	31
Fig 2.8	Wahawa (Ampara) Hot Springs [42]	32

LIST OF FIGURES (Continued)

No.	Contents	Page
Fig. 2.9	Geothermal Map of India [43]	34
Fig. 2.10	Map of Pakistan.[45]	37
Fig. 2.11	Map of Bangladesh [46]	38
Fig 2.12	Geothermal locations of Nepal [48]	40
Fig. 2.13	Hot springs in Thailand [52]	43
Fig. 2.14	Geothermal development map Indonesia [54]	44
Fig 2.15	African geothermal potential [55]	45
Fig 2.16	Geothermal map Kenya.[58]	47
Fig. 2.17	World Geothermal regions [61]	49
Fig. 2.18	Breakdown of Seothermal Electricity, Production [62]	50
Fig 2.19	Electronic Theses & Dissertations stimated temperatures at depth of 6 Km, USA [63] www.lib.mrt.ac.lk	51
Fig 2.20	Geothermal system Philippines [65]	52
Fig 2.21	Geothermal areas Indonesia [66]	53
Fig 2.22	Geothermal power plant at Mexico [67]	54
Fig 2.23	Geothermal power plant in Italy [68]	55
Fig 2.24	View of New Zealand geothermal resources. [69]	55
Fig 2.25	View of Iceland geothermal resources.[70]	57
Fig 2.26	Japan geothermal resources.[71]	57
Fig 2.27	El Salvador geothermal resources map [72]	58

No.	Contents	Page
Fig 2.28	Dry steam power plant [74]	60
Fig 2.29	Flash steam power plant [74]	61
Fig 2.30	Binary cycle power plant [74]	62
Fig 2.31	Enhanced Geothermal Systems power plant [76]	64
Fig 3.1	Schlumberger Method arrangement of electrode	70
Fig 3.2	Resistivity survey at Kotiyakumbura	72
Fig 3.3	Preparing Equipment	73
Fig 3.4	Topographic Map of Bogala area[117]	75
Fig 3.5	Cross section of Bogala mines.	76
Fig 3.6	ArrangemensedytoofiewwoodredworkSeinteratives.	77
Fig 3.7	Checkleattonic Theses & Dissertations	78
Fig 3.8	During underground research work	79
Fig 3.9	Temperature measurement, hot spring at Kanniya, Trincomalee	80
Fig 3.10	Temperatures of hot water wells Kanniya, Trincomalee	81
Fig. 3.11	Locations of wells Mahaoya, hot springs [94]	82
Fig 3.12	Cross section of laboratory model generator of the power plant	84
Fig 3.13	Model of the Heat exchanger	85
Fig 3.14	Preparing armature of alternator of model generator	85
Fig 3.15	Turbine blade with circular magnets	86
Fig 3.16	Stator holder and stator after fixed to the holder	86

LIST OF FIGURES (Continued)

No. Contents Page Stator and turbine Fig 3.17 87 Completed alternator with turbine 87 Fig 3.18 Fig 3.19 Air jets of plant turbine 88 Constructed model Plant 89 Fig 3.20 90 Fig 3.21 Cross section of actual generator Fig 3.22 **Designed binary Plants** 90 Fig 3.23 Power plant design drawing 91 Fig. 3.24 Geothermal energy utilization map of the world [117] 92 Fig 4.1 Analyzed results of Bogala resistivity data 95 Analyzed results of Bogala resistivity data University of Moratuwa, Sri 95 Fig 4.2 Lanka. Analyzed results of Kotizakundur aresistivity data 97 Fig 4.3 Analyzed results of Korsakimbura resistivity data Fig 4.4 97 Testing the turbine and alternator Fig 4.5 106 Fig 4.6 Output voltage waveform of model generator 106 Plant Testing 107 Fig 4.7 Fig 4.8 Voltage build up 1 107 Fig 4.9 Voltage build up 2 108

LIST OF FIGURES (Continued)

Fig 4.11Voltage build up 4109Fig 4.12Voltage build up 5109

108

Fig 4.10

Voltage build up 3

No.	Contents	Page
Fig 4.13	Voltage build up 6	110
Fig 4.14	Air flow rate testing 1	110
Fig 4.15	Air flow rate testing 2	111
Fig 4.16	Air flow rate testing 3	111
Fig 4.17	Water filling to heat exchanger	112
Fig 4.18	Temperature monitoring 1	112
Fig 4.19	Temperature monitoring 2	113
Fig 4.20	Generator output voltage/ Air velocity (Temperature constant)	113
Fig 4.21	Generator output voltage/ Temperature (Air velocity constant)	114
Fig 4.22	Isotope compositions and reservoir temperature [30]	115
Fig 4.23	Aria Electrottic Thesesi & Dissertations	116
Fig 4.24	ariation of theoretical efficiency with reservoir temperature, (Related to Table 4.7)	117
Fig 4.25	Temperature/ Output power of developed plant	118
Fig. 4.25	locations of some hot water springs	120
Fig 5.1	Hot dry rock geothermal power generation [99]	124
Fig 5.2	Lori Zimmer, Iceland May Tap Liquid Magma as New Geothermal Energy Source [100]	125

LIST OF FIGURES (Continued)

No.	Contents	Page
Table 2. 1	Hot springs and their water temperatures [38]	26
Table 2.2	World top 10 geothermal power plants [77]	66
Table 3.1	Temperatures and water discharge rates, Mahaoya hot springs [88]	84
Table 3.2	Hot water flow rate for few locations [100]	84
Table 4.1	Resistivity values for different ground conditions. [96]	94
Table 4.2	Resistivity data in Bogala.	95
Table 4.3	Resistivity data in Kotiyakumbura	97
Table 4.4	Averaged Temperature data at ground level, Bogala.	99
Table 4.5	University of Moratuwa, Sri Lanka. Veraged Underground temperature variation with depth at Electronic Theses & Dissertations Bogala mines www.lib.mrt.ac.lk	100
Table 4.6	Reservoir temperatures	102
Table 4.7	Underground reservoir power capacities	103
Table.4.8	Power generation capacities	104
Table.4.9	Performance analysis	105
Table 4.10	Testing output power of the plant	118
Table 4.11	Geothermal map data	119

LIST OF TABLES

List of abbreviations, terms and symbols		
kW	Kilo Watt	
kWh	Kilo Watt Hour	
MW	Mega Watts	
GW	Giga Watt	
VOC	Volatile Organic Compound	
EGS	Enhance Geothermal Systems	
MT	Magneto Telluric	
GENI	Global Energy Network Institute	
GSI IOEDE	Geological Survey of India University of Moratuwa, Sri Lanka. Electromic Efficiences & Dissertations www.lib.mrt.ac.lk Department of Energy Development and Efficiency	
AfDB	African Development Bank	
TEC	Theoretical Cycle Efficiency	
CO_2	Carbon dioxide	
СО	Carbon monoxide	
H_2S	Hydrogen Sulfide	
SO_2	Sulfur dioxide	