INVESTIGATION OF MICRO-CLIMATIC FEATURES (VEGETATION) AFFECTING THE INDOOR AIR QUALITY IN SUBURB CITIES OF COLOMBO

Don Simon Patabendi Ridmi Deepani Premachandra

(Adm No:118772N)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Degree of Master of Engineering in Environment Engineering And Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

October 2015

INVESTIGATION OF MICRO-CLIMATIC FEATURES (VEGETATION) AFFECTING THE INDOOR AIR QUALITY IN SUBURB CITIES OF COLOMBO

Don Simon Patabendi Ridmi Deepani Premachandra

(Adm No:118772N)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Thesis submitted in partial filling of the requirements for the Degree of Master of Engineering in Environment Engineering And Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

October 2015

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by any other person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

D.S.P.R.D.Premachandra

Date

The above candidate has carried out research for the Masters under my supervision. University of Moratuwa, Sri Lanka. Signature of the Supervisor: Date WWW.lib.mrt.ac.lk Prof. (Mrs) C.Jayasinghe Professor Department of Civil Engineering

University of Moratuwa

ABSTRACT

Considerable number of studies show a favourable impact of vegetation and an adverse impact of synthetic built environment on urban micro-climates. Despite these findings, people eradicate these favourable micro-climatic features for built purposes. In the past few decades suburbs of the Colombo, the capital city of Sri Lanka, was subjected to a rapid development mainly for residential purposes. As a result, paddy fields, marshy lands and large tree canopies have been converted to a built environment with scattered green patches. This study was aimed at determination of the impact of micro-climatic features on air quality and thermal comfort.

Air quality investigations were carried out in five residential buildings which were selected based on the surrounding micro-climatic features. Indoor concentrations of CO₂, NO₂, PM_{2.5}, CO, VOC, temperature, relative humidity and wind speeds were measured during the day time from 9.00 AM to 4.00 PM in each sample building. The results were checked against the air quality standards and an attempt has been made to establish a relationship with micro-climatic features.

The results showed that the air quality in suburbs is still in the acceptable range except for peaking of $PM_{2.5}$ concentration beyond the threshold time to time. Lower levels of temperature and CO_2 concentration were observed with good microclimatic features. Decrease of $PM_{2.5}$ concentration was also detected with the increase of distance to the main road and vegetation cover. These findings will benefit the township planning in terms of preserving the air quality and thermal comfort levels in suburbs.

Key Words: Indoor Air Quality, Micro-climate, Suburb, Thermal Comfort

ACKNOWLEDGEMENT

I wish to give my sincerely gratitude to my supervisor Prof Mrs C. Jayasinghe for her guidance and advise at every stage of the study, to complete the research successfully. Furthermore I would like to express my special thanks to the Course Coordinator, Dr J. Manathunge, for his effort to make our course success. At the same time I am grateful to the academic staff, especially Prof Mrs N. Rathnayake and Dr M. Jayaweera to make maximum effort to enhance our knowledge in the field of Environmental Engineering.

I hereby extend my appreciation to Ms K.D.H. Nayantha, Post Graduate Student at University of Moratuwa to her directions and kind support provided to me throughout the experimental studies. Furthermore, I am thankful to Mr. Alas, Lecturer in English Language Teaching Unit in University of Moratuwa to correct my thesis as a grammatically correct, comprehensive report.

Also I would like University of Moratuwa Sri Lanka. Building Stesto Electronic Theses & Dissertations provide their house throughout the day without any doubt or hesitation.

I like to thankful to non-academic staff of the university who support to complete the research successfully in many ways by giving permissions to take the instruments outside from the university, dropping me to the experimental sites, etc.

Moreover I am grateful to staff of National Water Supply & Drainage Board for their cooperation and providing required information for the study. I am extending my gratitude to the staff of Library in National Water Supply & Drainage Board to provide valuable handbooks, reports and other relevant documents to success my course.

Finally I give my special thanks to my dearest father, husband and my friends who are encouraging and supporting me continuously throughout the study.

TABLE OF CONTENTS

Declaratio	on of the Candidate & Supervisor	i
Abstract		ii
Acknowledgement		iii
Table of Content		iv
Annexes		vi
List of Figures		vii
List of Tables		viii
List of Charts		viii
List of Abbreviations		ix
1 Chaj	pter One: Introduction	
1.1	Background	1
1.2	Research Problem	2
1.3	Objectives	3
14	Significance inf Stafd Moratuwa, Sri Lanka.	3
2 Char	oter Fuertherature Review & Dissertations	
2.1	www.lib.mrt.ac.lk Urban Heat Island	4
2.2	Microclimate	14
2.3	Thermal Comfort	17
2.4	Indoor Air Quality	26
3 Chap	pter Three: Research Methodology	
3.1	Study Approach	
	3.1.1 Literature Review	34
	3.1.2 Experimental Study	34
3.2	Study Location	36
3.3	Method of Data Collection	
	3.3.1 Desktop Studies	39
	3.3.2 Field Observations	39

		3.3.3 Questionnaire Survey	41
	3.4	Method of Data Analysis	42
4	Chap	ter Four: Data Analysis	
	4.1	Analyze the micro-climatic features in the selected area	43
	4.2	Analyze the Indoor Air Quality	47
	4.3	Analyze the Thermal Comfort	49
	4.4	Questionnaire Survey	
		4.4.1 Indoor Pollution Sources & Thermal Discomfort	52
		4.4.2 Health Effects	57
5	Chap	ter Five: Results and Discussion	
	5.1	Effect of micro-climatic features on air quality parameters	58
		5.1.1 CO ₂ Concentration	58
		5.1.2 NO ₂ Concentration	60
		5.1.3 Particular matters (PM _{2.5}) Concentration	61
		^{5.1.4} CO Concentration University of Moratuwa, Sri Lanka.	64
		5.151ecTemperatureses & Dissertations	65
	5.2	Thermal Comfort	66
	5.3	Results of Questionnaire Survey	66
	5.4	Control measures of high concentrated air pollutants	68
		5.4.1 Particular matters (PM _{2.5}) Concentration	68
		5.4.2 CO Concentration	68
6	Chap	ter Six: Conclusions & Recommendations	
	6.1	Conclusions	69
	6.2	Recommendations	70
7	Chap	oter Seven: References	71

ANNEXES

Annex I	Readings of Indoor & Outdoor CO_2 levels and variation of the ratio of (Indoor/Outdoor) CO_2 with time
Annex II	NO2 readings from Air Quality Monitor
Annex III	Particulate Matter readings from Real-time Particulate Monitor
Annex IV	CO readings from Air Quality Monitor
Annex V	Readings of Indoor & Outdoor temperatures and variation of temperature differences with time
Annex VI	Indoor Relative Humidity Readings from Air Quality Monitor
Annex VII	Measurements of Outdoor and Indoor wind speeds
Annex VIII	Questionnaire Survey
Annex IX	Measurements of Outdoor Conditions

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

		Page
Figure 2-1	Thermal (left) and vegetation (right) locations around New York City via infrared satellite imagery	5
Figure 2-2	Spider plants (<i>Chlorophytum comosum</i>) and Aloe Vera absorb some airborne contaminants	33
Figure 3-1	Flow Chart of Research Methodology	35
Figure 3-2	Site Map of the Study Area	36
Figure 3-3	Site Location of Sample 01	37
Figure 3-4	Site Location of Sample 02	37
Figure 3-5	Site Location of Sample 03	38
Figure 3-6	Site Location of Sample 04	38
Figure 3-7	Site Location of Sample 05	38
Figure 3-8	Setup of Air Quality Monitor & Haz-Dust EPAM 5000 real- time particulate Monitor	40
Figure 3-9	Setup of Wet & Dry Bulb Hygrometer & Portable CO ₂ Monitor	40
Figure 3-10	Low Speed Air Meter and Lux Meter Sri Lanka.	41
Figure 4-1	Devel of vegetation These sizes: (Dissiteth (Best Case) & (b) - site 2 (Worst case) c.1k	46
Figure 4-2	Level of vegetation in the site 4; (a) – front view & (b) – rear view	46
Figure 4-3	Comfort level of the selected buildings plotted on psychometric chart	51

LIST OF TABLES

Table 4-1	Details of sample sites	43
Table 4-2	Vertical Distribution of Vegetation	44
Table 4-3	Maximum permissible level of the indoor air pollutants	47
Table 4-4	Recorded range of the air pollutants inside the building	48
Table 4-5	Daily Average Indoor and Outdoor Temperature and Relative Humidity	50

Page

LIST OF CHARTS

		Page
Chart 4-1	Percentage of micro-climatic features in the sites	45
Chart 4-2	Comparison of thermal sensation of the occupants	49
Chart 4-3	Percentage of fireplaces University of Moratuwa, Sri Lanka.	52
Chart 4-4	Availability of Chimney eses & Dissertations	53
Chart 4-5	Walling material mrt. ac. lk	54
Chart 4-6	Roofing material	55
Chart 4-7	Ceiling material	55
Chart 4-8	Source of hazardous contaminants emit to the air	56
Chart 4-9	Percentage variation of discomfort symptoms	57
Chart 5-1	Variation of Indoor CO ₂ level with time	58
Chart 5-2	Variation of Indoor-Outdoor CO ₂ with time	59
Chart 5-3	Variation of Indoor NO ₂ concentration with time	61
Chart 5-4	Variation of Indoor PM _{2.5} level with time	62
Chart 5-5	$PM_{2.5}$ concentration variation with the distance to the main road	63
Chart 5-6	$PM_{2.5}$ concentration variation with the % vegetation cover	63
Chart 5-7	Variation of Indoor CO level with time	64
Chart 5-8	Variation of Indoor-Outdoor temperature difference with time	66

LIST OF ABBREVIATIONS

Abbreviation Description

AM	Ante Meridian
ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning Engineers Clothing insulation
	C
COHb	Carbooxyhaemoglobin
CO	Carbon Monoxide
CO_2	Carbon Dioxide
EPA	Environmental Protection Agency
HVAC	Heating, ventilation, and air conditioning
IAQ	Indoor air quality
LEED	Leadership in Energy and Environmental Design
met	Metabolic Equivalent
NIOSH	National Institute for Occupational Safety and Health
NO ₂	Nitiogen Dioxide Theses & Dissertations
PM 💝	Post Meridian mrt.ac.lk
PM _{2.5}	Particulate Matter in diameter of 2.5 micrometer or smaller
PMV	Predicted Mean Vote
PPD	Predicted Percentage of Dissatisfied
ppm	Part Per Million
RH	Relative Humidity
UHI	Urban Heat Island
US EPA	United State Environmental Protection Agency
USGBC	United State Green Building Council
VOC	Volatile Organic Compound
WHO	World Health Organization