POTENTIAL OF ORGANIC RANKINE CYCLE BASED HEAT RECOVERY SYSTEMS FOR POWER GENERATION

B. S. Rumesh Fernando

Thesis submitted in partial fulfillment of the requirements for the degree Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

June 2015

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted in a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by any other person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Above candidate has carried out research for the Master of Engineering under my supervision.

Signature of the supervisor :

Date :

Dr. R.A.C.P. Ranasinghe, University of Moratuwa

ABSTRACT

Due to intense fuel dependency on energy production in the world, cost of energy has a greater bearing on the prices of fossil fuels. Most of the countries in the world are suffering due to this and Sri Lanka is no exception. It is in this context promotion of optimize the usage of thermal power generation, is so vital to the country. Even though fossil fuel base power generation plays a greater role as a source of primary energy in the country, major portion wasted to environment. WHR systems have been already introduced, but most of them are not performing effectively and efficiently. On other hand, novel systems and technologies required to investigate, to recovery most of the wasted heat of thermal plant while increasing the system efficiency and reducing the fuel cost. Conceptual thermodynamic cycles such as Trilateral Flash cycle, Organic Rankine cycle, Kalian cycle and Gaswami cycle, can be successfully incorporate for WHR applications. Hence, purpose of this research was to assess the amount of waste heat generated by thermal plants in the country while discussing the possible technologies that can be introduce for heat recovery. Further, discuss about selection of most suitable option and carryout thermo-economic analysis as a case study.

Fluid selection and system optimisation based on heat source temperature are two most critical aspect of Organic Rankine Cycle. Eleven fluids were investigated to optimize the work output by varying the evaporator temperature and varying the expander pressure ratio with the detection in odel. Where a point analysis Heptane, Pentane and Decane shows favourable results in terms of work outputs while, in terms of efficiency, Decane and Heptane are better. Further it is recommended to use fluid Pentane, when source temperatures of WHR Herbetween 45 - 190 °C, while fluid Heptane is recommended when source temperature between 190 - 260 °C. Fluid Decane is recommended when temperature between 260 – 340 °C. Respective monographs were developed where one point on the graph can denote approximate work output, efficiency, pressure, temperature, etc. Based on expander analysis, Decane, Heptane and Toluene fluids have shown higher work outputs while, in terms of efficiency, Decane is better. In expander selection, when inlet/outlet pressure ratios are less than 10, fluid Decane is recommended. Further, when ratios are in between 10 - 13 and 13-20, fluid Heptane and fluid Toluene are recommended respectively. Refer to these 03 fluids, monographs were developed accordingly.

Refer to optimum working regions of temperature analysis; fluids were selected for economic evaluation. Waste heat recovery opportunities were selected from existing thermal plants for the case study and electric outputs were obtained for each plant, based upon selected fluids from theoretical model. Then maximum work out of each opportunity was selected for further economic evaluation under 07 different scenarios. Possible future economic situations of the country were predicted under those scenarios and carryout NPV calculations for each, to evaluate the investment feasibility. Scenario 2, 3 and 7 are the most possible situations of the country in future and for those conditions, WH opportunities at Supugaskanda, Lakvijaya, Keravalapitiya and Kelanithissa are most feasible to recover waste heat with ORC system.

ACKNOWLEDGEMENTS

This thesis was prepared as a part of my MEng program offered by the University of Moratuwa, Sri Lanka. During the course of this research there were many individuals who supported me in various ways to complete this work successfully.

In first place, this thesis would not have been possible unless continuous guidance, expertise and comments of my supervisor, Dr. Chathura Ranasinghe, Senior Lecturer of Moratuwa University. Form the day I conceived this research idea, he made sure that this work moved gradually towards the culmination smoothly. Further, I would like to express my sincere gratitude to Dr. H.K.G. Punchihewa and Dr. M.M.I.D. Manthilake of University of Moratuwa, on their valuable comments when I most required.

Most difficult part of this exercise was the collection of data related to waste heat energy of activities power plant in the country. My special thanks in this regard should go to my fellow engineers who have supported in data collection in various thermal power plants.

The biggest challenge I faced during this research was to find time for this and meeting the targets. I am sure if not for my wife, Nadeeka De Silva, my new born son Dihas and my mother I.D. Priyangani, I could not have completed this research on time. Hence, my gratitude should go to my beloved family members for the sacrifices they made during this research.

TABLE OF CONTENTS

Declaration		i
Abstract		ii
Acknowledgement		iii
Table of Contents		iv
List of Figures		vi
List of Tables		ix
List of Abbreviation	s	xi
List of Appendices		xii

1.0 Introduction	1
2.0 Thermal Power Generation	4
2.1 Present Status	4
2.2 Thermal Plants in Sri Lanka	7
2.3 Power Generation and Efficiencies of Thermal Plants	8
2.4 Thermodynamic Coetes of Moratuwa, Sri Lanka.	12
2(5 Plant)Configurationsic Theses & Dissertations	12
3.0 Waste Heat Recovery	15
3.1 Waste Heat Definitions and Classifications	15
3.2 WH Classification Based on Temperature	16
3.3 Waste Heat Recovery Classification	19
3.4 Low Grade Heat Recovery Cycles	21
3.4.1 Organic Rankine Cycle (ORC)	21
3.4.2 Kalina Cycle	22
3.4.3 Gaswami Cycle	24
3.4.4 Trilateral Flash Cycle	26
3.5 Selection of Thermodynamic Cycle	28
4.0 Organic Rankine Cycle	30
4.1 Properties of Working Fluid	30
4.2 Fluid Classification Based on T-S diagram	31
4.3 ORC Configuration	33
4.4 System Modeling	35

5.0 Results and Discussion	38
5.1 Selected Fluids	38
5.2 Fluid Analysis	40
5.2.1 Analysis on Evaporator Temperature Variation	41
5.2.2 Key Findings in Temperature Analysis	51
5.2.3 Analysis of Pressure Ratio Variation on Expander	54
5.2.4 Key Findings in Pressure Ratio Analysis	64
5.3 Development of Monographs	66
5.3.1 Temperature Based Monographs	66
5.3.2 Pressure Ratio Based Monographs	67
6.0 Case Study	74
6.1 Selection of Waste Heat Opportunities	74
6.2 Performance Evaluation of Selected Fluids	75
7.0 Economic Analysis	80
7.1 Investment Cost on ORC	80
7.2 Net Present Value (NPV)	82
7.3 NPV Results University of Moratuwa, Sri Lanka.	85
8.0 Condusions Electronic Theses & Dissertations www.lib.mrt.ac.lk	87
List of Reference	91
Appendix A: Details on waste heat in thermal power plants	. 94
Appendix B: ORC performance analysis with evaporator temperature variation	99

Appendix B: ORC performance analysis with evaporator temperature variation	99
Appendix C: ORC performance analysis with expander pressure ratio variation	121
Appendix D: Work output calculations for case study	143
Appendix E: Net Positive Value calculations	145

LIST OF FIGURES

Chapter 01		Page
Figure 1.1	Electricity generation mix of Sri Lanka in the years 2012 and 2013	1
Chapter 02		
Figure 2.1	Hydro/Thermal/Non-conventional energy share in the national grid	4
Figure 2.2	Total imports Vs petroleum imports over the last 05 years	5
Figure 2.3	Total exports Vs petroleum imports over the last 05 years	6
Figure 2.4	Graph of average selling price of electricity	6
Figure 2.5	Thermodynamic cycles, according to their operating temp. range	12
Chapter 03		
Figure 3.1	Waste heat source classification based on temperature	16
Figure 3.2	Waste heat recovery method classification ri Lanka.	19
Figure 3.	Basic Equipation of Kalina c& Dissertations	23
- Alana	Basic configuration of Goswami cycle	25
Figure 3.5	Layout of Trilateral Flash cycle	26
Figure 3.6	T-S diagram of Trilateral Flash cycle	27
Chapter 04		
Figure 4.1	Saturated vapour line for Dry, Isentropic and Wet Fluids	31
Figure 4.2	Basic configuration of ORC system	33
Figure 4.3	Basic T-s diagram for ORC system	34
Chapter 05		
Figure 5.1	Input and expander work variation with different evaporator temperature for Decane	42
Figure 5.2	Work input and efficiency variation with different evaporator temperature for Decane	43
Figure 5.3	Input and expander work variation with different evaporator temperature for Decane	43
Figure 5.4	Work output variation with different evaporator temperatures	44

Figure 5.5	Graphical view of maximum possible work outputs of each fluid with temperature	45
Figure 5.6	Cycle efficiency variation with different evaporator temperatures	46
Figure 5.7	Graphical view of maximum possible efficiencies of each fluid	
i iguie 5.7	with temperature	47
Figure 5.8	Maximum work output region for each fluid	50
Figure 5.9	Evaporator temperature range for maximum work output region	50
Figure 5.10	Efficiency variations of pressure and temperature of fluid Decane	52
Figure 5.11	Expander output variation with pressure and temperature of fluid	
	Decane	53
Figure 5.12	Input and expander work variation with different pressure ratios, Decane	55
Figure 5.13	Input and eff. variation with diff. expander pressure ratios, Decane	56
Figure 5.14	Input and expander work variation with different pressure ratios,	
	Decane	56
Same	Expanderiverksoutput foriation with diff pressure katios	57
Figure 5.	Graphicatoreword work outputs of leach shuid with pressure	58
Figure 5.1	Cyclevefficiend variation with different expander pressure ratios	59
Figure 5.18	Graphical view of efficiencies of each fluid with pressure	60
Figure 5.19	Maximum work output range with expander pressure variation	62
Figure 5.20	Expander pressure range for maximum work output region	63
Figure 5.21	Efficiency variation with pressure and temperature of fluid Decane	: 64
Figure 5.22	Expander output variation with pressure and temperature of fluid	
	Decane	65
Figure 5.23	Different temperature curves with iso-efficiency lines against work	ζ
	output for fluid Pentane	68
Figure 5.24	Different temperature curves with iso-efficiency lines against work	ζ
	output for fluid Heptane	69
Figure 5.25	Different temperature curves with iso-efficiency lines against work	ζ
	output for fluid Decane	70
Figure 5.26	Different pressure ratio curves for expander with iso-efficiency lin against work output for fluid Decane	es 71

Figure 5.27	Different pressure ratio curves for expander with iso-efficiency lines	
	against work output for fluid Heptane	72
Figure 5.28	Different pressure ratio curves for expander with iso-efficiency line	es
	against work output for fluid Toluene	73
Chapter 06		
Figure 6.1	Energy recovery at each opportunity by different fluids	78
Figure 6.2	Energy recovery at each opportunity by different fluids, except	
	Keravalapitiya and Kelanithissa plants	78

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

	Cha	pter	02
--	-----	------	----

Page

Chapter 02	1	age
Table 2.1	CEB owned thermal power plants and respective power	
	generations 2013	7
Table 2.2	IPP owned thermal power plants and respective generations 2013	8
Table 2.3	Generation and efficiencies of SPS	9
Table 2.4	Generation efficiencies of KPS	9
Table 2.5	Combined cycle power plant- Kelanithissa	10
Table 2.6	AES Kelanithissa Plant	10
Table 2.7	West coast power plant	11
Table 2.8	Summary of exhaust gas temperature and volumes of	
	CEB thermal plants	11
Table 2.9	Thermodynamic cycle combination matrix	13
Table 2.10	Common configurations of thermodynamic cycles ka.	14
Chapter 13	Electronic Theses & Dissertations www.lib.mrt.ac.lk	
Table 3.1	Classification of waste heat by temperature	18
Table 3.2	Kalina cycle case-studies	24
Table 3.3	Comparison of TFC, ORC and Kalina cycle	28

Chapter 05

Table 5.1	Physical, safety and environmental data of selected fluids	39
Table 5.2	Details of maximum work output point for each fluid	48
Table 5.3	Details of maximum output and efficiency ranges of each fluid	49
Table 5.4	Details on maximum work output point in each fluid	61
Table 5.5	Details of max. output range and efficiency ranges of each fluid	61

Chapter 06

Table 6.1	Waste heat of thermal plants and recommended fluids	74
Table 6.2	Sapugaskanda plant exhausts heat recovery	76
Table 6.3	Lakvijaya plant exhausts heat recovery	76

Table 6.4	Lakvijaya plant blow down heat recovery	76
Table 6.5	Jaffna plant exhausts heat recovery	76
Table 6.6	Keravalapitiya plant exhausts heat recovery	77
Table 6.7	Kelanithissa GT plant exhausts heat recovery	77
Table 6.8	Maximum electrical output and related fluid for each opportunity	79

Chapter 07

Table 7.1	Reputed ORC manufacturers and their plant details	81
Table 7.2	Estimated capital investment for heat recovery opportunities	83
Table 7.3	Different scenarios that NPV calculations done for project feasibility	84
Table 7.4	Plant running hours and interest rate for scenario 7	84
Table 7.5	Nat Positive Values for different WHR opportunities	85
Table 7.6	Summery of feasibility of the investments	86

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

Ceylon Electricity Board	W exp	- Expander work
Non-Renewable Energy	'n	- Fluid mass flow rate
Waste Heat Recovery	h	- Specific enthalpy
ndependent Power Producers	η is	- Expander isentropic efficiency
High Sulfur Fuel Oil	W exp.is	- Expander isentropic work
low Sulfur Fuel Oil	Q evap	- Evaporator heat energy addition
Sapugaskanda Power Station	₩ _{pump.is}	- Pump isentropic work
Kelanithissa Power Station	Р	- Pressure
Gas Turbine	P liquid	- Fluid density
Steam Turbinaiversity of Mo	owatumpva, Si	ri Limpwork
Subject Eyester Subject Formation	s & Disser	rtations - Pump efficiency
Combined Cycle Gas Turbine	ΙΚ η _{pump.is}	- Pump isentropic efficiency
Low Pressure Turbine	$\eta_{\text{ cycle}}$	- Cycle Efficiency
High Pressure Turbine	₩ _{in}	- Work input
ntermediate Pressure Turbine	₩ _{out}	- Work output
Combined Heat & Power	Q evap. max	- Maximum available heat energy
Organic Rankine Cycle	Ĩ	for evaporator
Frilateral Flash Cycle	η _{evap}	- Evaporator efficiency
Net Positive Value		
	P1/P2	- Expander pressure ratio between
	Vaste Heat Recovery Naste Heat Recovery Independent Power Producers High Sulfur Fuel Oil Low Sulfur Fuel Oil Capugaskanda Power Station Calanithissa Power Station Gas Turbine Eterm Turbinaiversity of Me Combined Cycle Power Plantese Combined Cycle Gas Turbine Low Pressure Turbine High Pressure Turbine Intermediate Pressure Turbine Combined Heat & Power Organic Rankine Cycle	Non-Renewable EnergymNaste Heat RecoveryhIndependent Power Producers η_{is} High Sulfur Fuel Oil $\psi_{exp.is}$ Low Sulfur Fuel Oil Q_{evap} Bapugaskanda Power Station $\psi_{pump.is}$ Celanithissa Power StationPBas Turbine P_{tiquid} Cetam Turbiniversity of Mowapumpya, SCombined Cycle Power Planteses & DisserCow Pressure Turbine $\eta_{pump.is}$ Cow Pressure Turbine η_{cycle} High Pressure Turbine ψ_{out} Combined Heat & Power $Q_{evap. max}$ Organic Rankine Cycle η_{evap}

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Details on waste heat in thermal power plants	93
Appendix B	ORC performance analysis with evaporator temperature variation	98
Appendix C	ORC performance analysis with expander pressure ratio variation	120
Appendix D	Work output calculations for case study	142
Appendix E	Net Positive Value calculations	144

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk